SEMICONDUCTOR

January 2000 Revised October 2001

74LVT16646 • 74LVTH16646 Low Voltage 16-Bit Transceiver/Register with 3-STATE Outputs

General Description

The LVT16646 and LVTH16646 contains sixteen noninverting bidirectional registered bus transceivers providing multiplexed transmission of data directly from the input bus or from the internal storage registers. Each byte has separate control inputs which can be shorted together for full 16-bit operation. The DIR inputs determine the direction of data flow through the device. The CPAB and CPBA inputs load data into the registers on the LOW-to-HIGH transition (see Functional Description).

The LVTH16646 data inputs include bushold, eliminating the need for external pull-up resistors to hold unused inputs.

These transceivers are designed for low-voltage (3.3V) V_{CC} applications, but with the capability to provide a TTL interface to a 5V environment. The LVT16646 and LVTH16646 are fabricated with an advanced BiCMOS technology to achieve high speed operation similar to 5V ABT while maintaining low power dissipation.

Features

- \blacksquare Input and output interface capability to systems at 5V V_{CC}
- Bushold data inputs eliminate the need for external pull-up resistors to hold unused inputs (74LVTH16646)
- Also available without bushold feature (74LVT16646)
- Live insertion/extraction permitted
- Power Up/Down high impedance provides glitch-free bus loading
- Outputs source/sink –32 mA/+64 mA
- Latch-up conforms to JEDEC JED78
- ESD performance: Human-body model > 2000V Machine model > 200V Charged-device model > 1000V

Ordering C	ode:	
Order Number	Package Number	Package Description
74LVT16646MEA (Preliminary)	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300" Wide

(Preliminary)		
74LVT16646MTD (Preliminary)	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
74LVTH16646MEA	MS56A	56-Lead Shrink Small Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74LVTH16646MTD	MTD56	56-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol Ac A2 A٦ A, A۶ A₆ Α-, A۵ Ag A10 A11 A12 A13 A14 A15 OE. OF СРАВ CPAB SAB. SAB DIR DIR СРВА CPBA SBA. SBA. B₀ B12 B13 B14 B₁₅ B10 B11

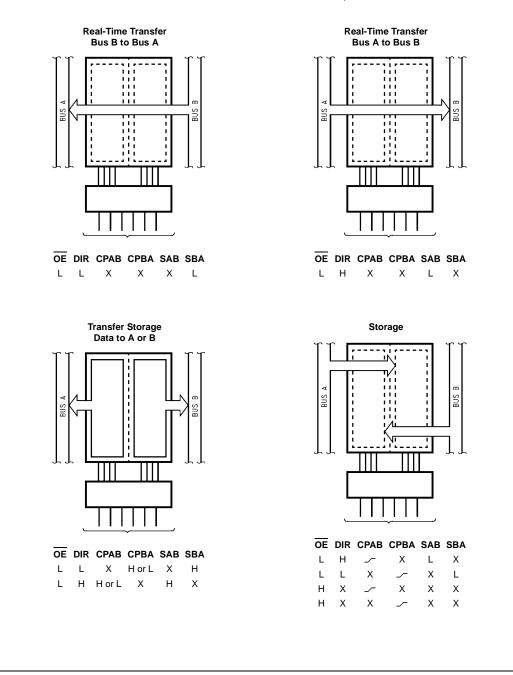
© 2001 Fairchild Semiconductor Corporation DS012023

Connection Diagram							
DIR ₁ — CPAB ₁ — SAB ₁ — GND — A ₀ — A ₁ — Vcc —	1 5 2 5 3 5 4 5 5 5 6 5 7 5	$5 - CPBA_{1} - SBA_{1} - SBA_{1} - SBA_{1} - SBA_{1} - GND - GND - COND - CON$					
A2	8 4 9 4, 10 4 11 4 12 4 13 4	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $					
A ₇ — A ₈ — A ₉ — A ₁₀ — GND — A ₁₁ —	14 4. 15 4. 16 4 17 4 18 3 19 3.	2 — B ₈ 1 — B ₉ 2 — B ₁₀ 9 — GND					
A ₁₂ - A ₁₃ - V _{CC} - A ₁₄ - GND - SAB ₂ - CPAB ₂ - CPAB ₂ -	20 3 21 3 22 3 23 3 24 3 25 3 26 3 27 3	$7 - B_{12}$ $5 - B_{13}$ $5 - V_{CC}$ $4 - B_{14}$ $3 - B_{15}$ $2 - GND$ $1 - SBA_2$					
Truth Table	28 2						

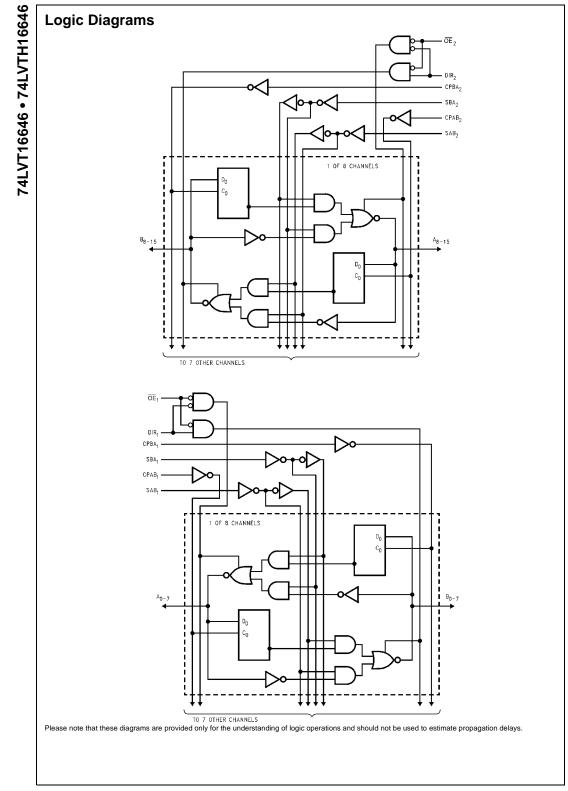
Pin Descriptions

Pin Names	Description
A ₀ -A ₁₅	Data Register A Inputs/3-STATE Outputs
B ₀ -B ₁₅	Data Register B Inputs/3-STATE Outputs
CPAB _n , CPBA _n	Clock Pulse Inputs
SAB _n , SBA _n	Select Inputs
$\overline{OE}_1, \overline{OE}_2$	Output Enable Inputs
DIR _n	Direction Control Inputs

Truth Table


(Note 1)

	Inputs						a I/O	Output Operation Made
OE ₁	DIR ₁	CPAB ₁	$CPBA_1$	SAB ₁	SBA ₁	A ₀₋₇	B ₀₋₇	Output Operation Mode
Н	Х	H or L	H or L	Х	Х			Isolation
н	Х	~	Х	Х	Х	Input	Input	Clock A _n Data into A Register
н	Х	Х	~	Х	Х			Clock B _n Data Into B Register
L	Н	Х	Х	L	Х			An to Bn—Real Time (Transparent Mode)
L	н	~	Х	L	Х	Input	Output	Clock An Data to A Register
L	Н	H or L	Х	н	Х			A Register to B _n (Stored Mode)
L	Н	~	Х	Н	х			Clock A_{n} Data into A Register and Output to B_{n}
L	L	Х	Х	Х	L			B _n to A _n —Real Time (Transparent Mode)
L	L	Х	~	х	L	Output	Input	Clock B _n Data into B Register
L	L	х	H or L	Х	н			B Register to A _n (Stored Mode)
L	L	Х	~	Х	Н			Clock B_{n} into B Register and Output to A_{n}


Note 1: The data output functions may be enabled or disabled by various signals at the \overline{OE} and DIR inputs. Data input functions are always enabled; i.e., data at the bus pins will be stored on every LOW-to-HIGH transition of the appropriate clock inputs. Also applies to data I/O (A and B: 8-15) and #2 control pins.

Functional Description

In the transceiver mode, data present at the HIGH impedance port may be stored in either the A or B register or both. The select (SAB_n, SBA_n) controls can multiplex stored and real-time. The examples shown below demonstrate the four fundamental bus-management functions that can be performed. The direction control (DIR_n) determines which bus will receive data when \overline{OE}_n is LOW. In the isolation mode (\overline{OE}_n HIGH), A data may be stored in one register and/or B data may be stored in the other register. When an output function is disabled, the input function is still enabled and may be used to store and transmit data. Only one of the two busses, A or B, may be driven at a time.

Downloaded from Arrow.com.

www.fairchildsemi.com

4

Symbol	Parameter	Value	Conditions	Units
V _{CC}	Supply Voltage	-0.5 to +4.6		V
VI	DC Input Voltage	-0.5 to +7.0		V
Vo	DC Output Voltage	-0.5 to +7.0	Output in 3-STATE	V
		-0.5 to +7.0	Output in HIGH or LOW State (Note 3)	V
I _{IK}	DC Input Diode Current	-50	V _I < GND	mA
I _{OK}	DC Output Diode Current	-50	V _O < GND	mA
I _O	DC Output Current	64	V _O > V _{CC} Output at HIGH State	
	T T	128	V _O > V _{CC} Output at LOW State	mA
I _{CC}	DC Supply Current per Supply Pin	±64		mA
I _{GND}	DC Ground Current per Ground Pin	±128		mA
T _{STG}	Storage Temperature	-65 to +150		°C

Recommended Operating Conditions

Symbol	Parameter	Min	Max	Units
V _{CC}	Supply Voltage	2.7	3.6	V
VI	Input Voltage	0	5.5	V
I _{OH}	HIGH-Level Output Current		-32	mA
I _{OL}	LOW-Level Output Current		64	
T _A	Free-Air Operating Temperature	-40	85	°C
$\Delta t / \Delta V$	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V	0	10	ns/V

Note 2: Absolute Maximum continuous ratings are those values beyond which damage to the device may occur. Exposure to these conditions or conditions beyond those indicated may adversely affect device reliability. Functional operation under absolute maximum rated conditions is not implied.

Note 3: I_{O} Absolute Maximum Rating must be observed.

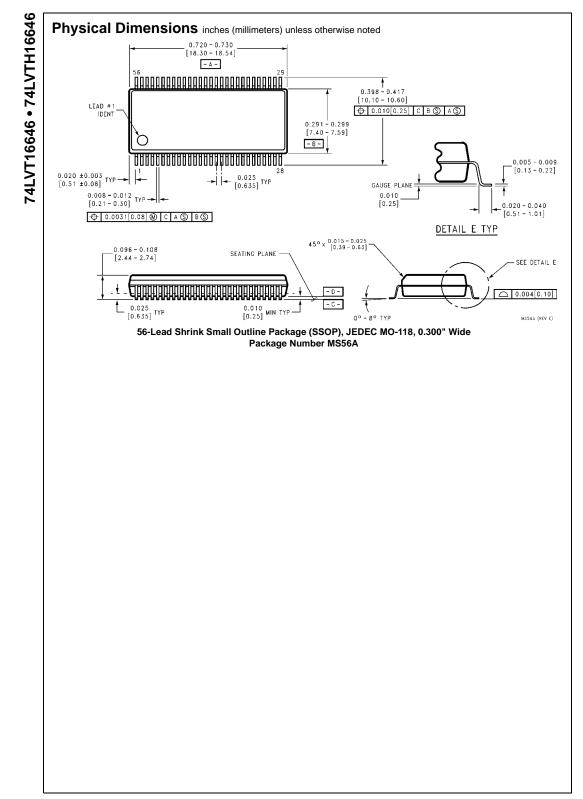
		V _{cc}	$T_A = -40^\circ$	C to +85°C				
Symbol	Parameter		(V)	Min Max		Units	Conditions	
V _{IK}	Input Clamp Diode Voltage		2.7		-1.2	V	I _I = -18 mA	
VIH	Input HIGH Voltage		2.7-3.6	2.0			$V_0 \le 0.1 V$ or	
VIL	Input LOW Voltage		2.7-3.6		0.8	V	$V_{O} \ge V_{CC} - 0.1V$	
V _{OH}	Output HIGH Voltage		2.7–3.6	V _{CC} - 0.2		V	I _{OH} = -100 μA	
		2.7	2.4		V	I _{OH} = -8 mA		
			3.0	2.0		V	I _{OH} = -32 mA	
V _{OL}	Output LOW Voltage		2.7		0.2	V	I _{OL} = 100 μA	
			2.7		0.5	V	I _{OL} = 24 mA	
		3.0		0.4	V	I _{OL} = 16 mA		
			3.0		0.5	V	I _{OL} = 32 mA	
			3.0		0.55	V	$I_{OL} = 64 \text{ mA}$	
I _{I(HOLD)}	Bushold Input Minimum Drive		3.0	75		μA	$V_{I} = 0.8V$	
(Note 4)			5.0	-75		μΑ	$V_{I} = 2.0V$	
I _{I(OD)}	Bushold Input Over-Drive		3.0	500		μA	(Note 5)	
(Note 4)	Current to Change State		0.0	-500		μΑ	(Note 6)	
l _l	Input Current		3.6		10	μΑ	$V_{I} = 5.5V$	
		Control Pins	3.6		±1	μA	$V_I = 0V \text{ or } V_{CC}$	
		Data Pins	3.6		-5	μΑ	$V_I = 0V$	
		Data i ilio	0.0		1	μΑ	$V_I = V_{CC}$	
I _{OFF}	Power Off Leakage Current		0		±100	μΑ	$0V \le V_I \text{ or } V_O \le 5.5V$	
I _{PU/PD}	Power Up/Down 3-STATE		0–1.5V		±100	μA	$V_0 = 0.5V$ to 3.0V	
	Output Current					•	$V_I = GND \text{ or } V_{CC}$	
I _{OZL} (Note 4)	3-STATE Output Leakage Curre		3.6		-5	μA	$V_0 = 0.0V$	
I _{OZL}	3-STATE Output Leakage Curr		3.6		-5	μA	V _O = 0.5V	
I _{OZH} (Note 4)			3.6		5	μA	V _O = 3.6V	
I _{OZH}	3-STATE Output Leakage Curr		3.6		5	μA	V _O = 3.0V	
I _{OZH} +	3-STATE Output Leakage Curr	ent	3.6		10	μA	$V_{CC} < V_O \le 5.5V$	
ICCH	Power Supply Current		3.6		0.19	mA	Outputs HIGH	
I _{CCL}	Power Supply Current		3.6		5	mA	Outputs LOW	
I _{CCZ}	Power Supply Current		3.6		0.19	mA	Outputs Disabled	
I _{CCZ} +	Power Supply Current		3.6		0.19	mA	$V_{CC} \le V_O \le 5.5V, Outputs Disat$	
ΔI_{CC}	Increase in Power Supply Curre	ent	3.6		0.2	mA	One Input at V _{CC} – 0.6V	
Note 5: An ex Note 6: An ex	(Note 7) is to bushold version only (74LVTH ternal driver must source at least th ternal driver must sink at least the s the increase in supply current for	ne specified curr specified curren	t to switch fro	m HIGH-to-LO	W.	n V _{CC} or GNE	Other Inputs at V _{CC} or GND	
Dynam	nic Switching Ch	aracteri	istics	(Note 8)				
Symbol	Parameter	٧ ₀	c	T _A = 2	5°C	Unit	Conditions	

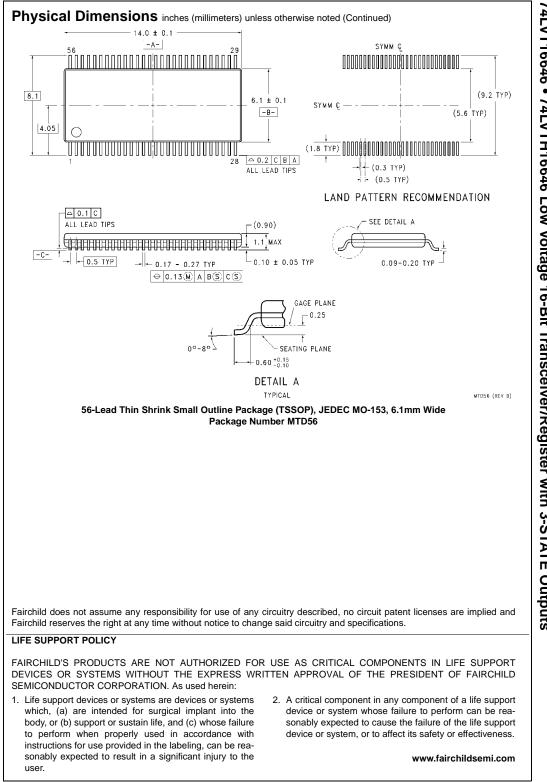
V _{OLP} Quiet Output Maximum Dynamic V _{OL} 3.3 0.8 V	$p_{\rm F}, \kappa_{\rm L} = 0$
	(Note 9)
V _{OLV} Quiet Output Minimum Dynamic V _{OL} 3.3 -0.8 V	(Note 9)

Note 8: Characterized in SSOP package. Guaranteed parameter, but not tested.

Note 9: Max number of outputs defined as (n). n-1 data inputs are driven 0V to 3V. Output under test held LOW.

			$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$					
0 milest								
Symbol		$V_{CC}=3.3\pm0.3V$		V _{CC} =	= 2.7V	Units		
		F	Min	Max	Min	Max		
f _{MAX}	Maximum Clock Frequency		150		150		MHz	
t _{PLH}	Propagation Delay			5.4	1.3	5.9	-	
t _{PHL}	CPAB or CPBA to A or B			5.2	1.3	5.8	ns	
t _{PLH}	Propagation Delay			4.4	1.0	4.7	ns	
t _{PHL}	Data to A or B		1.0	4.6	1.0	5.1	115	
t _{PLH}	Propagation Dela	ay	1.0	4.6	1.0	5.4		
t _{PHL}	SBA or SAB to A	1.0	4.8	1.0	5.6	ns		
t _{PZH}	Output Enable Time		1.0	4.7	1.0	5.4		
t _{PZL}	OE to A or B		1.0	5.1	1.0	6.0	ns	
t _{PHZ}	Output Disable Time		2.0	5.6	2.0	6.1	ns	
t _{PLZ}	OE to A or B		2.0	5.4	2.0	6.1	115	
t _{PZH}	Output Enable Ti	me	1.0	4.9	1.0	5.4		
t _{PZL}	DIR to A or B		1.0	5.4	1.0	6.4	ns	
t _{PHZ}	Output Disable T	ime	1.5	6.4	1.5	7.1	ns	
t _{PLZ}	DIR to A or B		1.5	5.4	1.5	5.9	ns	
t _W	Pulse Duration	CPAB or CPBA HIGH or LOW	3.3		3.3		ns	
t _S	Setup Time	A or B before CPAB or CPBA, Data HIGH	1.2		1.5			
		A or B before CPAB or CPBA, Data LOW	2.0		2.8		ns	
t _H	Hold Time	A or B after CPAB or CPBA, Data HIGH	0.5		0.0		ns	
		A or B after CPAB or CPBA, Data LOW	0.5		0.5		- ns	
t _{OSHL}	Output to Output	Skew (Note 10)		1.0		1.0		
tOSLH				1.0		1.0	ns	


74LVT16646 • 74LVTH16646


Note 10: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate out specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

Capacitance (Note 11)

Symbol	Parameter	Conditions	Typical	Units
CIN	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	4	pF
C _{I/O}	Input/Output Capacitance	$V_{CC} = 3.0V$, $V_{O} = 0V$ or V_{CC}	8	pF
Note 11: Ca	pacitance is measured at frequency f – 1 MHz, per l	MIL-STD-883 Method 3012		

Note 11: Capacitance is measured at frequency f = 1 MHz, per MIL-STD-883, Method 3012.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.