

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied......55°C to +125°C Supply Voltage to Ground Potential -0.5V to +7.0V DC Voltage Applied to Outputs in High Z State $^{[2]}$ -0.5V to +7.0V

Output Current into Outputs (LOW)	20 mA
Static Discharge Voltage (per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	. >200 mA

Operating Range

Range	Ambient Temperature	v _{cc}
Commercial	0°C to +70°C	5V ± 10%
Industrial	-40°C to +85°C	5V ± 10%

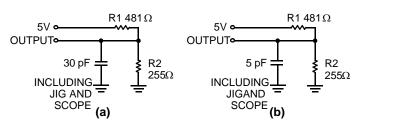
Electrical Characteristics Over the Operating Range

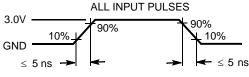
DC Input Voltage^[2].....-0.5V to +7.0V

			-	-15		-20	-2	25, -35	
Parameter	Description	Test Conditions	Min.	Max.	Min.	Max.	Min.	Max.	Unit
V _{OH}		V_{CC} = Min., I_{OH} = -4.0 mA	2.4		2.4		2.4		V
V _{OL}	Output LOW Voltage	$V_{CC} = Min.,$ $I_{OL} = 8.0 \text{ mA}$		0.4		0.4		0.4	V
V _{IH}	Input HIGH Voltage		2.2	V _{CC} + 0.3V	2.2	V _{CC} + 0.3V	2.2	V _{CC} + 0.3V	V
V _{IL}	Input LOW Voltage ^[2]		-0.5	0.8	-0.5	0.8	-0.5	0.8	V
I _{IX}	Input Leakage Current	$GND \le V_I \le V_{CC}$	– 5	+5	– 5	+5	– 5	+5	μА
I _{OZ}		$\begin{aligned} &\text{GND} \leq V_I \leq V_{CC}, \\ &\text{Output Disabled} \end{aligned}$	– 5	+5	– 5	+5	– 5	+5	μА
I _{CC}	V _{CC} Operating Supply Current	$V_{CC} = Max.,$ $I_{OUT} = 0 \text{ mA}$		130		110		100	mA
I _{SB1}	Power-Down	$\begin{array}{l} \underline{\text{Ma}}\text{x. V}_{CC},\\ \text{CE}_1 \geq \text{V}_{\text{IH}} \text{ or CE}_2 \leq \text{V}_{\text{IL}}\\ \text{Min. Duty Cycle = 100\%} \end{array}$		40		20		20	mA
I _{SB2}	Power-Down	$\begin{array}{l} \underline{\text{Max}}. \ V_{\text{CC}}, \\ \text{CE}_1 \geq V_{\text{CC}} - 0.3 \text{V}, \\ \text{or } \text{CE}_2 \leq 0.3 \text{V} \\ V_{\text{IN}} \geq V_{\text{CC}} - 0.3 \text{V} \text{ or } \\ V_{\text{IN}} \leq 0.3 \text{V} \end{array}$		15		15		15	mA

Capacitance^[3]

Parameter	ameter Description Test Conditions		Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 5.0V$	7	pF


Notes:


Document #: 38-05043 Rev. *B Page 2 of 12

Minimum voltage is equal to –3.0V for pulse durations less than 30 ns.
 Tested initially and after any design or process changes that may affect these parameters.

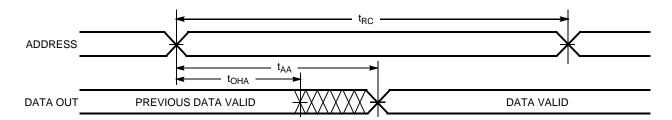
AC Test Loads and Waveforms

Equivalent to: THÉVENIN EQUIVALENT

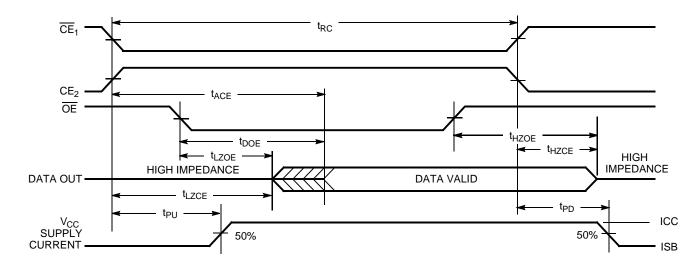
Switching Characteristics Over the Operating Range^[4]

		_	15	-20			25	-:	35	
Parameter	Parameter Description		Max.	Min.	Max.	Min.	Max.	Min.	Max.	Unit
Read Cycle										
t _{RC}	Read Cycle Time			20		25		35		ns
t _{AA}	Address to Data Valid		15		20		25		35	ns
t _{OHA}	Data Hold from Address Change	3		5		5		5		ns
t _{ACE1}	CE ₁ LOW to Data Valid		15		20		25		35	ns
t _{ACE2}	CE ₂ HIGH to Data Valid		15		20		25		35	ns
t _{DOE}	OE LOW to Data Valid		8		9		12		15	ns
t _{LZOE}	OE LOW to Low Z	3		3		3		3		ns
t _{HZOE}	OE HIGH to High Z ^[5]		7		8		10		10	ns
t _{LZCE1}	CE ₁ LOW to Low Z ^[6]	3		5		5		5		ns
t _{LZCE2}	CE ₂ HIGH to Low Z	3		3		3		3		ns
t _{HZCE}	CE ₁ HIGH to High Z ^[5, 6] CE ₂ LOW to High Z		7		8		10		10	ns
t _{PU}	CE ₁ LOW to Power-Up CE ₂ to HIGH to Power-Up			0		0		0		ns
t _{PD}	CE ₁ HIGH to Power-Down CE ₂ LOW to Power-Down		15		20		20		20	ns
Write Cycle ^{[7}	1					ı		I		I
t _{WC}	Write Cycle Time	15		20		25		35		ns
t _{SCE1}	CE₁ LOW to Write End	12		15		20		20		ns
t _{SCE2}	CE ₂ HIGH to Write End	12		15		20		20		ns
t _{AW}	Address Set-up to Write End	12		15		20		25		ns
t _{HA}	Address Hold from Write End	0		0		0		0		ns
t _{SA}	Address Set-up to Write Start			0		0		0		ns
t _{PWE}	WE Pulse Width			15		15		20		ns
t _{SD}	Data Set-up to Write End	8		10		10		12		ns
t _{HD}	Data Hold from Write End	0		0		0		0		ns
t _{HZWE}	WE LOW to High Z ^[5]		7		7		7		8	ns
t _{LZWE}	WE HIGH to Low Z	3		5		5		5		ns

Notes:


Document #: 38-05043 Rev. *B

<sup>Notes:
4. Test conditions assume signal transition time of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified loL/loH and 30-pF load capacitance.
5. t_{HZOE}, t_{HZCE}, and t_{HZWE} are specified with C_L = 5 pF as in part (b) of AC Test Loads. Transition is measured ±500 mV from steady state voltage.
6. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE1} and t_{LZCE2} for any given device.
7. The internal write time of the memory is defined by the overlap of CE₁ LOW, CE₂ HIGH, and WE LOW. All 3 signals must be active to initiate a write and either signal can terminate a write by going HIGH. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.</sup>



Switching Waveforms

Read Cycle No.1^[8,9]

Read Cycle No.2^[10,11]

Notes:

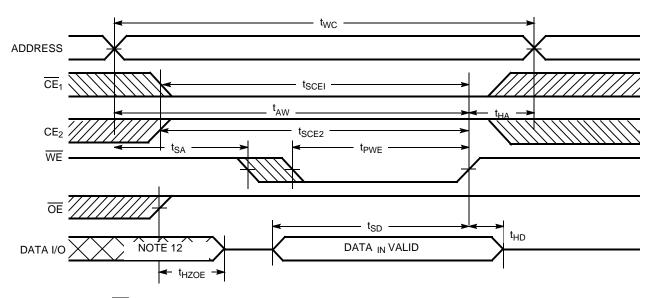
- Notes:

 8. <u>Device</u> is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{|L}$. $CE_2 = V_{|H}$.

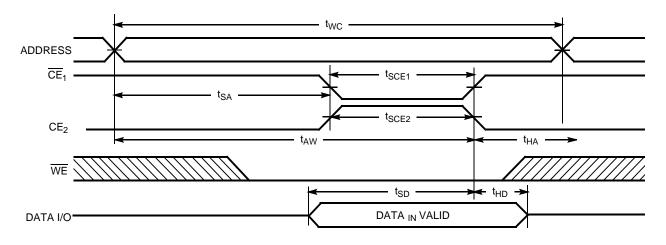
 9. \overline{WE} is HIGH for read <u>cycle</u>.

 10. Data I/O is High Z if $\overline{OE} = V_{|H}$, $\overline{CE}_1 = V_{|H}$, $\overline{WE} = V_{|L}$, or $CE_2 = V_{|L}$.

 11. The internal write time of the memory is defined by the <u>overlap</u> of \overline{CE}_1 LOW, CE_2 HIGH and \overline{WE} LOW. \overline{CE}_1 and \overline{WE} must be LOW and CE_2 must be HIGH to initiate write. A write can be terminated by \overline{CE}_1 or \overline{WE} going HIGH or \overline{CE}_2 going LOW. The data input set-up and hold timing should be referenced to the rising edge of the signal that terminates the write.


Document #: 38-05043 Rev. *B

[+] Feedback



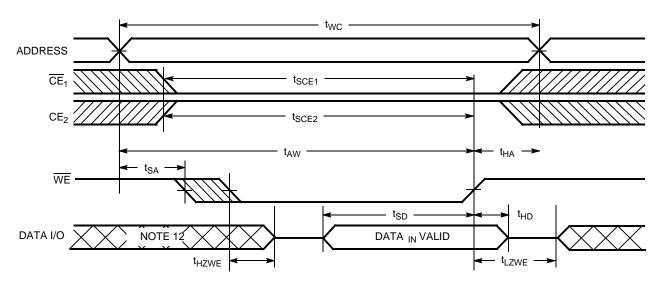
Switching Waveforms (continued)

Write Cycle No. 1 (WE Controlled)[9,11]

Write Cycle No. 2 ($\overline{\text{CE}}$ Controlled)[11,12,13]

Notes:

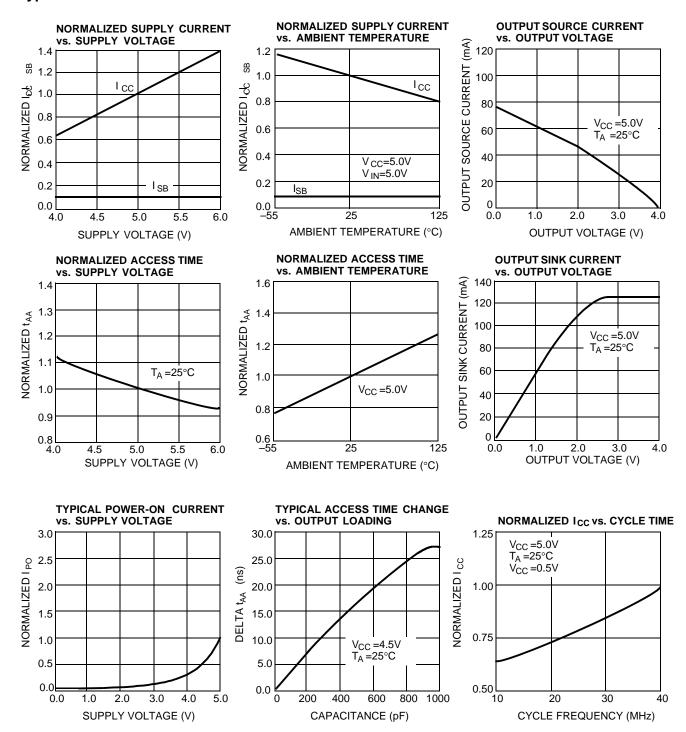
- 12. During this period, the I/Os are in the output state and input signals should not be applied.


 13. The minimum write cycle time for write cycle #3 (WE controlled, OE LOW) is the sum of t_{HZWE} and t_{SD}.

Document #: 38-05043 Rev. *B

Switching Waveforms (continued)

Write Cycle No. 3($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)[11,12,13,14]



Note:
14. If $\overline{\text{CE}}_1$ goes HIGH or CE_2 goes LOW simultaneously with $\overline{\text{WE}}$ HIGH, the output remains in a high-impedance state.

[+] Feedback

Typical DC and AC Characteristics

Document #: 38-05043 Rev. *B Page 7 of 12

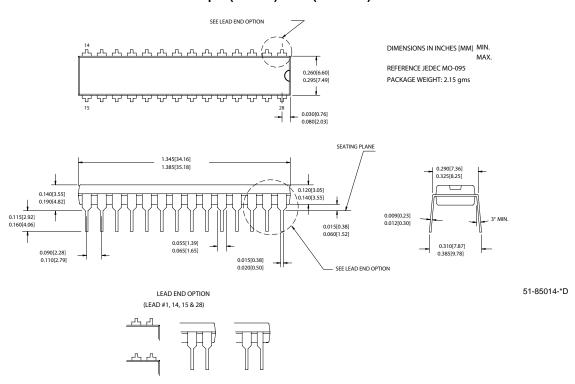
Truth Table

CE ₁	CE ₂	WE	OE	Input/Output	Mode
Н	Х	Х	Х	High Z	Deselect/Power-Down
Х	L	Х	Х	High Z	Deselect/Power-Down
L	Н	Н	L	Data Out	Read
L	Н	L	Х	Data In	Write
L	Н	Н	Н	High Z	Deselect

Address Designators

Address Name	Address Function	Pin Number
A4	Х3	2
A5	X4	3
A6	X5	4
A7	X6	5
A8	X7	6
A9	Y1	7
A10	Y4	8
A11	Y3	9
A12	Y0	10
A0	Y2	21
A1	X0	23
A2	X1	24
A3	X2	25

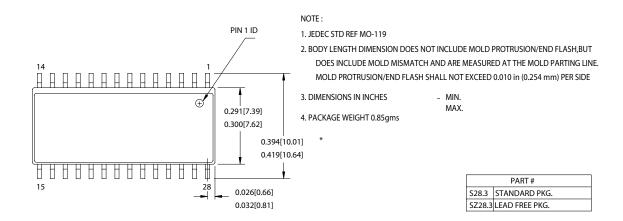
Ordering Information

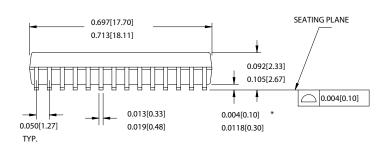

Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
15	CY7C185-15VC	51-85031	28-pin (300-Mil) Molded SOJ	Commercial
	CY7C185-15VI		28-pin (300-Mil) Molded SOJ	Industrial
20	CY7C185-20PC	51-85014	28-pin (300-Mil) Molded DIP	Commercial
	CY7C185-20PXC		28-pin (300-Mil) Molded DIP (Pb-free)	
	CY7C185-20VC	51-85031	28-pin (300-Mil) Molded SOJ	
25	CY7C185-25PC	51-85014	28-pin (300-Mil) Molded DIP	Commercial
	CY7C185-25VC	51-85031	28-pin (300-Mil) Molded SOJ	
35	CY7C185-35PC	51-85014	28-pin (300-Mil) Molded DIP	Commercial
	CY7C185-35SC	51-85026	28-pin (300-Mil) Molded SOIC	

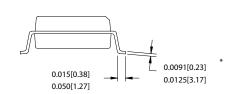
Document #: 38-05043 Rev. *B Page 8 of 12

Package Diagrams

28-pin (300-Mil) PDIP (51-85014)




Document #: 38-05043 Rev. *B Page 9 of 12

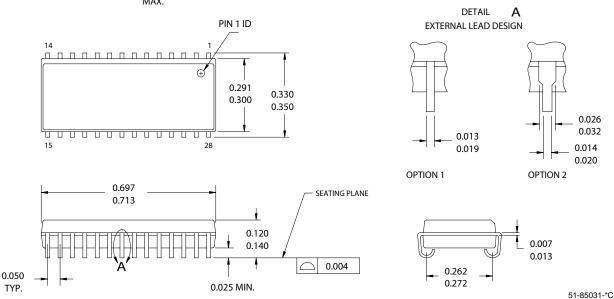


Package Diagrams (continued)

28-pin (300-Mil) Molded SOIC (51-85026)

51-85026-*D

Document #: 38-05043 Rev. *B Page 10 of 12



Package Diagrams (continued)

28-pin (300-Mil) Molded SOJ (51-85031)

NOTE:

- 1. JEDEC STD REF MO088
- 2. BODY LENGTH DIMENSION DOES NOT INCLUDE MOLD PROTRUSION/END FLASH MOLD PROTRUSION/END FLASH SHALL NOT EXCEED 0.006 in (0.152 mm) PER SIDE
- 3. DIMENSIONS IN INCHES MIN. MAX.

All product and company names mentioned in this document may be the trademarks of their respective holders.

products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Downloaded from Arrow.com. [+] Feedback

Document History Page

Document Title: CY7C185 8K x 8 Static RAM Document Number: 38-05043								
REV.	ECN NO.	Issue Date	Orig. of Change	Description of Change				
**	107145	09/10/01	SZV	Change from Spec number: 38-00037 to 38-05043				
*A	116470	09/16/02	CEA	Add applications foot note to data sheet				
*B	486744	See ECN	NXR	Changed Low standby power from 220mW to 85mW Changed the description of I _{IX} from Input Load Current to Input Leakage Current in DC Electrical Characteristics table Removed I _{OS} parameter from DC Electrical Characteristics table Updated the Ordering Information table				

Document #: 38-05043 Rev. *B Page 12 of 12