
Typical Application Circuit

Pin Descriptions

Pin Name	Description	
GND	Ground	
RESET Reset Output Pin Active Low Open Drain		
V _{CC}	Operating Voltage Input	

Functional Block Diagram

Absolute Maximum Ratings

Symbol	Parameter	Rating	Unit
ESD HBM Human Body Model ESD Protection		2	kV
ESD MM	Machine Model ESD Protection	200	V
Vcc	Supply Voltage	-0.3 to +6.0	V
V _{RESET}	RESET (open drain)	-0.3 to 6	V
Icc	Input Current, V _{CC}	20	mA
lo	Output Current, RESET	20	mA
P_{D}	Continuous Power Dissipation ($T_A = +70^{\circ}C$), derate 4mW/°C above +70°C	400	mW
T _{OP}	Operating Junction Temperature Range	-40 to +105	°C
T _{ST}	Storage Temperature Range	-65 to +150	°C

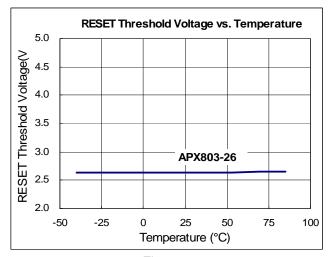
Recommended Operating Conditions

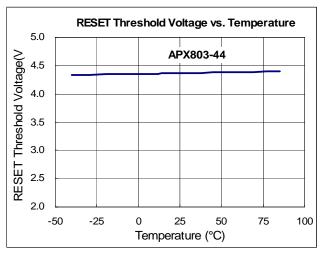
Symbol	Parameter	Min	Max	Unit
V _{CC} Supply Voltage		1.1	5.5	V
V _{IN}	Input Voltage	0	(V _{CC} +0.3)	V
V _{RESET} RESET output voltage T _A Operating Ambient Temperature Range		0	5.5	V
		-40	85	°C
dV _{CC} /dt	V_{CC} Rate of rise ($V_{CC} = 0 \sim V_T$)		100	V/µs

Electrical Characteristics (T_A = 25°C)

 T_A = -40 to 85 °C unless otherwise note. Typical values are at T_A =+25 °C.

Symbol	Parameter		Test Conditions	Min	Тур.	Max	Unit	
I _{cc}	Supply Current		V _{TH} + 0.2V		30	40	μA	
		APX803-23		2.21	2.25	2.30	V	
		APX803-26		2.59	2.63	2.66		
		APX803-29		2.89	2.93	2.96		
		APX803D-29	-T _A = 25°C	2.89	2.93	2.96		
V_{TH}	Reset Threshold	APX803-31	1 _A = 25 C	3.04	3.08	3.13		
VTH		APX803-40		3.94	4.00	4.06		
		APX803-44		4.31	4.38	4.45		
		APX803-46		4.56	4.63	4.70		
	Reset Threshold hysteresis		V _{TH-H} – V _{TH-L}		40		mV	
	Reset Threshold Tempco				30		ppm/°C	
t _S	V _{CC} to RESET delay		$V_{CC} = V_{TH}$ to $(V_{TH} - 100$ mV)		20		μs	
4	Reset Active Timeout Period	APX803-XX	$T_A = 0$ °C to +85°C	140	200	280	- ms	
t _{DELAY}		APX803D-29		1		3.3		
	RESET Output Voltage Low		$V_{CC} = V_{TH} - 0.2$, $I_{SINK} = 1.2mA$			0.3		
V_{OL}			$V_{CC} = V_{TH} - 0.2$, $I_{SINK} = 3.5 \text{mA}$			0.4	V	
			$V_{CC} > 1.0V$, $I_{SINK} = 50uA$			0.3		
I _{OH}	RESET Output High leakage current		V _{CC} > V _{TH} +0.2			1	μA	
θ_{JA}	Thermal Resistance Junction-to- Ambient		SOT23/SOT23R (Note 2)		201		°C/W	
θ_{JC}	Thermal Resistance Junction-to-Case		SOT23/SOT23R (Note 2)		56		°C/W	


Notes:


^{2.} Test condition for SOT23 and SOT23R: Devices mounted on FR-4 substrate PC board, 2oz copper, with minimum recommended pad layout.

^{3.} Final datasheet limits to be determined by characterization and correlation.

Typical Performance Characteristics

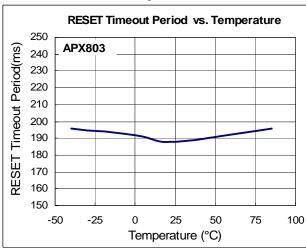


Figure 2

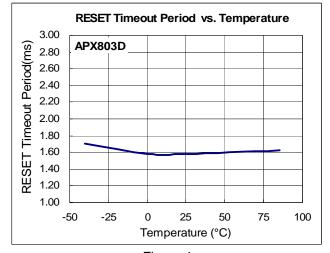


Figure 3

Figure 4

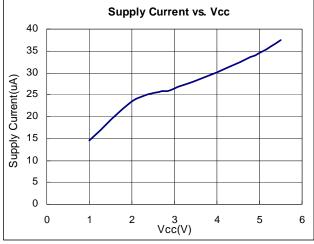
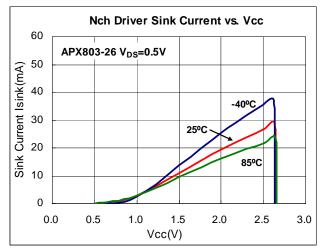



Figure 5 Figure 6

Typical Performance Characteristics (Continued)

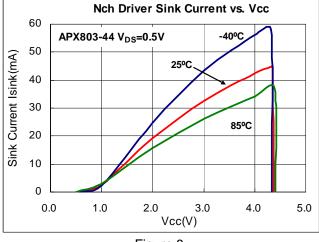
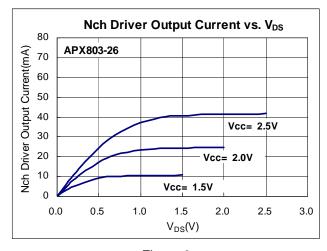



Figure 7

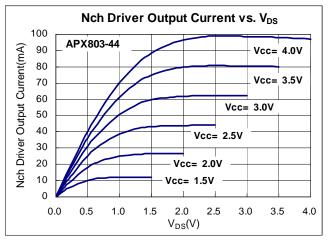
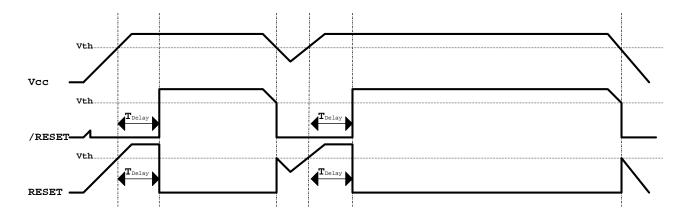



Figure 9 Figure 10

Timing Diagram

Functional Description

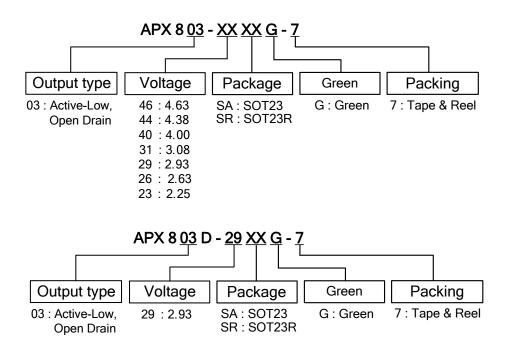
Microprocessors (μ Ps) and microcontrollers (μ C) have a reset input to ensure that it starts up in a known state. The APX803/D drive the μ P's reset input to prevent code-execution errors during power-up, power-down, or brownout conditions. They assert a reset signal whenever the V_{CC} supply voltage declines below a preset threshold and keep it asserted for a fixed period of time after V_{CC} has risen above the reset threshold. For the APX803D this period is a minimum of 1ms while for other APX803 variants it is at least 140ms. The APX803/D have an open-drain output stage.

Ensuring a Valid Reset Output Down to $V_{CC} = 0$

RESET is guaranteed to be a logic low for $V_{CC} > 1V$. Once V_{CC} exceeds the reset threshold, an internal timer keeps \overline{RESET} low for the reset timeout period; after this interval, \overline{RESET} goes high. If a brownout condition occurs (V_{CC} dips below the \overline{RESET} reset threshold), \overline{RESET} goes low. Any time V_{CC} goes below the reset threshold, the internal timer resets to zero, and \overline{RESET} goes low. The internal timer starts after V_{CC} returns above the reset threshold, and \overline{RESET} remains low for the reset timeout period.

When V_{CC} falls below 1V, the APX803/D RESET output no longer sinks current — it becomes an open circuit. Therefore, high-impedance CMOS logic inputs connected to \overline{RESET} can drift to undetermined voltages. This presents no problem in most applications since most μP and other circuitry is inoperative with V_{CC} below 1V.

Interfacing to µP with Bidirectional Reset Pins


Since the RESET output on the APX803/D is open drain, this device interfaces easily with $\mu P/\mu C$ that have bidirectional reset pins, such as the Motorola 68HC11. Connecting the μP supervisor's RESET output directly to the microcontroller's (μC 's) RESET pin with a single pull-up resistor allows either device to assert reset.

Supervising and monitoring Multiple Supplies

Generally, the pull-up resistor connected to the APX803/D will connect to the supply voltage that is being monitored at the IC's V_{CC} pin. However, some systems may use the APX803/D open-drain output to level-shift from the monitored supply to reset the μP powered by a different supply voltage or monitor multiple supplies that will be fed into 1 $\mu C/\mu P$ reset input.

Ordering Information

	Dovice	Device Package Code		7" Ta	Tape and Reel	
	Device			Quantity	Part Number Suffix	
P	APX803-XXSAG-7	SA	SOT23	3000/Tape & Reel	-7	
P	APX803-XXSRG-7	SR	SOT23R	3000/Tape & Reel	-7	
P	APX803D-29SAG-7	SA	SOT23	3000/Tape & Reel	-7	
P	APX803D-29SRG-7	SR	SOT23R	3000/Tape & Reel	-7	

Notes: 4. Pad layout as shown on Diodes Inc. suggested pad layout document AP02001, which can be found on our website at http://www.diodes.com/datasheets/ap02001.pdf.

Marking Information

(1) SOT23 and SOT23R

(Top View)

3

XX Y W X

1

2

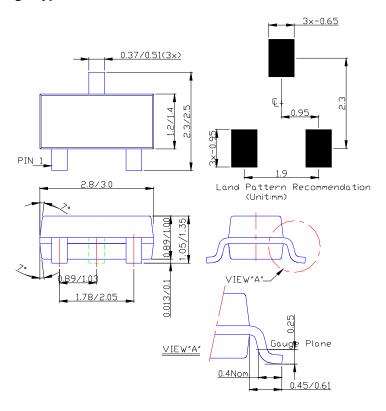
XX: Identification code

<u>Y</u> : Year 0~9

<u>W</u>: Week: A~Z: 1~26 week;

a~z: 27~52 week; z represents

52 and 53 week


X: A~Z: Green

Device	Package	Identification Code
APX803-46SA	SOT23	V3
APX803-44SA	SOT23	V4
APX803-40SA	SOT23	V5
APX803-31SA	SOT23	V6
APX803-29SA	SOT23	V7
APX803-26SA	SOT23	V8
APX803-23SA	SOT23	V9
APX803-46SR	SOT23R	S3
APX803-44SR	SOT23R	S4
APX803-40SR	SOT23R	S 5
APX803-31SR	SOT23R	S6
APX803-29SR	SOT23R	S7
APX803-26SR	SOT23R	S8
APX803-23SR	SOT23R	S9
APX803D-29SA	SOT23	VN
APX803D-29SR	SOT23R	SN

Package Outline Dimensions (All Dimensions in mm)

(1) Package Type: SOT23 and SOT23R

Notes: 5. Package outline dimensions as shown on Diodes Inc. package outline dimensions document AP02002, which can be found on our website at http://www.diodes.com/datasheets/ap02002.pdf

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel.

Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2010, Diodes Incorporated

www.diodes.com