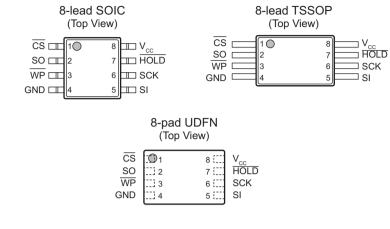
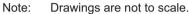
Table of Contents

1.	Pin Descriptions and Pinouts
2.	Absolute Maximum Ratings*
3.	Block Diagram 4
4.	Serial Interface Description
5.	Electrical Characteristics75.1Pin Capacitance75.2DC Characteristics75.3AC Characteristics8
6.	Functional Description
7.	Timing Diagrams117.1Power Recommendation14
8.	Ordering Information 15 8.1 Ordering Code Detail 15 8.2 Ordering Code Information 16 8.2.1 Automotive Grade 1, V _{CC} = 2.5V to 5.5V 16 8.2.2 Automotive Grade 3, V _{CC} = 1.7V to 5.5V 17 8.3 Product Markings 18
9.	Packaging Information 19 9.1 8S1 — 8-lead JEDEC SOIC 19 9.2 8X — 8-lead TSSOP 20 9.3 8MA2 — 8-pad UDFN 21
10.	Revision History



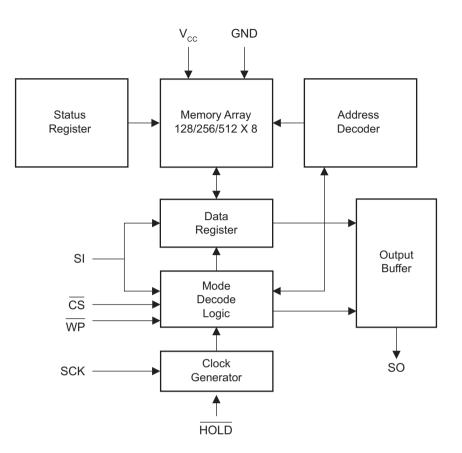

1. Pin Descriptions and Pinouts

Pin Configurations

Figure 1.

Pin Name Function CS Chip Select SCK Serial Data Clock SI Serial Data Input SO Serial Data Output GND Ground Power Supply V_{CC} $\overline{\mathsf{WP}}$ Write Protect HOLD Suspends Serial Input

2. Absolute Maximum Ratings*


Operating Temperature \hdots
Storage Temperature
Voltage on any pin with respect to ground1.0V to +7.0V
Maximum Operating Voltage 6.25V
DC Output Current

*Notice: Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

3. Block Diagram

Figure 3-1. Block Diagram

4. Serial Interface Description

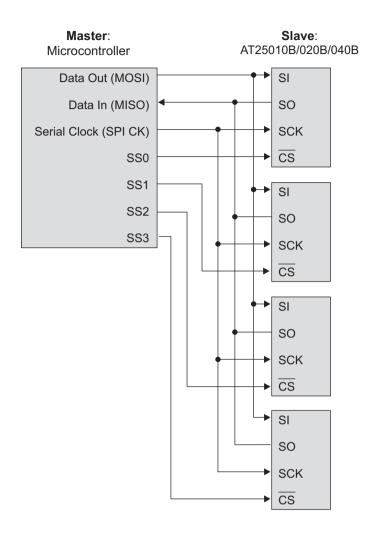
Master: The device that generates the serial clock.

Slave: Because the Serial Clock pin (SCK) is always an input, AT25010B/020B/040B always operates as a slave.

Transmitter/Receiver: AT25010B/020B/040B has separate pins designated for data transmission (SO) and reception (SI).

MSB: The Most Significant Bit (MSB) is the first bit transmitted and received.

Serial Opcode: After the device is selected with \overline{CS} going low, the first byte will be received. This byte contains the opcode that defines the operations to be performed. The opcode also contains address bit A8 in both the Read and the Write instructions for AT25040B only.


Invalid Opcode: If an invalid opcode is received, no data will be shifted into AT25010B/020B/040B, and the Serial Output pin (SO) will remain in a high impedance state until the falling edge of \overline{CS} is detected again. This will reinitialize the serial communication.

Chip Select: AT25010B/020B/040B is selected when the \overline{CS} pin is low. When the device is not selected, data will not be accepted via the SI pin, and the Serial Output pin (SO) will remain in a high impedance state.

Hold: The $\overline{\text{HOLD}}$ pin is used in conjunction with the $\overline{\text{CS}}$ pin to select AT25010B/020B/040B. When the device is selected and a serial sequence is underway, Hold can be used to pause the serial communication with the master device without resetting the serial sequence. To pause, the $\overline{\text{HOLD}}$ pin must be brought low while the SCK pin is low. To resume serial communication, the $\overline{\text{HOLD}}$ pin is brought high while the SCK pin is low (SCK may still toggle during Hold). Inputs to the SI pin will be ignored while the SO pin is in the high impedance state.

Write Protect: The Write Protect pin (\overline{WP}) will allow normal read/write operations when held high. When the \overline{WP} pin is brought low, all write operations are inhibited. \overline{WP} going low while \overline{CS} is still low will interrupt a write to AT25010B/020B/040B. If the internal write cycle has already been initiated, \overline{WP} going low will have no effect on any write operation.

5. Electrical Characteristics

5.1 Pin Capacitance

Table 5-1.Pin Capacitance⁽¹⁾

Applicable at these conditions, unless otherwise noted. $T_A = 25^{\circ}C$, f = 1.0MHz, $V_{CC} = +5.0V$.

Symbol	Test Conditions	Max	Units	Conditions
C _{OUT}	Output Capacitance (SO)	8	pF	V _{OUT} = 0V
C _{IN}	Input Capacitance (CS, SCK, SI, WP, HOLD)	6	pF	V _{IN} = 0V

Note: 1. This parameter is characterized and is not 100% tested.

5.2 DC Characteristics

Table 5-2. DC Characteristics

Applicable over recommended operating range from: $T_{A1} = -40$ °C to +125°C, $V_{CC1} = 2.5$ V to 5.5V; $T_{A2} = -40$ °C to 105°C, $V_{CC2} = 1.7$ V to 5.5V.

Symbol	Parameter	Test Condition	Min	Тур	Мах	Units	
V _{CC1}	Supply Voltage	Grade 1	Grade 1			5.5	V
V _{CC2}	Supply voltage	Grade 2 ⁽²⁾ and 3		1.7		5.5	V
I _{CC1}		V_{CC} = 5.0V at 5MHz	z, SO = Open, Read			6.0	
I _{CC2}	Supply Current	V_{CC} = 5.0V at 1MHz	2			3.0	mA
I _{CC3}		V_{CC} = 5.0V at 5MHz	z, SO = Open, Read, Write			6.0	
I _{SB1}		V_{CC} = 1.7V, \overline{CS} = V	сс		0.1	2.0	
I _{SB2}	Standby Current	V_{CC} = 2.5V, \overline{CS} = V	сс		0.2	3.0	μA
I _{SB3}		V_{CC} = 5.0V, \overline{CS} = V	сс		2.0	5.0	
I	Input Leakage	V_{IN} = 0V to V_{CC}	$V_{IN} = 0V$ to V_{CC}				μA
I _{OL}	Output Leakage	V_{IN} = 0V to V_{CC}		-3.0		3.0	μΑ
V _{IL} ⁽¹⁾	Input Low-voltage			-0.6		V _{CC} x 0.3	V
V _{IH} ⁽¹⁾	Input High-voltage	-		V _{CC} x 0.7		V _{CC} + 0.5	V
V _{OL1}	Output Low-voltage	$2.5V \le V_{CC} \le 5.5V$	I _{OL} = 3.0mA			0.4	V
V _{OH1}	Output High-voltage	$2.5^{\circ} \ge ^{\circ}_{\rm CC} \ge 5.5^{\circ}$	I _{OH} = -1.6mA	$V_{CC}-0.8$			v
V _{OL2}	Output Low-voltage	$1.7V \le V_{CC} \le 5.5V$	I _{OL} = 0.15mA			0.2	V
V _{OH2}	Output High-voltage	$1.7 \text{ V} \geq \text{V}_{CC} \geq 5.5 \text{ V}$	Ι _{ΟΗ} = -100μΑ	$V_{CC}-0.2$			V

Notes: 1. $V_{IL} \mbox{ min}$ and $V_{IH} \mbox{ max}$ are reference only and are not tested.

2. Contact Sales for Grade 2 Availability

5.3 AC Characteristics

Table 5-3. AC Characteristics

Applicable over recommended operating range from $T_A = -40$ °C to +125 °C, $V_{CC} = As$ Specified, CL = 1 TTL Gate and 100pF (unless otherwise noted).

Symbol	Parameter	Voltage	Min	Мах	Units
f _{scк}	SCK Clock Frequency	1.7 to 5.5	0	5.0	MHz
t _{RI}	Input Rise Time	1.7 to 5.5		2	μs
t _{FI}	Input Fall Time	1.7 to 5.5		2	μs
t _{wH}	SCK High Time	1.7 to 5.5	40		ns
t _{wL}	SCK Low Time	1.7 to 5.5	40		ns
t _{cs}	CS High Time	1.7 to 5.5	80		ns
t _{css}	CS Setup Time	1.7 to 5.5	80		ns
t _{csH}	CS Hold Time	1.7 to 5.5	80		ns
t _{su}	Data In Setup Time	1.7 to 5.5	5		ns
t _H	Data In Hold Time	1.7 to 5.5	20		ns
t _{HD}	Hold Setup Time	1.7 to 5.5	40		ns
t _{cD}	Hold Time	1.7 to 5.5	40		ns
t _v	Output Valid	1.7 to 5.5	0	40	ns
t _{HO}	Output Hold Time	1.7 to 5.5	0		ns
t _{LZ}	Hold to Output Low Z	1.7 to 5.5	0	40	ns
t _{HZ}	Hold to Output High Z	1.7 to 5.5		80	ns
t _{DIS}	Output Disable Time	1.7 to 5.5		80	ns
t _{WC}	Write Cycle Time	1.7 to 5.5		5	ms
Endurance ⁽¹⁾	5.0V, 25°C, Page Mode		1,000,000		Write Cycles

Note: 1. This parameter is characterized and is not 100% tested.

6. Functional Description

AT25010B/020B/040B is designed to interface directly with the synchronous Serial Peripheral Interface (SPI) of the 6805 and 68HC11 series of microcontrollers.

AT25010B/020B/040B utilizes an 8-bit instruction register. The list of instructions and their operation codes are contained in Table 6-1. All instructions, addresses, and data are transferred with the MSB first and start with a high-to-low CS transition.

Instruction Name	Instruction Format	Operation
WREN	0000 X110	Set Write Enable Latch
WRDI	0000 X100	Reset Write Enable Latch
RDSR	0000 X101	Read Status Register
WRSR	0000 X001	Write Status Register
READ	0000 A011	Read Data from Memory Array
WRITE	0000 A010	Write Data to Memory Array

 Table 6-1.
 Instruction Set for the Atmel AT25010B/020B/040B

Note: "A" represents the ninth address bit (MSB bit A8) needed for AT25040B only.

Write Enable (WREN): The device will power up in the Write Disable state when V_{CC} is applied. All programming instructions must therefore be preceded by a Write Enable instruction.

Write Disable (WRDI): To protect the device against inadvertent writes, the Write Disable instruction disables all programming modes. The WRDI instruction is independent of the status of the \overline{WP} pin.

Read Status Register (RDSR): The Read Status Register instruction provides access to the status register. The Ready/Busy and Write Enable status of the device can be determined by the RDSR instruction. Similarly, the Block Write protection bits indicate the extent of protection employed. These bits are set by using the WRSR instruction.

Table 6-2. Status Register Format

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Х	Х	Х	Х	BP1	BP0	WEN	RDY

 Table 6-3.
 Read Status Register Bit Definition

Bit	Definition
Bit 0 (RDY)	Bit $0 = 0$ (\overline{RDY}) indicates the device is ready.
	Bit 0 = 1 indicates the write cycle is in progress.
	Bit 1 = 0 indicates the device is not write-enabled.
Bit 1 (WEN)	Bit 1 = 1 indicates the device is write-enabled.
Bit 2 (BP0)	See Table 6-4 on page 10.
Bit 3 (BP1)	See Table 6-4 on page 10.
Dite 4 7	Bits $4 - 7 = 0$ when the device is not in an internal write cycle.
Bits 4 -7	Bits 4 – 7 = 1 during an internal write cycle.

Write Status Register (WRSR): The WRSR instruction allows the user to select one of four levels of protection. AT25010B/020B/040B is divided into four array segments. One-quarter, one-half, or all of the memory segments can be protected. Any of the data within any selected segment will therefore be read-only. The Block Write protection levels and corresponding status register control bits are shown in Table 6-4.

Bits BP0 and BP1 are nonvolatile cells that have the same properties and functions as the regular memory cells (e.g., WREN, t_{WC} , RDSR).

		tus er Bits	A	rray Addresses Protecte	ed
Level	BP1	BP0	AT25010B	AT25020B	AT25040B
0	0	0	None	None	None
1 (1/4)	0	1	60 - 7F	C0 - FF	180 - 1FF
2 (1/2)	1	0	40 - 7F	80 - FF	100 - 1FF
3 (All)	1	1	00 - 7F	00 - FF	000 - 1FF

Table 6-4.Block Write Protect Bits

Read Sequence (Read): Reading AT25010B/020B/040B via the Serial Output (SO) pin requires the following sequence. After the \overline{CS} line is pulled low to select a device, the Read opcode is transmitted via the SI line followed by the byte address to be read (A7–A0, see Table 6-5). Upon completion, any data on the SI line will be ignored. The data (D7–D0) at the specified address is then shifted out onto the SO line. If only one byte is to be read, the \overline{CS} line should be driven high after the data comes out. The Read sequence can be continued since the byte address is automatically incremented and data will continue to be shifted out. When the highest address is reached, the address counter will roll over to the lowest address, allowing the entire memory to be read in one continuous Read cycle.

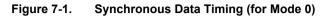
Write Sequence (Write): In order to program AT25010B/020B/040B, two separate instructions must be executed. First, the device *must be Write Enabled* via the WREN instruction. Then a Write instruction may be executed. Also, the address of the memory location(s) to be programmed must be outside the protected address field location selected by the Block Write protection level. During an internal write cycle, all commands will be ignored except the RDSR instruction.

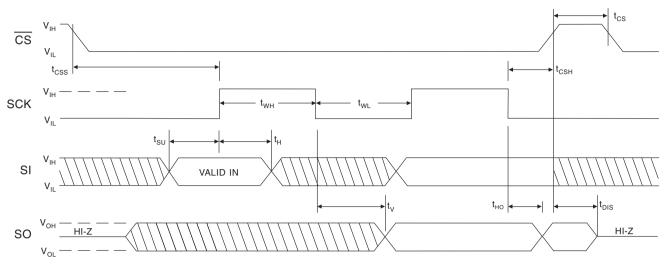
A Write instruction requires the following sequence. After the \overline{CS} line is pulled low to select the device, the Write opcode is transmitted via the SI line followed by the byte address (A7–A0) and the data (D7–D0) to be programmed (See Table 6-5). Programming will start after the \overline{CS} pin is brought high. The low-to-high transition of the \overline{CS} pin must occur during the SCK low-time immediately after clocking in the D0 (LSB) data bit.

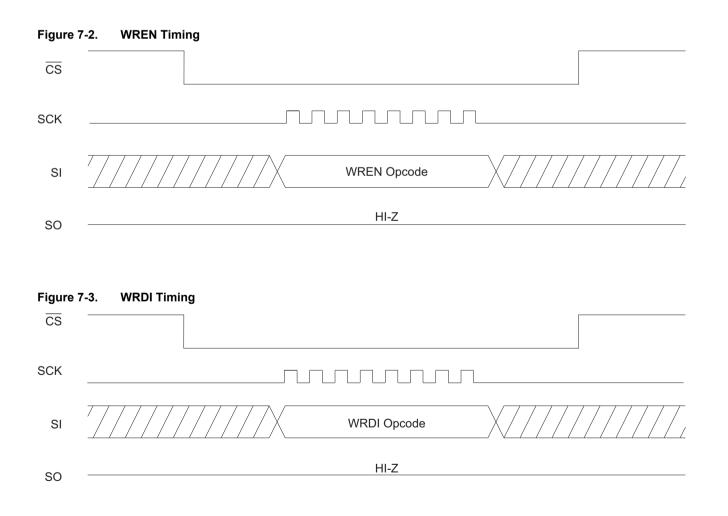
The Ready/Busy status of the device can be determined by initiating a Read status register (RDSR) instruction. If Bit 0 = one, the Write cycle is still in progress. If Bit 0 = zero, the Write cycle has ended. Only the RDSR instruction is enabled during the Write programming cycle.

AT25010B/020B/040B is capable of a 8-byte Page Write operation. After each byte of data is received, the three low-order address bits are internally incremented by one; the high-order bits of the address will remain constant. If more than eight bytes of data are transmitted, the address counter will roll over and the previously written data will be overwritten. AT25010B/020B/040B is automatically returned to the Write Disable state at the completion of a Write cycle.

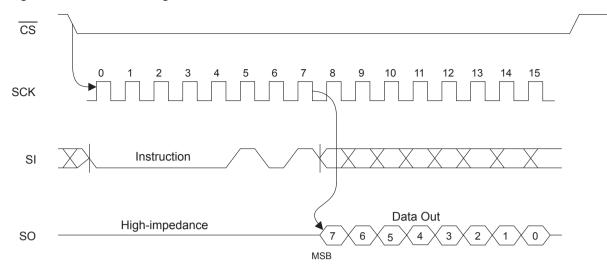
Note: If the device is not Write Enabled (WREN), the device will ignore the Write instruction and will return to the standby state, when \overline{CS} is brought high. A new \overline{CS} falling edge is required to reinitiate the serial communication.

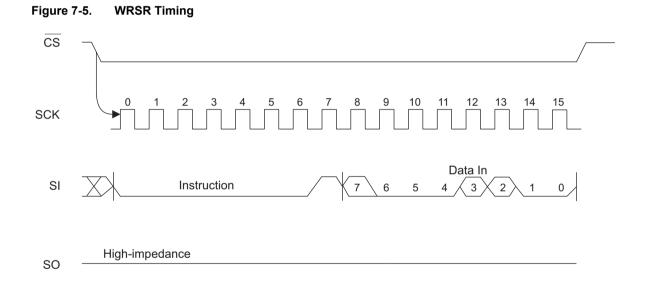

Address	AT25010B	AT25020B	AT25040B
A _N	A ₆ -A ₀	A ₇ -A ₀	A ₈ -A ₀
Don't Care Bits	A ₇	None	None

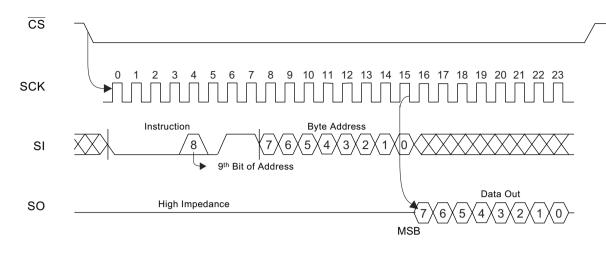

Table 6-5. Address Key

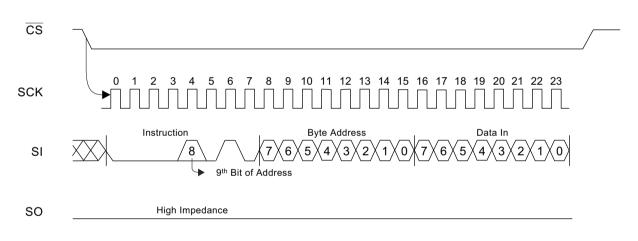

Note: The A₈ bit (AT25040B address MSB) must appear embedded in the opcode as illustrated in Table 6-1.

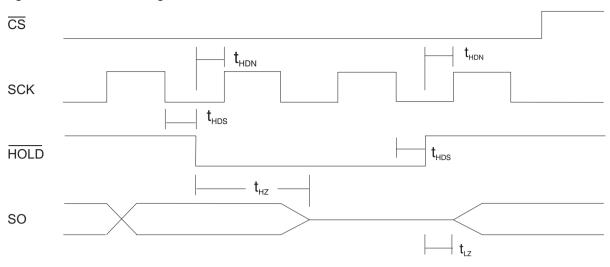
7. Timing Diagrams





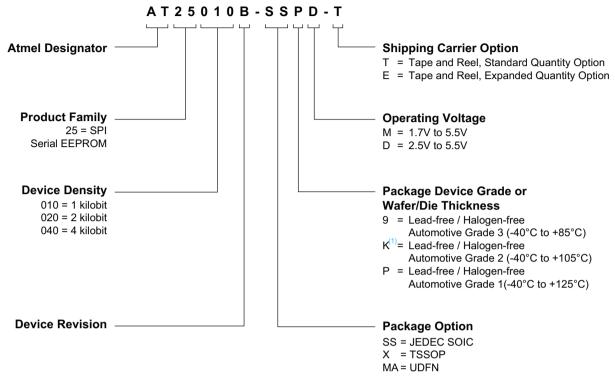






Downloaded from Arrow.com.

Figure 7-8. HOLD Timing


7.1 Power Recommendation

The device internal POR (Power-On Reset) threshold is just below the minimum device operating voltage. Power shall rise monotonically from 0.0Vdc to full V_{CC} in less than 1ms. Hold at full V_{CC} for at least 100µs before the first operation. Power shall drop from full V_{CC} to 0.0Vdc in less than 1ms. Power dropping to a non-zero level and then slowly going to zero is *not* recommended. Power shall remain off (0.0Vdc) for 0.5s minimum. Please consult Atmel if your power conditions do not meet the above recommendations.

8. Ordering Information

8.1 Ordering Code Detail

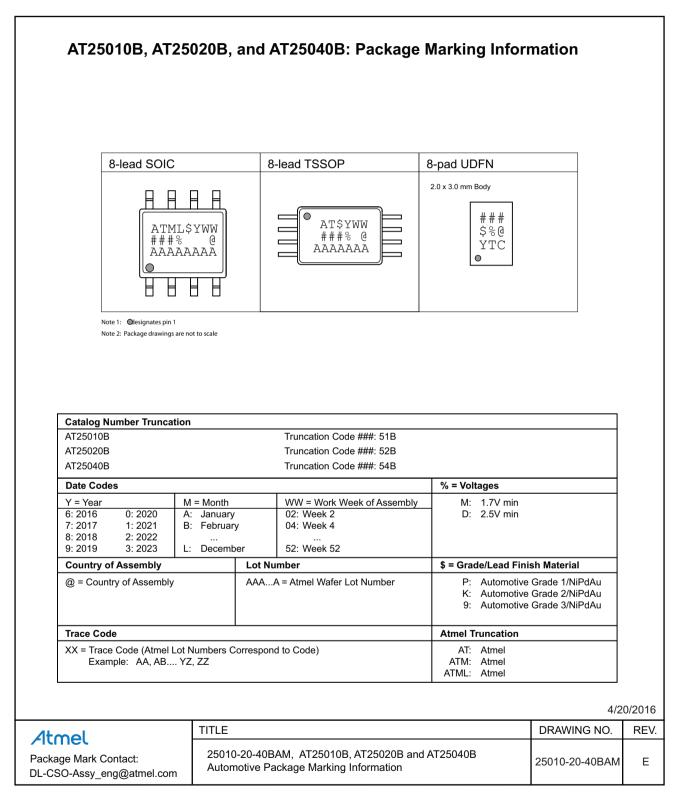
Note: 1. Contact Sales for Grade 2 Availability

8.2 Ordering Code Information

8.2.1 Automotive Grade 1, V_{CC} = 2.5V to 5.5V

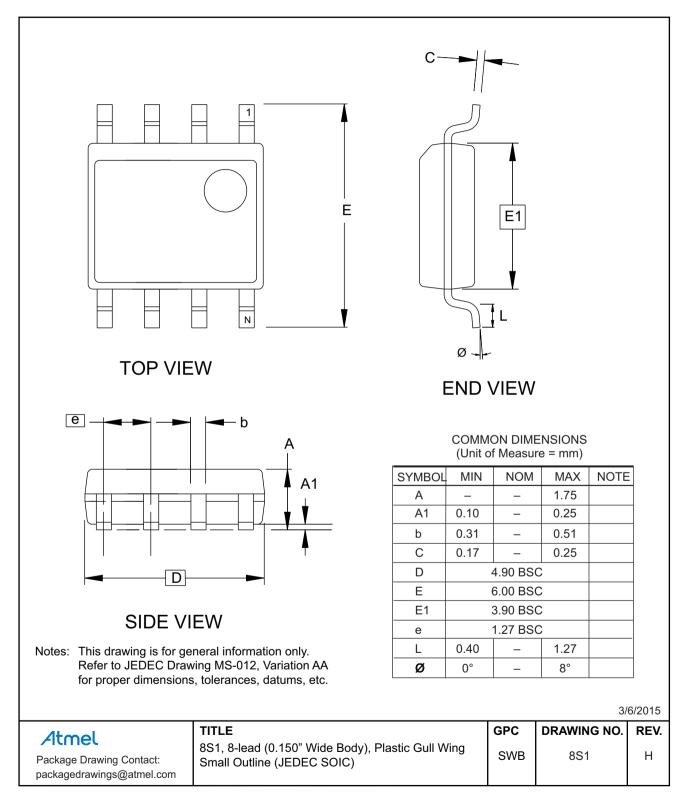
			Delivery li	Delivery Information		
Atmel Ordering Code	Lead Finish	Package	Form	Quantity	Operation Range	
AT25010B-SSPD-T		8S1		4,000 per Reel		
AT25010B-XPD-T	NiPdAu	8X	Tana and Baal	5,000 per Reel	Automotive	
AT25010B-MAPD-T	(Lead-free/Halogen-free)	8MA2	Tape and Reel	5,000 per Reel	Temperature (-40°C to 125°C)	
AT25010B-MAPD-E	-	OIVIAZ		15,000 per Reel		
AT25020B-SSPD-T		8S1		4,000 per Reel		
AT25020B-XPD-T	NiPdAu	8X	Tana and Daal	5,000 per Reel	Automotive	
AT25020B-MAPD-T	(Lead-free/Halogen-free)	01400	Tape and Reel	5,000 per Reel	Temperature (-40°C to 125°C)	
AT25020B-MAPD-E	-	8MA2		15,000 per Reel		
- C						
AT25040B-SSPD-T		8S1		4,000 per Reel		
AT25040B-XPD-T	NiPdAu	8X	Topo and Dool	5,000 per Reel	Automotive	
AT25040B-MAPD-T	(Lead-free/Halogen-free)	8MA2	Tape and Reel	5,000 per Reel	Temperature (-40°C to 125°C)	
AT25040B-MAPD-E	-	OIVIAZ		15,000 per Reel		

	Package Type					
8S1	8-lead, 0.150" wide, Plastic Gull Wing Small Outline (JEDEC SOIC)					
8X	8-lead 4.4mm body, Plastic Thin Shrink Small Outline (TSSOP)					
8MA2	8-pad, 2.00mm x 3.00mm body, 0.50mm pitch, Ultra Thin, Dual No Lead (UDFN)					


8.2.2 Automotive Grade 3, V_{CC} = 1.7V to 5.5V

			Delivery Information		
Atmel Ordering Code	Lead Finish	Package	Form	Quantity	Operation Range
AT25010B-SS9M-T	NiPdAu (Lead-free/Halogen-free)	8S1	Tape and Reel	4,000 per Reel	Automotive Temperature (-40°C to 85°C)
AT25010B-X9M-T		8X		5,000 per Reel	
AT25010B-MA9M-T		8MA2		5,000 per Reel	
AT25010B-MA9M-E				15,000 per Reel	
		201			
AT25020B-SS9M-T	NiPdAu (Lead-free/Halogen-free)	8S1	Tape and Reel	4,000 per Reel	Automotive Temperature (-40°C to 85°C)
AT25020B-X9M-T		8X		5,000 per Reel	
AT25020B-MA9M-T		8MA2		5,000 per Reel	
AT25020B-MA9M-E				15,000 per Reel	
AT25040B-SS9M-T	NiPdAu (Lead-free/Halogen-free)	8S1	Tape and Reel	4,000 per Reel	Automotive Temperature (-40°C to 85°C)
AT25040B-X9M-T		8X		5,000 per Reel	
AT25040B-MA9M-T		8MA2		5,000 per Reel	
AT25040B-MA9M-E				15,000 per Reel	

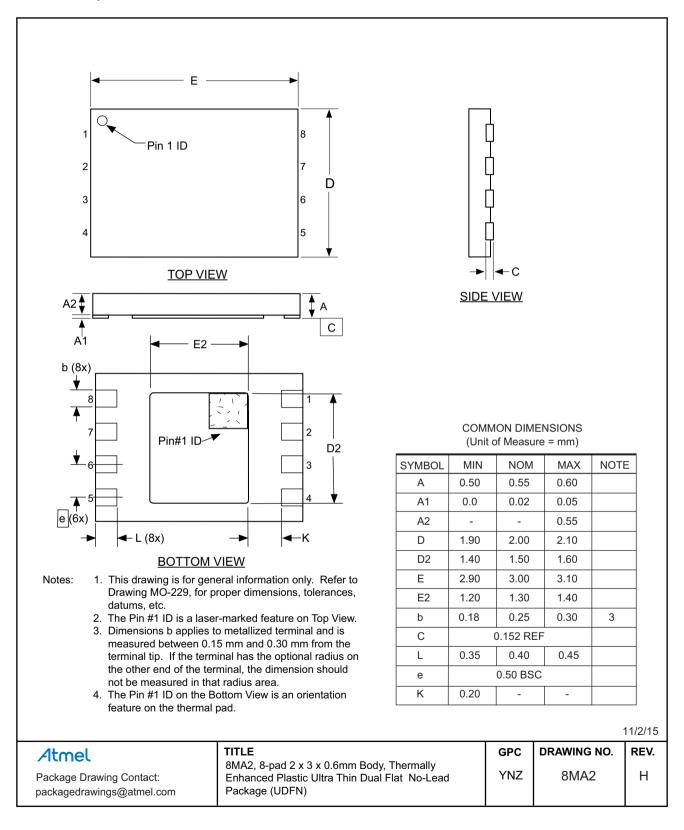
Package Type				
8S1	8-lead, 0.150" wide, Plastic Gull Wing Small Outline (JEDEC SOIC)			
8X	8-lead 4.4mm body, Plastic Thin Shrink Small Outline (TSSOP)			
8MA2	8-pad, 2.00mm x 3.00mm body, 0.50mm pitch, Ultra Thin, Dual No Lead (UDFN)			


8.3 Product Markings

Atmel

9. Packaging Information


9.1 8S1 — 8-lead JEDEC SOIC



Downloaded from Arrow.com.

9.2 8X — 8-lead TSSOP

Downloaded from Arrow.com.

10. Revision History

Doc. Rev.	Date	Comments
8802E	12/2016	Decreased I_{SB1} maximum from 9µA to 2µA
8802D	09/2016	Added the Automotive Grade 2 and 3 options and UDFN options. Updated 8S1 and 8X package drawings, template / reorganization, and disclaimer page.
8802C	11/2012	Updated ordering code tables. Updated 8X package drawing.
8802B	10/2012	Removed preliminary status. Updated Atmel logos and disclaimer/copy page.
8802A	03/2012	Initial document release.

Atmel Enabling Unlimited Possibilities®

T

Atmel Corporation 1600 Technology Drive, San Jose, CA 95110 USA

T: (+1)(408) 441.0311

F: (+1)(408) 436.4200

www.atmel.com

© 2016 Atmel Corporation. / Rev.: Atmel-8802E-SEEPROM-AT25010B-020B-040B-Auto-Datasheet_122016.

Atmel[®], Atmel logo and combinations thereof, Enabling Unlimited Possibilities[®], and others are registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR SAND PROFITS, BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as military-grade. Atmel products are not designed nor intended for use in automotive applications unless specifically designated by Atmel as automotive-grade.