TABLE OF CONTENTS

Features	. 1
Applications	. 1
General Description	. 1
Typical Application Circuits	. 1
Revision History	. 2
Specifications	. 3
Electrical Characteristics	. 3
Absolute Maximum Ratings	. 5
Thermal Resistance	. 5
ESD Caution	. 5
Pin Configurations and Function Descriptions	. 6

REVISION HISTORY

2/2017—Rev. A to Rev. B

Changes to Figure 4 and Table 4 6	,
Changes to Figure 5 and Table 57	'
Changes to Figure 6 and Table 6 8	,

8/2016—Rev. 0 to Rev. A

Changed CP-16-3 to CP-16-27	Throughout
Changes to Figure 4 and Table 4	6
Changes to Figure 5 and Table 5	7
Changes to Figure 6 and Table 6	
Updated Outline Dimensions	
Changes to Ordering Guide	15

8/2007—Revision 0: Initial Version

Typical Performance Characteristics	9
Applications Information	12
Power/Ground Layout and Bypassing	12
Output Stages	12
Optimizing High Speed Performance	12
Buffer Random Jitter	12
Typical Application Circuits	13
Evaluation Board Schematic	14
Outline Dimensions	15
Ordering Guide	15

SPECIFICATIONS

ELECTRICAL CHARACTERISTICS

Typical (Typ) values are given for $V_{CC} - V_{EE} = 3.3 \text{ V}$ and $T_A = 25^{\circ}\text{C}$, unless otherwise noted. Minimum (Min) and maximum (Max) values are given over the full $V_{CC} - V_{EE} = 3.3 \text{ V} \pm 10\%$ and $T_A = -40^{\circ}\text{C}$ to $+125^{\circ}\text{C}$ variation, unless otherwise noted.

Parameter	Symbol	Min	Turn	Max	Unit	Test Conditions/Comments
	Symbol	MIN	Тур	Max	Unit	Test Conditions/Comments
DC INPUT CHARACTERISTICS		N . 1.6				
Input Voltage High Level	V _{IH}	V _{EE} + 1.6		V _{cc}	V	
Input Voltage Low Level	V _{IL}	V _{EE}		V _{cc} – 0.7	V	
Input Differential Range	V _{ID}	0.2		3.4	V р-р	-40°C to +85°C
	.,			2.0		(±1.7 V between input pins)
	VID	0.2		2.8	V р-р	85°C to 125°C
	C		0.4			(±1.4 V between input pins)
Input Capacitance	CIN		0.4		pF	
Input Resistance, Single-Ended Mode			50		Ω	
Input Resistance, Differential Mode			100		Ω	
Input Resistance, Common Mode			50		kΩ	Open V _T
Input Bias Current			20		μΑ	
DC OUTPUT CHARACTERISTICS						
Output Voltage High Level	V _{он}	V _{cc} – 1.26		V _{cc} – 0.76	V	50Ω to (V _{cc} – 2.0 V)
Output Voltage Low Level	Vol	Vcc – 1.99		Vcc – 1.54	V	50 Ω to (V _{cc} – 2.0 V)
Output Voltage Differential	VOD	610		1040	mV	50 Ω to (V _{CC} – 2.0 V)
Reference Voltage	V _{REF}					
Output Voltage			$(V_{cc} + 1)/2$		V	–500 μA to +500 μA
Output Resistance			250		Ω	
AC PERFORMANCE						
Propagation Delay	t _{PD}	70	95	125	ps	$V_{cc} = 3.3 V \pm 10\%$,
						$V_{ICM} = V_{REF}, V_{ID} = 0.5 \text{ V } \text{p-p}$
		70	95	125	ps	$V_{CC} = 2.5 V \pm 5\%$,
					C 10 C	$V_{ICM} = V_{REF}, V_{ID} = 0.5 V p-p$
Propagation Delay Temperature Coefficient			50		fs/°C	
Propagation Delay Skew (Output to Output) ADCLK907				15	ps	$V_{ID} = 0.5 V$
Propagation Delay Skew (Output to Output)				10	ps	$V_{ID} = 0.5 V$
ADCLK925				10	ha	VID - 0.5 V
Propagation Delay Skew (Device to Device)				35	ps	$V_{ID} = 0.5 V$
Toggle Rate		6	7.5		GHz	>0.8 V differential output swing,
		-				$V_{cc} = 3.3 V \pm 10\%$
			6.5		GHz	>0.8 V differential output swing,
						$V_{CC} = 2.5 V \pm 5\%$
Random Jitter	RJ		60		fs rms	V _{ID} = 1600 mV, 8 V/ns, V _{ICM} = 1.85 V
Rise/Fall Time	t _R /t _F	30		85	ps	20%/80%
Additive Phase Noise					-	
622.08 MHz			-138		dBc/Hz	@10 Hz offset
			-144		dBc/Hz	@100 Hz offset
			-152		dBc/Hz	@1 kHz offset
			-159		dBc/Hz	@10 kHz offset
			-161		dBc/Hz	@100 kHz offset
			-161		dBc/Hz	>1 MHz offset
122.88 MHz			-135		dBc/Hz	@10 Hz offset
			-145		dBc/Hz	@100 Hz offset
			-153		dBc/Hz	@1 kHz offset
			-160		dBc/Hz	@10 kHz offset
			-161		dBc/Hz	@100 kHz offset
			-161		dBc/Hz	>1 MHz offset

Parameter	Symbol	Min	Тур	Max	Unit	Test Conditions/Comments
POWER SUPPLY						
Supply Voltage Requirement	$V_{\text{CC}} - V_{\text{EE}}$	2.375		3.63	V	2.5 V - 5% to 3.3 V + 10%
Power Supply Current						Static
ADCLK905						
Negative Supply Current	IVEE		24		mA	$V_{CC} - V_{EE} = 2.5 V$
			25	40	mA	$V_{CC} - V_{EE} = 3.3 \text{ V} \pm 10\%$
Positive Supply Current	Ivcc		47		mA	$V_{CC} - V_{EE} = 2.5 V$
			48	63	mA	$V_{CC} - V_{EE} = 3.3 \text{ V} \pm 10\%$
ADCLK907						
Negative Supply Current	IVEE		48		mA	$V_{CC} - V_{EE} = 2.5 V$
			50	80	mA	$V_{CC} - V_{EE} = 3.3 \text{ V} \pm 10\%$
Positive Supply Current	lvcc		94		mA	$V_{CC} - V_{EE} = 2.5 V$
			96	126	mA	$V_{CC} - V_{EE} = 3.3 \text{ V} \pm 10\%$
ADCLK925						
Negative Supply Current	IVEE		29		mA	$V_{CC} - V_{EE} = 2.5 \text{ V}$
			31	51	mA	$V_{CC} - V_{EE} = 3.3 \text{ V} \pm 10\%$
Positive Supply Current	lvcc		76		mA	$V_{CC} - V_{EE} = 2.5 \text{ V}$
			77	97	mA	$V_{CC} - V_{EE} = 3.3 \text{ V} \pm 10\%$
Power Supply Rejection ¹	PSR _{vcc}		3		ps/V	$V_{CC} - V_{EE} = 3.0 \text{ V} \pm 20\%$
Output Swing Supply Rejection ²	PSR _{vcc}		26		dB	$V_{CC} - V_{EE} = 3.0 \text{ V} \pm 20\%$

 1 Change in T_{PD} per change in $V_{\text{CC}}.$ 2 Change in output swing per change in $V_{\text{CC}}.$

ABSOLUTE MAXIMUM RATINGS

Table 2.

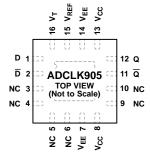
Parameter	Rating
Supply Voltage	
$V_{CC} - V_{EE}$	6.0 V
Input Voltage	
D (D1, D2), D (D1, D2)	$\begin{array}{l} V_{\text{EE}} - 0.5 V to \\ V_{\text{CC}} + 0.5 V \end{array}$
D1, D2, $\overline{D1}$, $\overline{D2}$ to V _T Pin	±40 mA
(CML or PECL Termination)	
D (D1, D2) to \overline{D} ($\overline{D1}$, $\overline{D2}$)	±1.8 V
Maximum Voltage on Output Pins	V _{cc} + 0.5 V
Maximum Output Current	35 mA
Input Termination, V_T to D (D1, D2), \overline{D} ($\overline{D1}$, $\overline{D2}$)	±2 V
Voltage Reference, V _{REF}	$V_{CC} - V_{EE}$
Temperature	
Operating Temperature Range, Ambient	-40°C to +125°C
Operating Temperature, Junction	150°C
Storage Temperature Range	-65°C to +150°C

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.

THERMAL RESISTANCE

 θ_{JA} is specified for the worst-case conditions, that is, a device soldered in a circuit board for surface-mount packages.

Table 3. Thermal Resistance

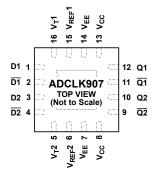

Package Type	Αιθ	Unit
16-Lead LFCSP	70	°C/W

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

NOTES

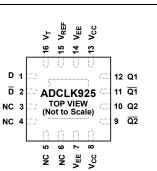

1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN.

2. EXPOSED PAD. THE EXPOSED PAD IS NOT ELECTRICALLY CONNECTED TO ANY PART OF THE CIRCUIT. IT CAN BE LEFT FLOATING FOR OPTIMAL ELECTRICAL ISOLATION BETWEEN THE PACKAGE HANDLE AND THE SUBSTRATE OF THE DIE. IT CAN ALSO BE SOLDERED TO THE APPLICATION BOARD IF IMPROVED THERMAL AND/OR MECHANICAL STABILITY IS DESIRED. EXPOSED METAL AT THE CORNERS OF THE PACKAGE IS CONNECTED TO THIS EXPOSED PAD. ALLOW SUFFICIENT CLEARANCE TO VIAS AND OTHER COMPONENTS.

Figure 4. ADCLK905 Pin Configuration

Table 4. Pin Function Descriptions for 1:1 ADCLK905 Buffer

Pin No.	Mnemonic	Description
1	D	Noninverting Input.
2	D	Inverting Input.
3, 4, 5, 6, 9, 10	ŃC	No Connect. No physical connection to the die.
7, 14	VEE	Negative Supply Voltage.
8, 13	Vcc	Positive Supply Voltage.
11	Q	Inverting Output.
12	Q	Noninverting Output.
15	VREF	Reference Voltage. Reference voltage for biasing ac-coupled inputs.
16	VT	Center Tap. Center tap of 100 Ω input resistor.
	EPAD	Exposed Pad. The exposed pad is not electrically connected to any part of the circuit. It can be left floating for optimal electrical isolation between the package handle and the substrate of the die. It can also be soldered to the application board if improved thermal and/or mechanical stability is desired. Exposed metal at the corners of the package is connected to this exposed pad. Allow sufficient clearance to vias and other components.



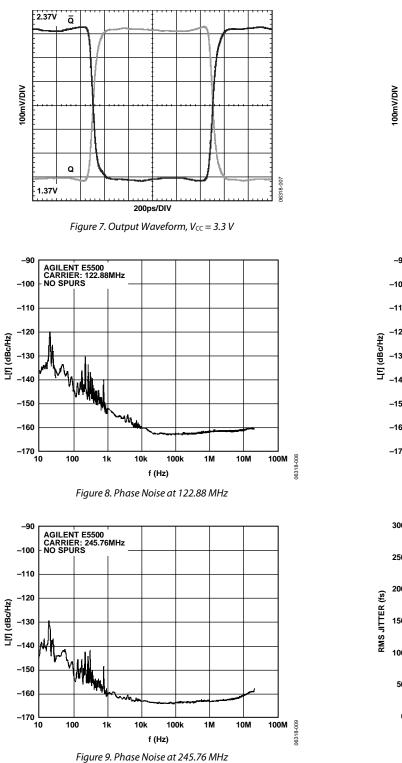
NOTES 1. EXPOSED PAD. THE EXPOSED PAD IS NOT ELECTRICALLY CONNECTED TO ANY PART OF THE CIRCUIT. IT CAN BE LEFT FLOATING FOR OPTIMAL ELECTRICAL ISOLATION BETWEEN THE PACKAGE HANDLE AND THE SUBSTRATE OF THE DIE. IT CAN ALSO BE SOLDERED TO THE APPLICATION BOARD IF IMPROVED THERMAL AND/OR MECHANICAL STABILITY IS DESIRED. EXPOSED METAL AT THE CORNERS OF THE PACKAGE IS CONNECTED TO THIS EXPOSED PAD. ALLOW SUFFICIENT CLEARANCE TO VIAS AND OTHER COMPONENTS.

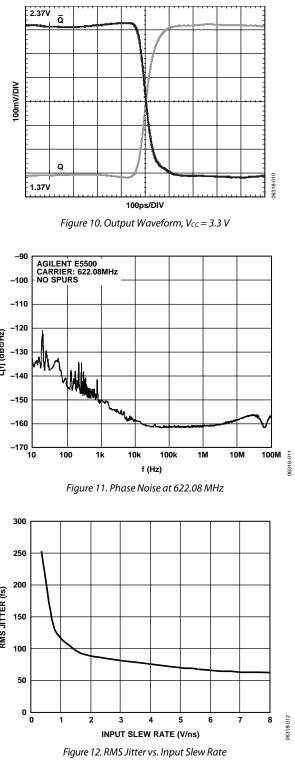
Figure 5. ADCLK907 Pin Configuration

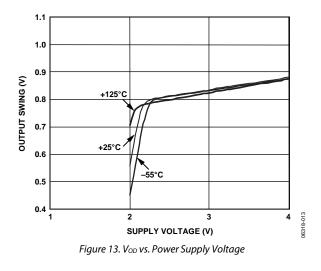
Table 5. Pin Function Descriptions for Dual 1:1 ADCLK907 Buffer

Pin No.	Mnemonic	Description
1	D1	Noninverting Input 1.
2	D1	Inverting Input 1.
3	D2	Noninverting Input 2.
4	D2	Inverting Input 2.
5	V⊤2	Center Tap 2. Center tap of 100 Ω input resistor, Channel 2.
б	V _{REF} 2	Reference Voltage 2. Reference voltage for biasing ac-coupled inputs, Channel 2.
7, 14	V _{EE}	Negative Supply Voltage.
8, 13	Vcc	Positive Supply Voltage. Pin 8 and Pin 13 are not strapped internally.
9	Q2	Inverting Output 2.
10	Q2	Noninverting Output 2.
11	Q1	Inverting Output 1.
12	Q1	Noninverting Output 1.
15	V _{REF} 1	Reference Voltage 1. Reference voltage for biasing ac-coupled inputs, Channel 1.
16	V _T 1	Center Tap 1. Center tap of 100 Ω input resistor, Channel 1.
	EPAD	Exposed Pad. The exposed pad is not electrically connected to any part of the circuit. It can be left floating for optimal electrical isolation between the package handle and the substrate of the die. It can also be soldered to the application board if improved thermal and/or mechanical stability is desired. Exposed metal at the corners of the package is connected to this exposed pad. Allow sufficient clearance to vias and other components.

NOTES 1. NC = NO CONNECT. DO NOT CONNECT TO THIS PIN. 2. EXPOSED PAD. THE EXPOSED PAD IS NOT ELECTRICALLY CONNECTED TO ANY PART OF THE CIRCUIT. IT CAN BE LEFT FLOATING FOR OPTIMAL ELECTRICAL ISOLATION BETWEEN THE PACKAGE HANDLE AND THE SUBSTRATE OF THE DIE. IT CAN ALSO BE SOLDERED TO THE APPLICATION BOARD IF IMPROVED THERMAL AND/OR MECHANICAL STABILITY IS DESIRED. EXPOSED METAL AT THE CORNERS OF THE PACKAGE IS CONNECTED TO THIS EXPOSED PAD. ALLOW SUFFICIENT CLEARANCE TO VIAS AND OTHER COMPONENTS.


Figure 6. ADCLK925 Pin Configuration


Table 6. Pin Function Descriptions for 1:2 ADCLK925 Buffer	Table 6. Pin	Function	Descriptions	6 for 1:2	ADCLK925 Buffer
--	--------------	----------	--------------	-----------	-----------------


Pin No.	Mnemonic	Description
1	D	Noninverting Input.
2	D	Inverting Input.
3, 4, 5, 6	NC	No Connect. No physical connection to the die.
7, 14	V _{EE}	Negative Supply Voltage.
8, 13	Vcc	Positive Supply Voltage.
9	Q2	Inverting Output 2.
10	Q2	Noninverting Output 2.
11	Q1	Inverting Output 1.
12	Q1	Noninverting Output 1.
15	V _{REF}	Reference Voltage. Reference voltage for biasing ac-coupled inputs.
16	VT	Center Tap. Center tap of 100 Ω input resistor.
	EPAD	Exposed Pad. The exposed pad is not electrically connected to any part of the circuit. It can be left floating for optimal electrical isolation between the package handle and the substrate of the die. It can also be soldered to the application board if improved thermal and/or mechanical stability is desired. Exposed metal at the corners of the package is connected to this exposed pad. Allow sufficient clearance to vias and other components.

TYPICAL PERFORMANCE CHARACTERISTICS

 V_{CC} = 3.3 V, V_{EE} = 0.0 V, T_A = 25°C, outputs terminated 50 Ω to V_{CC} – 2 V, unless otherwise noted.

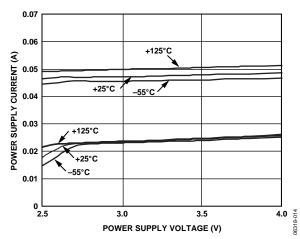


Figure 14. Power Supply Current vs. Power Supply Voltage, ADCLK905

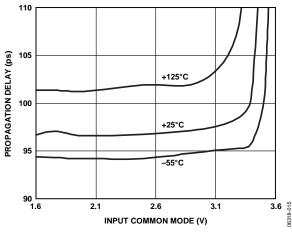
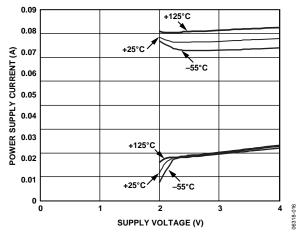
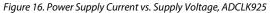
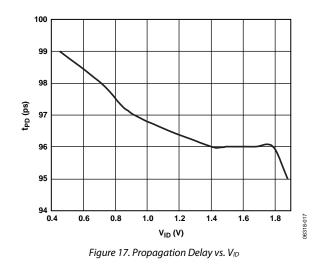





Figure 15. Propagation Delay vs. V_{ICM} ; Input Swing = 200 mV

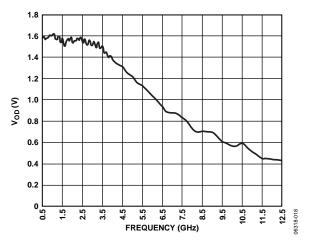


Figure 18. Toggle Rate, Differential Output Swing vs. Frequency

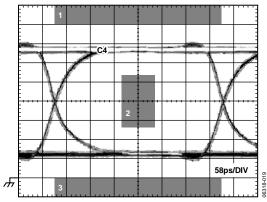


Figure 19. 2.488 Gbps PRBS 2²³ – 1 with OC-48/STM-16 Mask, Measured p-p Jitter 8.1 ps, Source p-p Jitter 3.5 ps

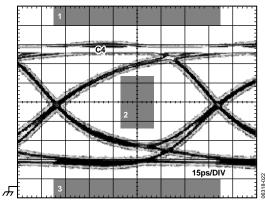


Figure 20. 9.95 Gbps PRBS 2²³ – 1 with OC-193/STM-64 Mask, Measured p-p Jitter 10.5 ps, Source p-p Jitter 6.0 ps

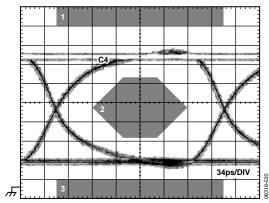


Figure 21. 4.25 Gbps PRBS 2²³ – 1 with FC4250 (Optical) Mask, Measured p-p Jitter 8.2 ps, Source p-p Jitter 3.4 ps

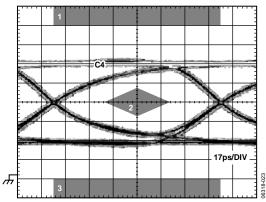


Figure 22. 8.50 Gbps PRBS 2²³ – 1 with FC8500E ABS Beta Rx Mask, Measured p-p Jitter 10.9 ps, Source p-p Jitter 4.4 ps

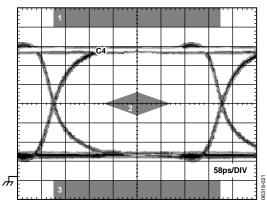


Figure 23. 2.5 Gbps PRBS 2²³ – 1 with PCI Express 2.5 Rx Mask, Measured p-p Jitter 8.1 ps, Source p-p Jitter 3.5 ps

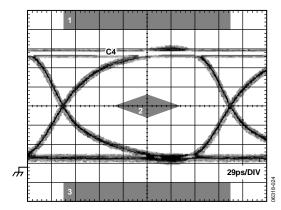


Figure 24. 5.0 Gbps PRBS 2²³ – 1 with PCI Express 5.0 Rx Mask, Measured p-p Jitter 8.7 ps, Source p-p Jitter 3.5 ps

APPLICATIONS INFORMATION power/ground layout and bypassing

The ADCLK905/ADCLK907/ADCLK925 buffers are designed for very high speed applications. Consequently, high speed design techniques must be used to achieve the specified performance. It is critically important to use low impedance supply planes for both the negative supply (V_{EE}) and the positive supply (V_{CC}) planes as part of a multilayer board. Providing the lowest inductance return path for switching currents ensures the best possible performance in the target application.

It is also important to adequately bypass the input and output supplies. A 1 μ F electrolytic bypass capacitor should be placed within several inches of each power supply pin to ground. In addition, multiple high quality 0.001 μ F bypass capacitors should be placed as close as possible to each of the V_{EE} and V_{CC} supply pins and should be connected to the GND plane with redundant vias. High frequency bypass capacitors should be carefully selected for minimum inductance and ESR. Parasitic layout inductance should be strictly avoided to maximize the effectiveness of the bypass at high frequencies.

OUTPUT STAGES

The specified performance can be achieved only by using proper transmission line terminations. The outputs of the ADCLK905/ADCLK907/ADCLK925 buffers are designed to directly drive 800 mV into 50 Ω cable or microstrip/stripline transmission lines terminated with 50 Ω referenced to V_{CC} – 2 V. The PECL output stage is shown in Figure 25. The outputs are designed for best transmission line matching. If high speed signals must be routed more than a centimeter, either the microstrip or the stripline technique is required to ensure proper transition times and to prevent excessive output ringing and pulse width-dependent propagation delay dispersion.

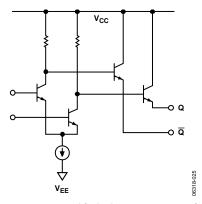


Figure 25. Simplified Schematic Diagram of the ADCLK905/ADCLK907/ADCLK925 PECL Output Stage

OPTIMIZING HIGH SPEED PERFORMANCE

As with any high speed circuit, proper design and layout techniques are essential to obtaining the specified performance. Stray capacitance, inductance, inductive power and ground impedances, or other layout issues can severely limit performance and cause oscillation. Discontinuities along input and output transmission lines can also severely limit the specified jitter performance by reducing the effective input slew rate.

In a 50 Ω environment, input and output matching have a significant impact on performance. The buffer provides internal 50 Ω termination resistors for both D and \overline{D} inputs. The return side should normally be connected to the reference pin provided. The termination potential should be carefully bypassed, using ceramic capacitors to prevent undesired aberrations on the input signal due to parasitic inductance in the termination return path. If the inputs are directly coupled to a source, care must be taken to ensure the pins are within the rated input differential and common-mode ranges.

If the return is floated, the device exhibits 100Ω cross termination, but the source must then control the common-mode voltage and supply the input bias currents.

There are ESD/clamp diodes between the input pins to prevent the application of excessive offsets to the input transistors. ESD diodes are not optimized for best ac performance. When a clamp is desired, it is recommended that appropriate external diodes be used.

BUFFER RANDOM JITTER

The ADCLK905/ADCLK907/ADCLK925 are specifically designed to minimize added random jitter over a wide input slew rate range. Provided sufficient voltage swing is present, random jitter is affected most by the slew rate of the input signal. Whenever possible, excessively large input signals should be clamped with fast Schottky diodes because attenuators reduce the slew rate. Input signal runs of more than a few centimeters should be over low loss dielectrics or cables with good high frequency characteristics.

TYPICAL APPLICATION CIRCUITS

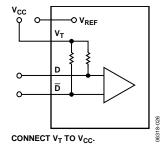


Figure 26. Interfacing to CML Inputs

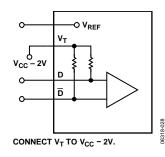
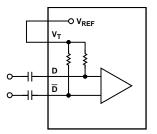
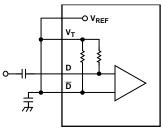
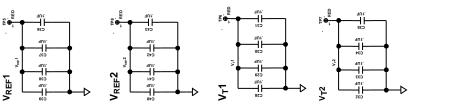




Figure 27. Interfacing to PECL

CONNECT V_T TO V_{REF}. NOTES 1. PLACING A BYPASS CAPACITOR FROM V_T TO GROUND CAN IMPROVE THE NOISE PERFORMANCE.

Figure 28. AC Coupling Differential Signals



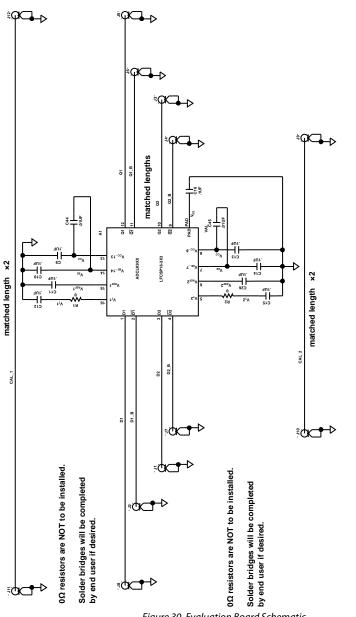
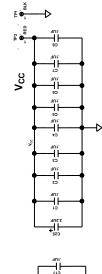

 $\label{eq:connect_v_t_v_ref} \begin{array}{l} \text{CONNECT V}_{T}, \text{V}_{\text{REF}}, \text{AND } \overline{D}. \text{ PLACE A BYPASS} \\ \text{CAPACITOR FROM V}_{T} \text{ TO GROUND.} \\ \text{ALTERNATIVELY, V}_{T}, \text{V}_{\text{REF}}, \text{ AND D CAN BE} \\ \text{CONNECTED, GIVING A CLEANER LAYOUT AND} \\ \text{A 180° PHASE SHIFT.} \end{array} \right.$

Figure 29. Interfacing to AC-Coupled Single-Ended Inputs

160-81690


EVALUATION BOARD SCHEMATIC

V---2

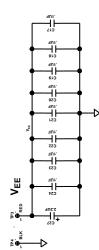


Figure 30. Evaluation Board Schematic

OUTLINE DIMENSIONS

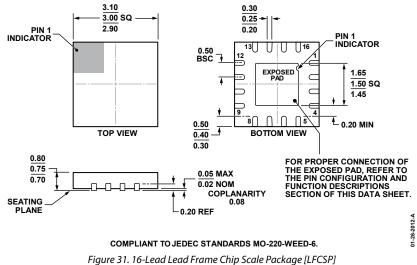


Figure 31. 16-Lead Lead Frame Chip Scale Package [LFCSP] 3 mm × 3 mm Body and 0.75 mm Package Height (CP-16-27) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
ADCLK905BCPZ-WP	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-27	Y03
ADCLK905BCPZ-R7	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-27	Y03
ADCLK905BCPZ-R2	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-27	Y03
ADCLK907BCPZ-WP	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-27	Y06
ADCLK907BCPZ-R7	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-27	Y06
ADCLK907BCPZ-R2	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-27	Y06
ADCLK925BCPZ-WP	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-27	Y08
ADCLK925BCPZ-R7	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-27	Y08
ADCLK925BCPZ-R2	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-27	Y08
ADCLK905/PCBZ		Evaluation Board		
ADCLK907/PCBZ		Evaluation Board		
ADCLK925/PCBZ		Evaluation Board		

 1 Z = RoHS Compliant Part.

NOTES

www.analog.com