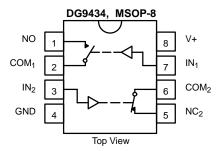
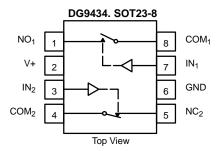


FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION—DG9433/DG9434



Device Marking: 9433



Device Marking: 4H

TRUTH TABLE DG9433					
Logic Switch					
0	Off				
1	On				

Device Marking: 9434

Device Marking: 4I

TRUTH TABLE DG9434					
Logic Switch-1 Switch-					
0	Off	On			
1	On	Off			

ORDERING INFORMATION					
Temp Range Package Part Numbe					
-40 to 85°C		DG9432DQ			
	MSOP-8	DG9433DQ			
		DG9434DQ			
		DG9432DS			
	SOT23-8	DG9433DS			
		DG9434DS			

Vishay Siliconix

ABSOLUTE MAXIMUM RATINGS

Reference to GND
V+0.3 to +13.5 V
IN, COM, NC, NO ^a 0.3 to (V+ + 0.3 V)
Continuous Current (Any terminal) \pm 10 mA
Peak Current ± 20 mA
(Pulsed at 1ms, 10% duty cycle)
Storage Temperature (D Suffix)65 to 150°C

Power Dissipation (Packages) ^b	
MSOP-8 ^c	320 mW
SOT23-8°	515 mW

Notes:

- Signals on S_X , D_X , or IN_X exceeding V+ or V- will be clamped by internal diodes. Limit forward diode current to maximum current ratings. a.
- All leads welded or soldered to PC Board.
- Derate 6.5 mW/°C above 75°C

SPECIFICATIONS	$(V+=3\ V)$						
		Test Conditions Otherwise Unless Specified V+ = 3.3 V, \pm 10%, V _{IN} = 0.4 or 1.8 V ^e		Limits -40 to 85°C			
Parameter	Symbol		Temp ^a	Min ^c	Typb	Max ^c	Unit
Switch On Resistance							
Analog Signal Range ^e	V _{ANALOG}		Full	V-		V+	V
Drain-Source On-Resistance	r _(on)	V+ = 2.7 V, I _{COM} = 1 mA,V _{COM} = 1.5 V	Room Full		81	100 120	Ω
r _(on) Match ^d	$\Delta r_{(on)}$		Room		0.4	3.0	
Digital Control							
Input, High Voltage	V _{INH}	V+ Ranges 2.7 to 5 V	Full	1.8			v
Input, Low Voltage	V _{INL}		Full			0.4	
Input Current	I _{INH}			-1		1	μΑ
Dynamic Characteristic	cs		1		•		•
Break-Before-Maked,9	t _{OPEN}	$V+ = 3 \text{ V, } R_{L} = 300 \ \Omega$ $V_{NO} = V_{NC} = 1.5 \text{ V}$ $C_{L} = 35 \text{ pF, } V_{IN} = 0 \text{ V, } 3 \text{ V}$	Room Full	1			ns
Turn-OnTime ^d	t _{ON}		Room Full		60	80 100	
Turn-OffTime ^d	t _{OFF}		Room Full		14	25 35	
Charge Injection ^d	Q	$C_L = 1 \text{ nF, } R_{GEN} = 0 \Omega, Vg = 0 V$	Room		0.16		pC
Off-Isolation ^d	OIRR	$C_L = 5 \text{ pF}, R_L = 50 \Omega, f = 1 \text{ MHz}$	Room		77		dB
Oil-isolation	OIRK	$C_L = 5 \text{ pF}, R_L = 50 \Omega, f = 10 \text{ MHz}$	Room		55		
Crosstalkd	X _{TALK}	$R_L = 50 \Omega$, $f = 1 MHz$, $V + = 2.5 V$	Room		98		
Source Off Capacitanced	C _{NC/NO(off)}	$f = 1 \text{ MHz}, V_{NC/NO} = 0 \text{ V}$	Room		7.5		
Drain Off Capacitanced	C _{COM(off)}	f = 1 MHz, V _{COM} = 0 V	Room		7.8		pF
Drain On Capacitanced	C _{COM(on)}		Room		22		
Supply Current	Ι,	$V+ = 3.3 \text{ V}, V_{IN} = 0 \text{ or } V+$	Room	-1		-1	μΑ

Notes:

- Room = 25°C, Full = as determined by the operating suffix.

 Typical values are for design aid only, not guaranteed nor subject to production testing.

 The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- Guarantee by design, not subjected to production test.
- V_{IN} = input voltage to perform proper function.
 Guaranteed by 12-V leakage testing, not production tested.
- Applies for DG9434 only.

Vishay Siliconix

New Product

SPECIFICATIONS	(V+ = 5 V)						
		Test Conditions Otherwise Unless Specified		Limits -40 to 85°C			
Parameter	Symbol	V+ = 5 V, \pm 10%, V _{IN} = 0.4 or 1.8 V ^e	Tempa	Min ^c	Typb	Maxc	Unit
Switch On Resistance			1				
Analog Signal Range ^e	V _{ANALOG}		Full	٧.		V ₊	V
Drain-Source On-Resistance	r _(on)	$V_{+} = 4.5 \text{ V}, I_{COM} = 1 \text{ mA},$ $V_{COM} = 2.5 \text{ or } 3.5 \text{ V}$	Room Full		39	60 70	Ω
r _{DS(on)} Match	$\Delta r_{(on)}$	$V_{+} = 4.5 \text{ V}, I_{COM} = 1 \text{ mA}, V_{COM} = 3.5 \text{ V}$	Room		0.3	3.0	
Switch Off Leakage Current ^f	I _{NC/NO(off)}		Room Full	-1 -10	0.3	1 10	
Switch Oil Leakage Current	I _{COM(off)}	$V_{+} = 5 \text{ V}, V_{COM} = 0.5 \text{ V}, 4.5 \text{ V}$ $V_{NC/NO} = 4.5 \text{ V}, 0.5 \text{ V}$	Room Full	-1 -10	0.3	1 10	nA
Channel On Leakage Current ^f	I _{COM(on)}		Room Full	-1 10	0.3	1 10	
Digital Control							•
Input, High Voltage	V _{INH}	V 5V	Full	1.8			V
Input, Low Voltage	V _{INL}	V+ Ranges 2.7 to 5 V	Full			0.4	
Input Current	I _{INH}			-1	İ	1	μΑ
Dynamic Characteristic	s						•
Break-Before-Make ^{d,g}	topen		Room Full	1			
Turn-OnTime	t _{ON}	$V_{+} = 5 \text{ V}, R_{L} = 300 \Omega$ $V_{NO} = V_{NC} = 3 \text{ V}$ $C_{L} = 35 \text{ pF}, V_{IN} = 0 \text{ V}, 5 \text{ V}$	Room Full		33	60 70	ns
Turn-OffTime	t _{OFF}		Room Full		10	20 30	
Charge Injection ^d	Q	$C_L = 1 \text{ nF, } R_{GEN} = 0 \Omega, V_g = 0 V$	Room		0.56		рC
Off-Isolation ^d	OIRR	$C_L = 5 \text{ pF}, R_L = 50 \Omega, f = 1 \text{ MHz}$	Room		76		dB
Oπ-Isolation ⁴	OIKK	$C_L = 5 \text{ pF}, R_L = 50 \Omega, f = 10 \text{ MHz}, V_+ = 5 \text{ V}$	Room		54		
Crosstalkd	X _{TALK}	$R_L = 50 \Omega, f = 1 MHz, V_+ = 5 V$	Room		96		
Source Off Capacitanced	C _{NC/NO(off)}	$f = 1 MHz, V_{NO/NC} = 0 V$	Room		7.5		
Drain Off Capacitanced	C _{COM(off)}	f = 1 MHz V: . = 0 V	Room		7.8		pF
Drain On Capacitanced	C _{COM(on)}	$f = 1 \text{ MHz}, V_{COM} = 0 \text{ V}$	Room		22		
Supply Current	I ₊	$V_{+} = 5.5 \text{ V}, V_{IN} = 0 \text{ or } V_{+}$	Room	-1		-1	μА

Notes:

- Room = 25°C, Full = as determined by the operating suffix.

 Typical values are for design aid only, not guaranteed nor subject to production testing.

 The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- Guarantee by design, not subjected to production test.
- $V_{\rm IN}$ = input voltage to perform proper function. Guaranteed by 12-V leakage testing, not production tested. Applies to DG9434 only.

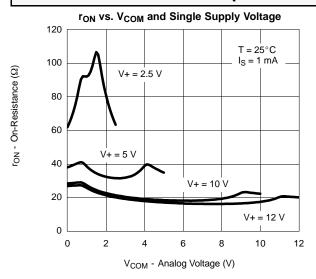
Vishay Siliconix

SPECIFICATIONS (V+ = 12 \	/)					
Parameter		Test Conditions Otherwise Unless Specified		Limits -40 to 85°C			T
	Symbol	$V_{+} = 12 \text{ V}, \pm 10\%, V_{IN} = 0.8 \text{ or } 2.4 \text{ V}^{e}$	Tempa	Min ^c	Typb	Maxc	Unit
Switch On Resistance	•		<u> </u>		•		1
Analog Signal Range ^e	V _{ANALOG}		Full	٧.		V ₊	V
Drain-Source On-Resistance	r _(on)	V ₊ = 10.8 V, I _{COM} = 1 mA,V _{COM} = 9 V	Room Full		19	30 40	Ω
r _{DS(on)} Match	$\Delta r_{(on)}$	V ₊ = 10.8 V, I _{COM} = 1 mA,V _{COM} = 9 V	Room		0.3	3.0	1
Switch Off Leakage Current ^a	I _{NC/NO(off)}		Room Full	-1 -10	0.3	1 10	
Switch On Leakage Current-	I _{COM(off)}	$V_{+} = 12 \text{ V}, V_{S} = 1/11 \text{ V}, V_{COM} = 11/1 \text{ V}$	Room Full	-1 -10	0.3	1 10	nA
Channel On Leakage Current ^a	I _{COM(on)}		Room Full	-1 10	0.3	1 10	
Digital Control	•		<u>'</u>		•		•
Input, High Voltage	V_{INH}	.,	Full			2.4	Τ.,
Input, Low Voltage	V_{INL}	V+ = 12 V	Full	0.8			- V
Input Current	I _{INH}		İ	-1	İ	1	μΑ
Dynamic Characteristic	s						
Break-Before-Make ^{d,g}	t _{OPEN}		Room Full	1			
Turn-OnTime	ton	$V_{+} = 12 \text{ V}, R_{L} = 300 \Omega$ $V_{NO} = V_{NC} = 8 \text{ V}$ $C_{L} = 35 \text{ pF}, V_{IN} = 0 \text{ V}, 12 \text{ V}$	Room Full		21	35 40	ns
Turn-OffTime	t _{OFF}	O _L = 35 μ1, ν _{IN} = 0 ν, 12 ν	Room Full		6	18 25	
Charge Injection ^d	Q	$C_L = 1 \text{ nF, } R_{GEN} = 0 \Omega, V_g = 0 \text{ V, } V_+ = 5 \text{ V}$	Room		0.36		pC
O# 11-4d	OIDD	$C_L = 5 \text{ pF, } R_L = 50 \Omega, f = 1 \text{ MHz}$	Room		75		dB
Off-Isolation ^d	OIRR	$C_L = 5 \text{ pF}, R_L = 50 \Omega, f = 10 \text{ MHz}$	Room		53		
Crosstalkd	X _{TALK}	$R_L = 50 \Omega$, $f = 1 MHz$, $V_+ = 5 V$	Room		96		
Source Off Capacitanced	C _{NC/NO(off)}	f = 1 MHz, V _{NC/NO} = 0 V	Room		7.5		
Drain Off Capacitance ^d	C _{COM(off)}	f = 1 MHz, V _{COM} = 0 V	Room		7.8		pF
Drain On Capacitanced	C _{COM(on)}		Room		22		
Supply Current	Ι+	V ₊ = 12 V, V _{IN} =0 or V+	Room	-1		-1	μΑ

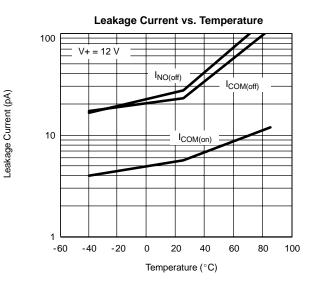
Notes:

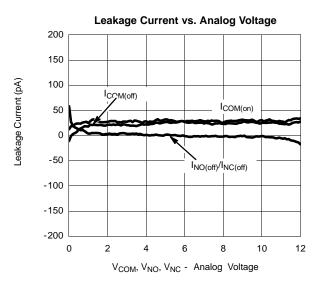
- Room = 25°C, Full = as determined by the operating suffix.
- Typical values are for design aid only, not guaranteed nor subject to production testing.

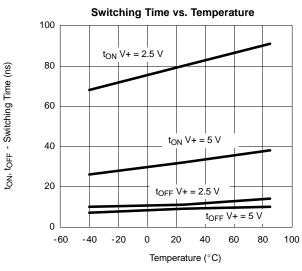
 The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet.
- Guarantee by design, not subjected to production test.
- $V_{\rm IN}$ = input voltage to perform proper function. Guaranteed by 12-V leakage testing, not production tested. Applies for DG9434 only.

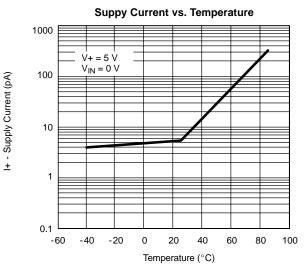

Vishay Siliconix

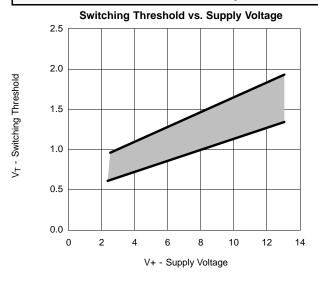
New Product

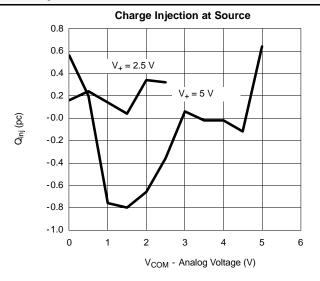

ron - On-Resistance (Ω)

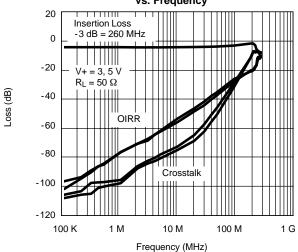



TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

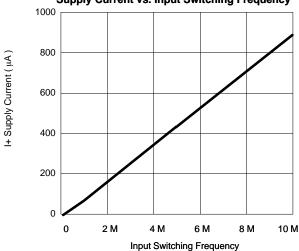






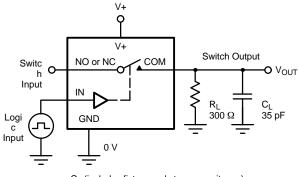

Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)



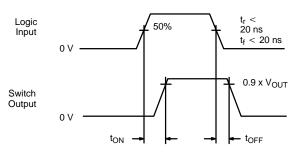
Insertion Loss, Off Isolation and Crosstalk vs. Frequency

Supply Current vs. Input Switching Frequency



Vishay Siliconix

New Product



TEST CIRCUITS

C_L (includes fixture and stray capacitance)

$$V_{OUT} = V_{COM} \left(\frac{R_L}{R_L + R_{ON}} \right)$$

Logic "1" = Switch On Logic input waveforms inverted for switches that have the opposite logic sense.

FIGURE 1. Switching Time

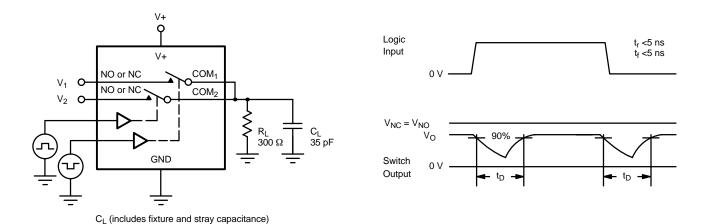
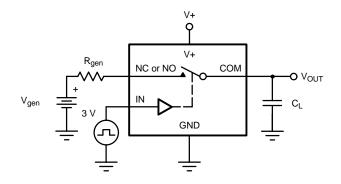
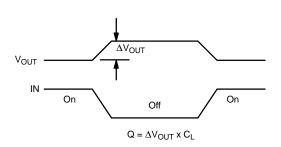




FIGURE 2. Break-Before-Make Interval

IN depends on switch configuration: input polarity determined by sense of switch.

FIGURE 3. Charge Injection

TEST CIRCUITS

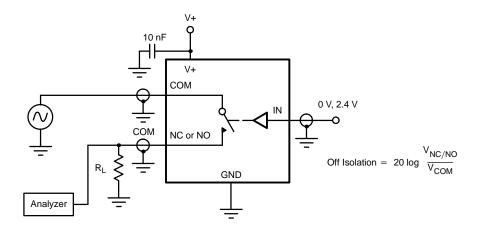


FIGURE 4. Off-Isolation

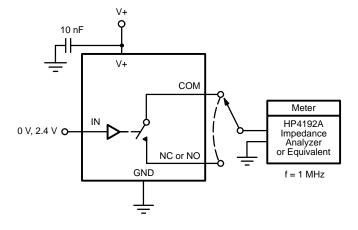


FIGURE 5. Channel Off/On Capacitance

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 Revision: 18-Jul-08

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.

Document Number: 91000 www.vishay.com Revision: 18-Jul-08