Contents VND5E006ASP-E

## **Contents**

| 1 | Bloc | ck diagram and pin description                       | 5  |
|---|------|------------------------------------------------------|----|
| 2 | Elec | strical specifications                               | 7  |
|   | 2.1  | Absolute maximum ratings                             | 7  |
|   | 2.2  | Thermal data                                         | 8  |
|   | 2.3  | Electrical characteristics                           | 9  |
|   | 2.4  | Waveforms                                            | 18 |
|   | 2.5  | Electrical characteristics curves                    | 21 |
| 3 | Арр  | lication information                                 | 24 |
|   | 3.1  | Load dump protection                                 | 24 |
|   | 3.2  | MCU I/Os protection                                  | 24 |
|   | 3.3  | Current sense and diagnostic                         | 25 |
|   |      | 3.3.1 Short to VCC and off-state open-load detection | 26 |
|   | 3.4  | Maximum demagnetization energy (VCC = 13.5 V)        | 27 |
| 4 | Pacl | kage and PCB thermal data                            | 28 |
|   | 4.1  | PowerSO-16 thermal data                              | 28 |
| 5 | Pacl | kage information                                     | 31 |
|   | 5.1  | ECOPACK® packages                                    | 31 |
|   | 5.2  | PowerSO-16 mechanical data                           | 31 |
|   | 5.3  | Packing information                                  | 33 |
| 6 | Orde | er codes                                             | 35 |
| 7 | Revi | ision history                                        | 36 |



VND5E006ASP-E List of tables

# List of tables

| Table 1.  | Pin function                                               | 5  |
|-----------|------------------------------------------------------------|----|
| Table 2.  | Suggested connections for unused and not connected pins    |    |
| Table 3.  | Absolute maximum ratings                                   | 7  |
| Table 4.  | Thermal data                                               | 8  |
| Table 5.  | Power section                                              | 9  |
| Table 6.  | Switching (V <sub>CC</sub> = 13 V; T <sub>i</sub> = 25 °C) | 9  |
| Table 7.  | Logic inputs                                               |    |
| Table 8.  | Protections and diagnostics                                | 10 |
| Table 9.  | Current sense (8 V < V <sub>CC</sub> < 18 V)               | 11 |
| Table 10. | Open-load detection (8 V < V <sub>CC</sub> < 18 V)         | 12 |
| Table 11. | Truth table                                                | 16 |
| Table 12. | Electrical transient requirements (part 1/3)               | 17 |
| Table 13. | Electrical transient requirements (part 2/3)               | 17 |
| Table 14. | Electrical transient requirements (part 3/3)               | 17 |
| Table 15. | Thermal parameters                                         | 30 |
| Table 16. | PowerSO-16 mechanical data                                 | 32 |
| Table 17. | Device summary                                             | 35 |
| Table 18  | Document revision history                                  | 36 |



List of figures VND5E006ASP-E

# **List of figures**

| Figure 1.  | Block diagram                                                                           |      |
|------------|-----------------------------------------------------------------------------------------|------|
| Figure 2.  | Configuration diagram (top view)                                                        | 6    |
| Figure 3.  | Current and voltage conventions                                                         | 7    |
| Figure 4.  | Current sense delay characteristics                                                     | 13   |
| Figure 5.  | Open-load off-state delay timing                                                        | 13   |
| Figure 6.  | Switching characteristics                                                               |      |
| Figure 7.  | Delay response time between rising edge of output current and rising edge of current se | ense |
|            | (CS enabled)                                                                            | 14   |
| Figure 8.  | Output voltage drop limitation                                                          | 14   |
| Figure 9.  | I <sub>OUT</sub> /I <sub>SENSE</sub> vs I <sub>OUT</sub>                                | 15   |
| Figure 10. | Maximum current sense ratio drift vs load current <sup>(1)</sup>                        | 15   |
| Figure 11. | Normal operation                                                                        | 18   |
| Figure 12. | Overload or short to GND                                                                | 18   |
| Figure 13. | Intermittent overload                                                                   |      |
| Figure 14. | Off-state open-load with external circuitry                                             |      |
| Figure 15. | Short to V <sub>CC</sub>                                                                | 20   |
| Figure 16. | T <sub>J</sub> evolution in overload or short to GND                                    | 20   |
| Figure 17. | Off-state output current                                                                | 21   |
| Figure 18. | High level input current                                                                | 21   |
| Figure 19. | Input clamp voltage                                                                     | 21   |
| Figure 20. | Input high level voltage                                                                | 21   |
| Figure 21. | Input low level voltage                                                                 |      |
| Figure 22. | Input hysteresis voltage                                                                |      |
| Figure 23. | On-state resistance vs T <sub>case</sub>                                                |      |
| Figure 24. | On-state resistance vs V <sub>CC</sub>                                                  |      |
| Figure 25. | Undervoltage shutdown                                                                   |      |
| Figure 26. | I <sub>LIMH</sub> vs T <sub>case</sub>                                                  |      |
| Figure 27. | Turn-on voltage slope                                                                   |      |
| Figure 28. | Turn-off voltage slope                                                                  |      |
| Figure 29. | CS_DIS clamp voltage                                                                    |      |
| Figure 30. | Low level CS_DIS voltage                                                                |      |
| Figure 31. | High level CS_DIS voltage                                                               |      |
| Figure 32. | Application schematic                                                                   |      |
| Figure 33. | Current sense and diagnostic                                                            |      |
| Figure 34. | Maximum turn-off current versus inductance                                              |      |
| Figure 35. | PowerSO-16 PC board <sup>(1)</sup>                                                      |      |
| Figure 36. | Rthj-amb vs PCB copper area in open box free air condition (one channel ON)             |      |
| Figure 37. | PowerSO-16 thermal impedance junction ambient single pulse (one channel ON)             | 29   |
| Figure 38. | Thermal fitting model of a double channel HSD in PowerSO-16 <sup>(1)</sup>              |      |
| Figure 39. | PowerSO-16 package dimensions                                                           |      |
| Figure 40. | PowerSO-16 tube shipment (no suffix)                                                    |      |
| Figure 41. | PowerSO-16 tape and reel shipment (suffix "TR")                                         |      |
| Figure 42. | PowerSO-16 suggested pad layout                                                         | 34   |



# 1 Block diagram and pin description

Signal Clamp

Control & Diagnostic2

Undervoltage

Control & Diagnostic2

Protection

IN1

Over Lument Limitation

Over Lument Limitation

Over Current Limitation

Over Cu

Figure 1. Block diagram

**Table 1. Pin function** 

| Name            | Function                                                                                     |
|-----------------|----------------------------------------------------------------------------------------------|
| V <sub>CC</sub> | Battery connection.                                                                          |
| OUTn            | Power output.                                                                                |
| GND             | Ground connection.                                                                           |
| INn             | Voltage controlled input pin with hysteresis, CMOS compatible. Controls output switch state. |
| CSn             | Analog current sense pin, delivers a current proportional to the load current.               |
| CS_DIS          | Active high CMOS compatible pin, to disable the current sense pin.                           |



OUT\_1 IN\_1 \_\_\_\_ 8 CS\_1 \_\_\_\_\_ 10 OUT\_1 7 Ш NC LIII OUT\_1 11 6 шп CS\_DIS \_\_\_\_ 12 5 Ш OUT\_1 GND \_\_\_\_ 13 4 OUT\_2 14 NC \_\_\_\_ 3 OUT\_2 15 CS\_2 2 OUT\_2 IN\_2 \_\_\_\_\_ 16 1 OUT\_2 V<sub>cc</sub> AG00068V1

Figure 2. Configuration diagram (top view)

Table 2. Suggested connections for unused and not connected pins

| Connection /<br>pin | Current sense         | N.C. | Output      | Input                          | CS_DIS                 |  |
|---------------------|-----------------------|------|-------------|--------------------------------|------------------------|--|
| Floating            | Not allowed           | Х    | Χ           | Х                              | Х                      |  |
| To ground           | Through 1 KΩ resistor | Х    | Not allowed | Through 10 K $\Omega$ resistor | Through 10 KΩ resistor |  |

57/

### 2 Electrical specifications

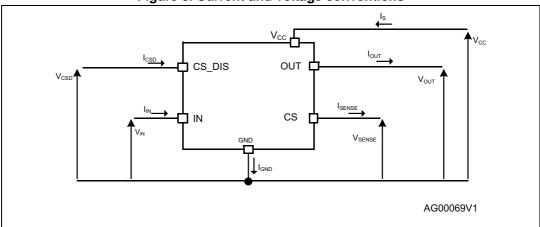



Figure 3. Current and voltage conventions

### 2.1 Absolute maximum ratings

Stressing the device above the ratings listed in the "Absolute maximum ratings" tables may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the Operating sections of this specification is not implied. Exposure to the conditions in this section for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality documents.

**Symbol Parameter** Value Unit ٧ DC supply voltage 28  $V_{CC}$ Transient supply voltage (T < 400 ms,  $R_{LOAD} > 0.5 \Omega$ ) V 41  $V_{CCPK}$ 16 ٧ -V<sub>CC</sub> Reverse DC supply voltage Internally limited I<sub>OUT</sub> DC output current Α Reverse DC output current 60 Α -lout DC input current -1 to 10 mΑ  $I_{IN}$ DC current sense disable input current -1 to 10 mΑ I<sub>CSD</sub> V<sub>CC</sub>-41 ٧ Current sense maximum voltage **V<sub>CSENSE</sub>**  $+V_{CC}$ ٧ Maximum switching energy (single pulse)  $\mathsf{E}_{\mathsf{MAX}}$ 600 (L = 1.4 mH;  $R_L = 0 \Omega$ ;  $V_{bat} = 13.5 V$ ;  $T_{jstart} = 150 °C$ ; mJ  $I_{OUT} = I_{limL}(Typ.)$ 

Table 3. Absolute maximum ratings



Table 3. Absolute maximum ratings (continued)

| Symbol           | Parameter                                                                   | Value      | Unit |
|------------------|-----------------------------------------------------------------------------|------------|------|
|                  | Electrostatic discharge (Human Body Model: R = 1.5 K $\Omega$ ; C = 100 pF) |            |      |
|                  | - Input                                                                     | 4000       |      |
| V <sub>ESD</sub> | - Current sense                                                             | 2000       | V    |
|                  | - CS_DIS                                                                    | 4000       |      |
|                  | - Output                                                                    | 5000       |      |
|                  | - V <sub>CC</sub>                                                           | 5000       |      |
| V <sub>ESD</sub> | Charge device model (CDM-AEC-Q100-011)                                      | 750        | V    |
| T <sub>j</sub>   | Junction operating temperature                                              | -40 to 150 | °C   |
| T <sub>stg</sub> | Storage temperature                                                         | -55 to 150 | °C   |

### 2.2 Thermal data

Table 4. Thermal data

| Symbol                | Parameter                                                    | Maximum value | Unit |
|-----------------------|--------------------------------------------------------------|---------------|------|
| R <sub>thj-case</sub> | Thermal resistance junction-case (MAX) (with one channel ON) | 0.4           | °C/W |
| R <sub>thj-amb</sub>  | Thermal resistance junction-ambient                          | See Figure 36 | °C/W |

57/

### 2.3 Electrical characteristics

8 V < V $_{CC}$  < 28 V; -40 °C < T $_{j}$  < 150 °C, unless otherwise specified.

Table 5. Power section

| Symbol                                                                                       | Parameter                           | Test conditions                                                                                                     | Min. | Тур.  | Max.             | Unit |
|----------------------------------------------------------------------------------------------|-------------------------------------|---------------------------------------------------------------------------------------------------------------------|------|-------|------------------|------|
| V <sub>CC</sub>                                                                              | Operating supply voltage            |                                                                                                                     | 4.5  | 13    | 28               | V    |
| V <sub>USD</sub>                                                                             | Undervoltage shutdown               |                                                                                                                     |      | 3.5   | 4.5              | V    |
| V <sub>USDhyst</sub>                                                                         | Undervoltage shutdown hysteresis    |                                                                                                                     |      | 0.5   |                  | V    |
|                                                                                              |                                     | I <sub>OUT</sub> = 10 A; T <sub>j</sub> = 25 °C                                                                     |      | 5     |                  | mΩ   |
| R <sub>ON</sub>                                                                              | On-state resistance                 | I <sub>OUT</sub> = 10 A; T <sub>j</sub> = 150 °C                                                                    |      |       | 10               | mΩ   |
|                                                                                              |                                     | $I_{OUT} = 10 \text{ A}; V_{CC} = 5 \text{ V}; T_j = 25 \text{ °C}$                                                 |      |       | 8                | mΩ   |
| R <sub>ON REV</sub>                                                                          | Reverse battery on-state resistance | $V_{CC} = -13 \text{ V; } I_{OUT} = -10 \text{ A;}$<br>$T_j = 25 \text{ °C}$                                        |      |       | 6                | mΩ   |
| V <sub>clamp</sub>                                                                           | Clamp voltage                       | I <sub>S</sub> = 20 mA                                                                                              | 41   | 46    | 52               | V    |
| l.                                                                                           | Supply current                      | Off-state; $V_{CC} = 13 \text{ V}$ ; $T_j = 25 \text{ °C}$ ; $V_{IN} = V_{OUT} = V_{SENSE} = V_{CSD} = 0 \text{ V}$ |      | 2 (1) | 5 <sup>(1)</sup> | μΑ   |
| 'S                                                                                           | опрру синен                         | On-state; $V_{CC} = 13 \text{ V}$ ; $V_{IN} = 5 \text{ V}$ ; $I_{OUT} = 0 \text{ A}$                                |      | 3.5   | 6.5              | mA   |
| h                                                                                            | Off-state output current (2)        | $V_{IN}=V_{OUT}=0V; V_{CC}=13V; T_j=25$ °C                                                                          | 0    | 0.01  | 3                | μA   |
| V <sub>USD</sub> V <sub>USDhyst</sub> R <sub>ON</sub> R <sub>ON REV</sub> V <sub>clamp</sub> | On-state output current             | $V_{IN} = V_{OUT} = 0V; V_{CC} = 13V; T_j = 125$ °C                                                                 | 0    |       | 5                | μA   |

- 1. PowerMOS leakage included.
- 2. For each channel.

Table 6. Switching (V<sub>CC</sub> = 13 V; T<sub>j</sub> = 25 °C)

| Symbol                               | Parameter                            | Test conditions                           | Min. | Тур.             | Max. | Unit |
|--------------------------------------|--------------------------------------|-------------------------------------------|------|------------------|------|------|
| t <sub>d(on)</sub>                   | Turn-on delay time                   | $R_L = 1.3 \Omega$ (see <i>Figure 6</i> ) |      | 35               | _    | μs   |
| t <sub>d(off)</sub>                  | Turn-off delay time                  | $R_L = 1.3 \Omega$ (see <i>Figure 6</i> ) |      | 20               |      | μs   |
| (dV <sub>OUT</sub> /dt) <sub>o</sub> | Turn-on voltage slope                | $R_L = 1.3 \Omega$                        | ı    | See<br>Figure 27 | 1    | V/µs |
| (dV <sub>OUT</sub> /dt) <sub>o</sub> | Turn-off voltage slope               | $R_L = 1.3 \Omega$                        |      | See<br>Figure 28 |      | V/µs |
| W <sub>ON</sub>                      | Switching energy losses during twon  | $R_L = 1.3 \Omega$ (see <i>Figure 6</i> ) |      | 2.5              |      | mJ   |
| W <sub>OFF</sub>                     | Switching energy losses during twoff | $R_L = 1.3 \Omega$ (see <i>Figure 6</i> ) | 1    | 1.2              |      | mJ   |



Table 7. Logic inputs

| Symbol                | Parameter                 | Test conditions          | Min. | Тур. | Max. | Unit |
|-----------------------|---------------------------|--------------------------|------|------|------|------|
| $V_{IL}$              | Input low level voltage   |                          |      |      | 0.9  | V    |
| I <sub>IL</sub>       | Low level input current   | V <sub>IN</sub> = 0.9 V  | 1    |      |      | μΑ   |
| V <sub>IH</sub>       | Input high level voltage  |                          | 2.1  |      |      | V    |
| I <sub>IH</sub>       | High level input current  | V <sub>IN</sub> = 2.1 V  |      |      | 10   | μΑ   |
| V <sub>I(hyst)</sub>  | Input hysteresis voltage  |                          | 0.25 |      |      | V    |
| V                     | Input clamp voltage       | I <sub>IN</sub> = 1 mA   | 5.5  |      | 7    | V    |
| V <sub>ICL</sub>      |                           | I <sub>IN</sub> = -1 mA  |      | -0.7 |      | V    |
| V <sub>CSDL</sub>     | CS_DIS low level voltage  |                          |      |      | 0.9  | V    |
| I <sub>CSDL</sub>     | Low level CS_DIS current  | V <sub>CSD</sub> = 0.9 V | 1    |      |      | μΑ   |
| V <sub>CSDH</sub>     | CS_DIS high level voltage |                          | 2.1  |      |      | V    |
| I <sub>CSDH</sub>     | High level CS_DIS current | V <sub>CSD</sub> = 2.1 V |      |      | 10   | μΑ   |
| V <sub>CSD(hyst</sub> | CS_DIS hysteresis voltage |                          | 0.25 |      |      | V    |
| V                     | CS_DIS clamp voltage      | I <sub>CSD</sub> = 1 mA  | 5.5  |      | 7    | V    |
| V <sub>CSCL</sub>     | CO_DIO Clamp Voltage      | I <sub>CSD</sub> = -1 mA |      | -0.7 |      | V    |

#### Table 8. Protections and diagnostics<sup>(1)</sup>

| Symbol             | Parameter                                              | Test conditions                                                             | Min.                    | Тур.                    | Max.                    | Unit |
|--------------------|--------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------|-------------------------|-------------------------|------|
|                    | DC short circuit current                               | V <sub>CC</sub> = 13 V                                                      | 70                      | 100                     | 140                     | Α    |
| llimH              | DC Short circuit current                               | 5 V < V <sub>CC</sub> < 24 V                                                |                         |                         | 140                     | Α    |
| I <sub>limL</sub>  | Short circuit current during thermal cycling           | $V_{CC} = 13 \text{ V}; T_R < T_j < T_{TSD}$                                |                         | 25                      |                         | Α    |
| T <sub>TSD</sub>   | Shutdown temperature                                   |                                                                             | 150                     | 175                     | 200                     | °C   |
| T <sub>R</sub>     | Reset temperature                                      |                                                                             | T <sub>RS</sub> +       | T <sub>RS</sub> + 5     |                         | °C   |
| T <sub>RS</sub>    | Thermal reset of status                                |                                                                             | 135                     |                         |                         | °C   |
| T <sub>HYST</sub>  | Thermal hysteresis (T <sub>TSD</sub> -T <sub>R</sub> ) |                                                                             |                         | 7                       |                         | °C   |
| V <sub>DEMAG</sub> | Turn-off output voltage clamp                          | I <sub>OUT</sub> = 2 A; V <sub>IN</sub> = 0; L = 6 mH                       | V <sub>CC</sub> -<br>28 | V <sub>CC</sub> -<br>31 | V <sub>CC</sub> -<br>35 | V    |
| V <sub>ON</sub>    | Output voltage drop limitation                         | I <sub>OUT</sub> =1 A; T <sub>j</sub> = -40 °C150 °C (see <i>Figure 8</i> ) |                         | 25                      |                         | mV   |

To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles.

577

Table 9. Current sense (8 V <  $V_{CC}$  < 18 V)

| Symbol                                         | Parameter                                                 | Test conditions                                                                                                                             | Min.           | Тур.           | Max.           | Unit |
|------------------------------------------------|-----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------|----------------|------|
| К <sub>0</sub>                                 | I <sub>OUT</sub> /I <sub>SENSE</sub>                      | I <sub>OUT</sub> = 5 A; V <sub>SENSE</sub> = 0.5 V<br>T <sub>j</sub> = -40 °C150 °C                                                         | 8300           | 12640          | 17600          |      |
| K <sub>1</sub>                                 | l <sub>OUT</sub> /l <sub>SENSE</sub>                      | $I_{OUT} = 10 \text{ A}; V_{SENSE} = 0.5 \text{ V}$ $T_j = -40 \text{ °C}150 \text{ °C}$ $T_j = 25 \text{ °C}150 \text{ °C}$                | 9200<br>9602   | 13220<br>13220 | 17300<br>16703 |      |
| dK <sub>1</sub> /K <sub>1</sub> <sup>(1)</sup> | Current sense ratio drift                                 | $I_{OUT} = 10 \text{ A}; V_{SENSE} = 0.5 \text{ V};$<br>$V_{CSD} = 0 \text{ V};$<br>$T_j = -40 \text{ °C}150 \text{ °C}$                    | -13            |                | 13             | %    |
| K <sub>2</sub>                                 | lout/Isense                                               | $I_{OUT} = 15 \text{ A}; V_{SENSE} = 4 \text{ V}$ $T_j = -40 \text{ °C}150 \text{ °C}$ $T_j = 25 \text{ °C}150 \text{ °C}$                  | 9500<br>10408  | 13120<br>13120 | 16900<br>15907 |      |
| dK <sub>2</sub> /K <sub>2</sub> <sup>(1)</sup> | Current sense ratio drift                                 | $I_{OUT} = 15 \text{ A}; V_{SENSE} = 4 \text{ V};$<br>$V_{CSD} = 0 \text{ V};$<br>$T_j = -40 \text{ °C}150 \text{ °C}$                      | -10            |                | 10             | %    |
| K <sub>3</sub>                                 | lout/Isense                                               | $I_{OUT} = 25 \text{ A; } V_{SENSE} = 4 \text{ V}$ $T_j = -40 \text{ °C}150 \text{ °C}$ $T_j = 25 \text{ °C}150 \text{ °C}$                 | 10600<br>11278 | 12920<br>12920 | 15600<br>14644 |      |
| dK <sub>3</sub> /K <sub>3</sub> <sup>(1)</sup> | Current sense ratio drift                                 | $I_{OUT} = 25 \text{ A}; V_{SENSE} = 4 \text{ V};$<br>$V_{CSD} = 0 \text{ V};$<br>$T_j = -40 \text{ °C150 °C}$                              | -7             |                | 7              | %    |
|                                                |                                                           | $I_{OUT} = 0 \text{ A}; V_{SENSE} = 0 \text{ V};$<br>$V_{CSD} = 5 \text{ V}; V_{IN} = 0 \text{ V};$<br>$T_j = -40 \text{ °C}150 \text{ °C}$ | 0              |                | 13             | μΑ   |
| I <sub>SENSE0</sub>                            | Analog sense leakage current                              | $V_{CSD} = 0 \text{ V}; V_{IN} = 5 \text{ V};$<br>$T_j = -40 \text{ °C150 °C}$                                                              | 0              |                |                | μA   |
|                                                |                                                           | I <sub>OUT</sub> = 10 A; V <sub>SENSE</sub> = 0 V;<br>V <sub>CSD</sub> = V <sub>IN</sub> = 5 V                                              | 0              |                | 1              | μA   |
| V <sub>SENSE</sub>                             | Max analog sense output voltage                           | I <sub>OUT</sub> = 25 A; V <sub>CSD</sub> = 0 V                                                                                             | 5              |                |                | V    |
| V <sub>SENSEH</sub> <sup>(2)</sup>             | Analog sense output voltage in fault conditions           | $V_{CC}$ = 13 V; $R_{SENSE}$ = 10 K $\Omega$                                                                                                |                | 8              |                | ٧    |
| I <sub>SENSEH</sub> <sup>(2)</sup>             | Analog sense output current in fault conditions           | V <sub>CC</sub> = 13 V; V <sub>SENSE</sub> = 5 V                                                                                            |                | 7              |                | mA   |
| t <sub>DSENSE1H</sub>                          | Delay response time<br>from falling edge of<br>CS_DIS pin | V <sub>SENSE</sub> < 4 V, 5 A < I <sub>out</sub> < 25 A<br>I <sub>SENSE</sub> = 90 % of I <sub>SENSE max</sub><br>(see <i>Figure 4</i> )    |                | 50             | 100            | μs   |
| t <sub>DSENSE1L</sub>                          | Delay response time from rising edge of CS_DIS pin        | V <sub>SENSE</sub> < 4 V, 5 A < I <sub>out</sub> < 25 A<br>I <sub>SENSE</sub> = 10 % of I <sub>SENSE max</sub><br>(see <i>Figure 4</i> )    |                | 5              | 20             | μs   |

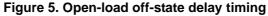


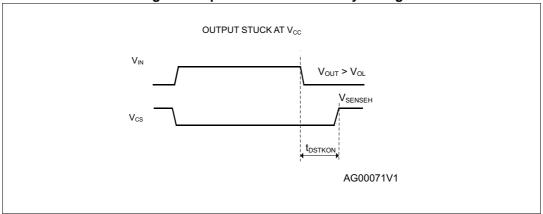
Table 9. Current sense (8 V <  $V_{CC}$  < 18 V) (continued)

| Symbol                | Parameter                                                                                              | Test conditions                                                                                                                                                                      | Min. | Тур. | Max. | Unit |
|-----------------------|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| t <sub>DSENSE2H</sub> | Delay response time from rising edge of INPUT pin                                                      | V <sub>SENSE</sub> < 4 V, 5 A < I <sub>out</sub> < 25 A<br>I <sub>SENSE</sub> = 90 % of I <sub>SENSE max</sub><br>(see <i>Figure 4</i> )                                             |      | 110  | 600  | μs   |
| Δt <sub>DSENSE2</sub> | Delay response time<br>between rising edge of<br>output current and<br>rising edge of current<br>sense | V <sub>SENSE</sub> < 4V,<br>I <sub>SENSE</sub> = 90 % of I <sub>SENSEMAX</sub> ,<br>I <sub>OUT</sub> = 90 % of I <sub>OUTMAX</sub><br>I <sub>OUTMAX</sub> =10 (see <i>Figure 7</i> ) |      |      | 300  | μs   |
| t <sub>DSENSE2L</sub> | Delay response time<br>from falling edge of<br>INPUT pin                                               | V <sub>SENSE</sub> < 4 V, 5 A < I <sub>out</sub> < 25 A<br>I <sub>SENSE</sub> = 10 % of I <sub>SENSE max</sub><br>(see <i>Figure 4</i> )                                             |      | 100  | 250  | μs   |

<sup>1.</sup> Parameter guaranteed by design; it is not tested.

Table 10. Open-load detection (8 V < V<sub>CC</sub> < 18 V)


| Symbol               | Parameter                                                                             | Test conditions                                                                          | Min. | Тур. | Max. | Unit |
|----------------------|---------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|------|------|------|------|
| V <sub>OL</sub>      | Open-load off-state voltage detection threshold                                       | V <sub>IN</sub> = 0 V, 8 V < V <sub>CC</sub> < 18 V                                      | 2    | _    | 4    | ٧    |
| I <sub>OL</sub>      | Open-load on-state current detection threshold                                        | V <sub>IN</sub> = 5 V, 8 V < V <sub>CC</sub> < 18 V<br>I <sub>SENSE</sub> = 5 μA         | 10   | _    | 100  | mA   |
| t <sub>DSTKON</sub>  | Output short circuit to V <sub>CC</sub> detection delay at turn off                   | See Figure 5                                                                             | 180  | _    | 1200 | μs   |
| I <sub>L(off2)</sub> | Off-state output current at V <sub>OUT</sub> = 4 V                                    | $V_{IN} = 0 \text{ V}; V_{SENSE} = 0 \text{ V}$<br>$V_{OUT}$ rising from 0 V to 4 V      | -120 | _    | 0    | μΑ   |
| td_vol               | Delay response from output rising edge to V <sub>SENSE</sub> rising edge in open-load | $V_{IN} = 0 \text{ V}; V_{OUT} = 4 \text{ V}$ $V_{SENSE} = 90 \% \text{ of } V_{SENSEH}$ |      | _    | 20   | μs   |


477

<sup>2.</sup> Fault conditions includes: power limitation, overtemperature and open-load off-state detection.

**INPUT** CS\_DIS LOAD CURRENT SENSE CURRENT. t<sub>DSENSE2H</sub> t<sub>DSENSE1L</sub> t<sub>DSENSE1H</sub> t<sub>DSENSE2L</sub> AG00070V1

Figure 4. Current sense delay characteristics





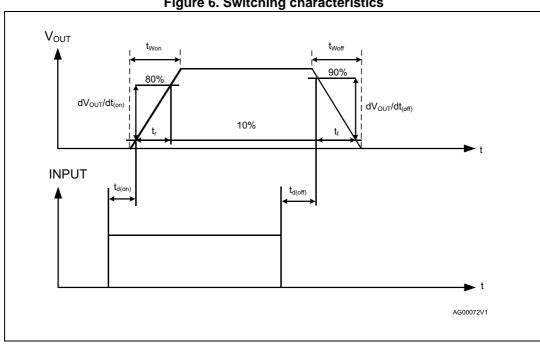


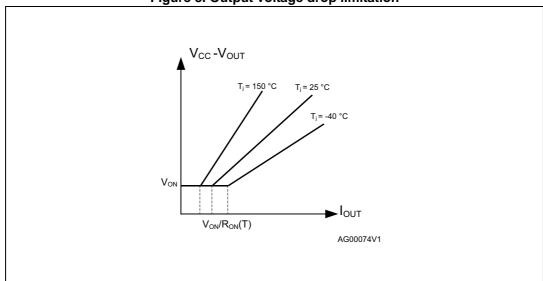

Figure 6. Switching characteristics

ISENSE

ISENSE

ISENSE

ISENSE


ISENSE

ISENSEMAX

AG00073V1

Figure 7. Delay response time between rising edge of output current and rising edge of current sense (CS enabled)





577

14/37

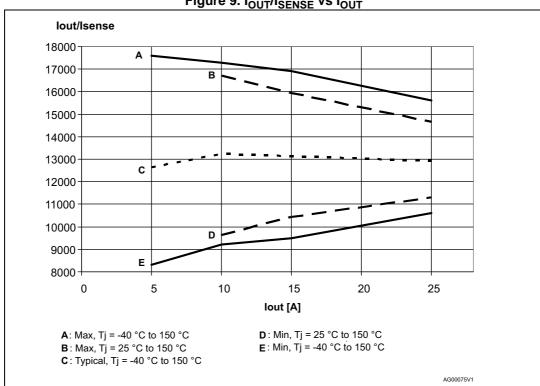
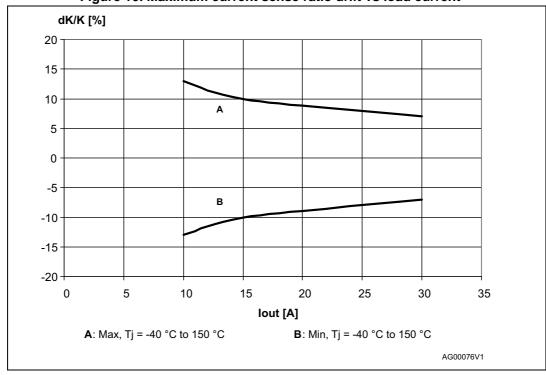




Figure 9. I<sub>OUT</sub>/I<sub>SENSE</sub> vs I<sub>OUT</sub>





1. Parameter guaranteed by design; it is not tested.



DocID17362 Rev 6

15/37

Table 11. Truth table

| Conditions                                         | Input  | Output                                           | Sense (V <sub>CSD</sub> = 0 V) <sup>(1)</sup> |
|----------------------------------------------------|--------|--------------------------------------------------|-----------------------------------------------|
| Normal operation                                   | L      | L                                                | 0                                             |
| Normal operation                                   | Н      | Н                                                | Nominal                                       |
| Overtemperature                                    | L      | L                                                | 0                                             |
| Overtemperature                                    | Н      | L                                                | V <sub>SENSEH</sub>                           |
| Lindonyoltago                                      | L      | L                                                | 0                                             |
| Undervoltage                                       | Н      | L                                                | 0                                             |
|                                                    | Н      | X                                                | Nominal                                       |
| Overload                                           | н      | (no power limitation) Cycling (power limitation) | V <sub>SENSEH</sub>                           |
| Short circuit to GND                               | L      | L                                                | 0                                             |
| (Power limitation)                                 | Н      | L                                                | V <sub>SENSEH</sub>                           |
| Open-load off-state (with external pull up)        | L      | Н                                                | V <sub>SENSEH</sub>                           |
| Short circuit to V <sub>CC</sub> (external pull up | L<br>H | Н                                                | V <sub>SENSEH</sub><br>< Nominal              |
| Negative output voltage clamp                      | L      | L                                                | 0                                             |

If the V<sub>CSD</sub> is high, the SENSE output is at a high impedance, its potential depends on leakage currents and external circuit.

**577** 

Test levels<sup>(1)</sup> ISO 7637-2: **Number of** Burst cycle/pulse **Delays** and 2004(E) pulses or repetition time impedance Ш I۷ test times **Test Pulse** 5000 -75 V -100 V 0.5 s2 ms, 10  $\Omega$ 1 5 s pulses 5000 2a +37 V +50 V 0.2 s5 s  $50 \mu s$ ,  $2 \Omega$ pulses За -100 V -150 V 1h 90 ms 100 ms  $0.1 \, \mu s$ ,  $50 \, \Omega$ +100 V 1h 100 ms 3b +75 V 90 ms  $0.1~\mu s$ ,  $50~\Omega$ 4 -6 V -7 V 100 ms, 0.01  $\Omega$ 1 pulse 5b<sup>(2)</sup> +65 V +87 V 1 pulse 400 ms,  $2 \Omega$ 

Table 12. Electrical transient requirements (part 1/3)

Table 13. Electrical transient requirements (part 2/3)

| ISO 7637-2:<br>2004(E)<br>Test Pulse | Test level results <sup>(1)</sup> |    |  |
|--------------------------------------|-----------------------------------|----|--|
|                                      | <b>III</b>                        | IV |  |
| 1                                    | С                                 | С  |  |
| 2a                                   | С                                 | С  |  |
| 3a                                   | С                                 | С  |  |
| 3b                                   | С                                 | С  |  |
| 4                                    | С                                 | С  |  |
| 5b <sup>(2)(3)</sup>                 | С                                 | С  |  |

<sup>1.</sup> The above test levels must be considered referred to  $V_{CC}$  = 13.5 V except for pulse 5b.

Table 14. Electrical transient requirements (part 3/3)

| Class | Contents                                                                                                                                                         |  |  |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| С     | All functions of the device are performed as designed after exposure to disturbance.                                                                             |  |  |
|       | One or more functions of the device are not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the |  |  |



<sup>1.</sup> The above test levels must be considered referred to  $V_{CC}$  = 13.5 V except for pulse 5b.

<sup>2.</sup> Valid in case of external load dump clamp: 40V maximum referred to ground. The protection strategy allows PowerMOS to be cyclically switched on during load dump, so distributing the load dump energy along the time and to transfer a part of it to the load.

Valid in case of external load dump clamp: 40V maximum referred to ground. The protection strategy allows PowerMOS to be cyclically switched on during load dump, so distributing the load dump energy along the time and to transfer a part of it to the load.

Suppressed load dump (pulse 5b) is withstood with a minimum load connected as specified in Table 3: Absolute maximum ratings.

### 2.4 Waveforms

Figure 11. Normal operation

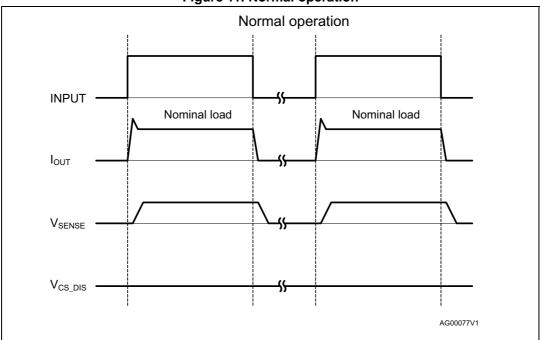
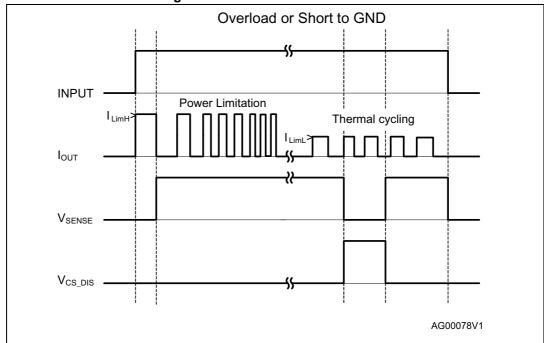




Figure 12. Overload or short to GND



577

18/37

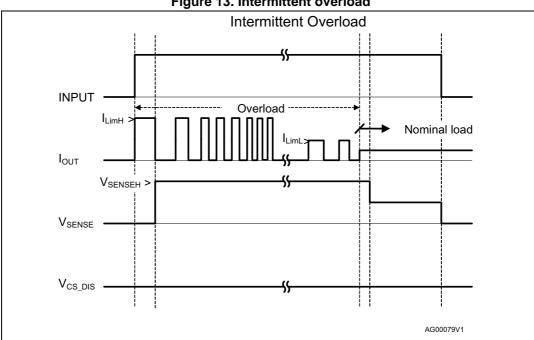




Figure 13. Intermittent overload







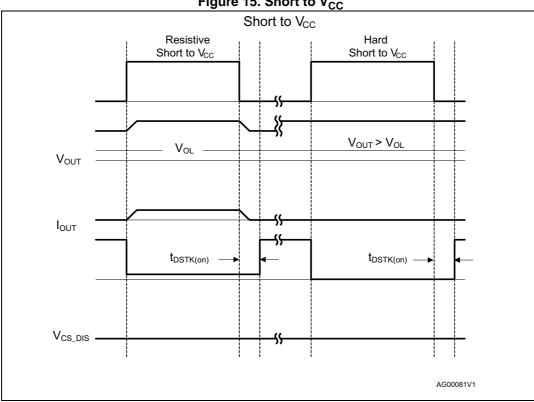
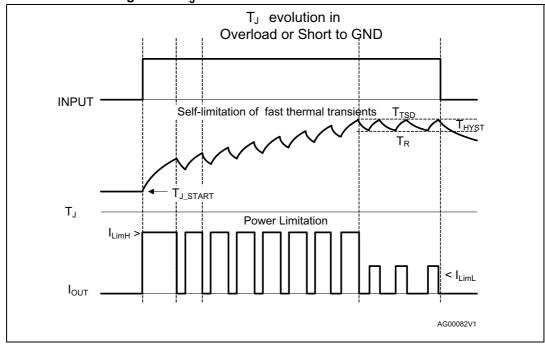




Figure 15. Short to V<sub>CC</sub>





#### 2.5 Electrical characteristics curves

Figure 17. Off-state output current

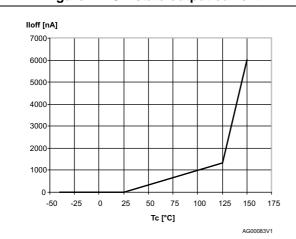



Figure 18. High level input current

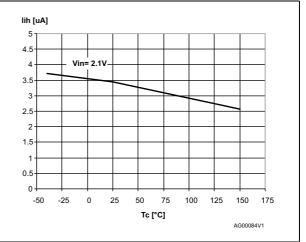



Figure 19. Input clamp voltage

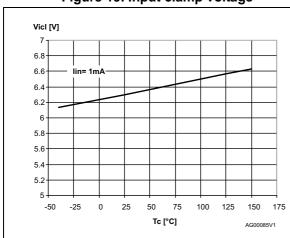



Figure 20. Input high level voltage

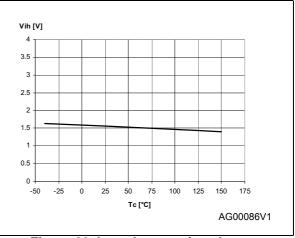



Figure 21. Input low level voltage

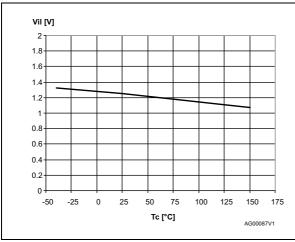
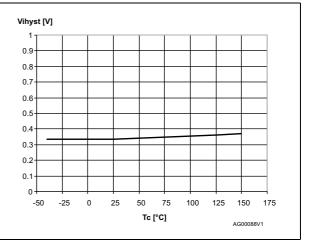




Figure 22. Input hysteresis voltage



57

DocID17362 Rev 6

21/37

Figure 23. On-state resistance vs  $T_{case}$ 

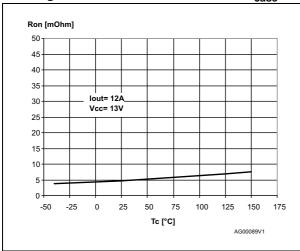



Figure 24. On-state resistance vs V<sub>CC</sub>

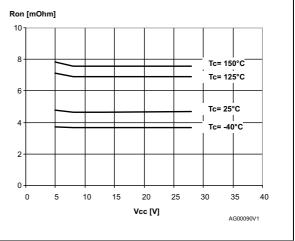



Figure 25. Undervoltage shutdown

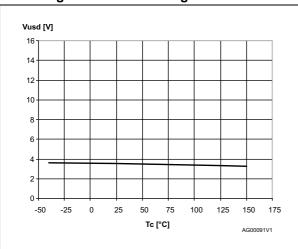



Figure 26. I<sub>LIMH</sub> vs T<sub>case</sub>

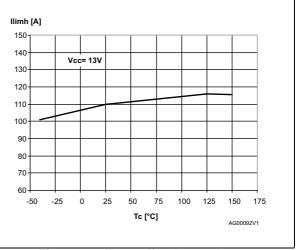
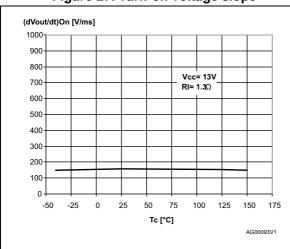
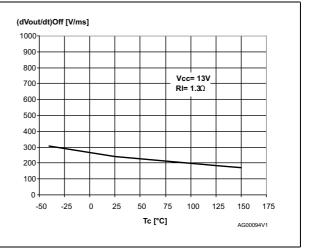
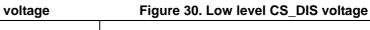
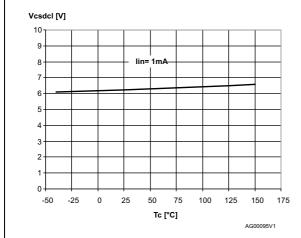



Figure 27. Turn-on voltage slope



Figure 28. Turn-off voltage slope




DocID17362 Rev 6

22/37

Figure 29. CS\_DIS clamp voltage





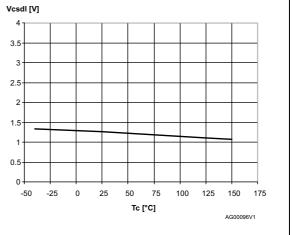
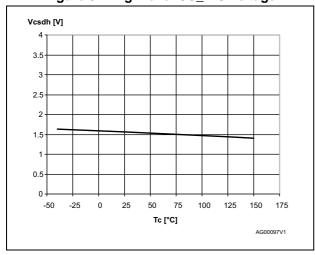




Figure 31. High level CS\_DIS voltage



**57/** 

DocID17362 Rev 6 23/37

### 3 Application information

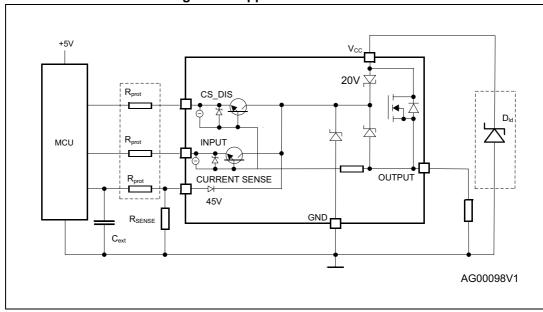



Figure 32. Application schematic

Note: Channel 2 has the same internal circuit as channel 1.

### 3.1 Load dump protection

 $D_{ld}$  is necessary (voltage transient suppressor) if the load dump peak voltage exceeds the  $V_{CC}$  max DC rating. The same applies if the device is subject to transients on the  $V_{CC}$  line that are greater than the ones shown in the ISO 7637-2 2004 (E) table.

### 3.2 MCU I/Os protection

When negative transients are present on the  $V_{CC}$  line, the control pins are pulled negative to approximately -1.5 V. ST suggests to insert a resistor ( $R_{prot}$ ) in line to prevent the microcontroller I/O pins from latching-up.

The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os.

#### **Equation 1**

$$-V_{CCpeak}/I_{latchup} \le R_{prot} \le (V_{OH\mu C} - V_{IH}) / I_{IHmax}$$

Calculation example:

For  $V_{CCpeak}$  = -1.5 V and  $I_{latchup} \ge 20$  mA;  $V_{OH\mu C} \ge 4.5$  V

75  $\Omega \le R_{prot} \le 240 \text{ k}\Omega$ .

Recommended values:  $R_{prot} = 10 \text{ k}\Omega$ ,  $C_{EXT} = 10 \text{ nF}$ .

577

### 3.3 Current sense and diagnostic

The current sense pin performs a double function (see *Figure 33: Current sense and diagnostic*):

- Current mirror of the load current in normal operation, delivering a current proportional to the load one according to a known ratio K<sub>X</sub>.
  The current I<sub>SENSE</sub> can be easily converted to a voltage V<sub>SENSE</sub> by means of an external resistor R<sub>SENSE</sub>. Linearity between I<sub>OUT</sub> and V<sub>SENSE</sub> is ensured up to 5V minimum (see parameter V<sub>SENSE</sub> in *Table 9: Current sense (8 V < VCC < 18 V)*). The current sense accuracy depends on the output current (refer to current sense electrical characteristics *Table 9: Current sense (8 V < VCC < 18 V)*).
- Diagnostic flag in fault conditions, delivering a fixed voltage V<sub>SENSEH</sub> up to a maximum current I<sub>SENSEH</sub> in case of the following fault conditions (refer to *Truth table*):
  - Power limitation activation
  - Overtemperature
  - Short to V<sub>CC</sub> in off-state
  - Open-load in off-state with additional external components.

A logic level high on CS\_DIS pin sets at the same time all the current sense pins of the device in a high impedance state, thus disabling the current monitoring and diagnostic detection. This feature allows multiplexing of the microcontroller analog inputs by sharing of sense resistance and ADC line among different devices.

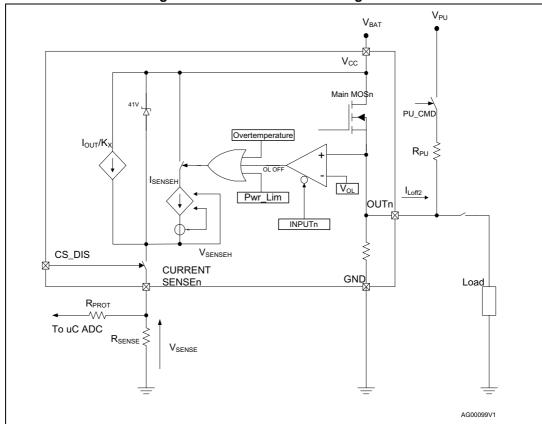



Figure 33. Current sense and diagnostic

5

#### 3.3.1 Short to V<sub>CC</sub> and off-state open-load detection

Short to V<sub>CC</sub>

A short circuit between  $V_{CC}$  and output is indicated by the relevant current sense pin set to  $V_{SENSEH}$  during the device off-state. Small or no current is delivered by the current sense during the on-state depending on the nature of the short circuit.

Off-state open-load with external circuitry

Detection of an open-load in off mode requires an external pull-up resistor  $R_{PU}$  connecting the output to a positive supply voltage  $V_{PU}$ .

It is preferable  $V_{PU}$  to be switched off during the module standby mode in order to avoid the overall standby current consumption to increase in normal conditions, i.e. when load is connected

For proper open-load detection in off-state, the external pull-up resistor must be selected according to the following formula:

$$V_{OUT}\big|_{Pull-up\_ON} = \frac{R_{PD} \cdot V_{PU} - R_{PU} \cdot R_{PD} \cdot I_{L(off\ 2)}}{R_{PU} + R_{PD}} > V_{OL\,\text{max}} = 4V$$

For the values of  $V_{OLmin}$ ,  $V_{OLmax}$ , and  $I_{L(off2)}$  see *Table 10: Open-load detection* (8 V < VCC < 18 V).

577

# 3.4 Maximum demagnetization energy ( $V_{CC} = 13.5 \text{ V}$ )

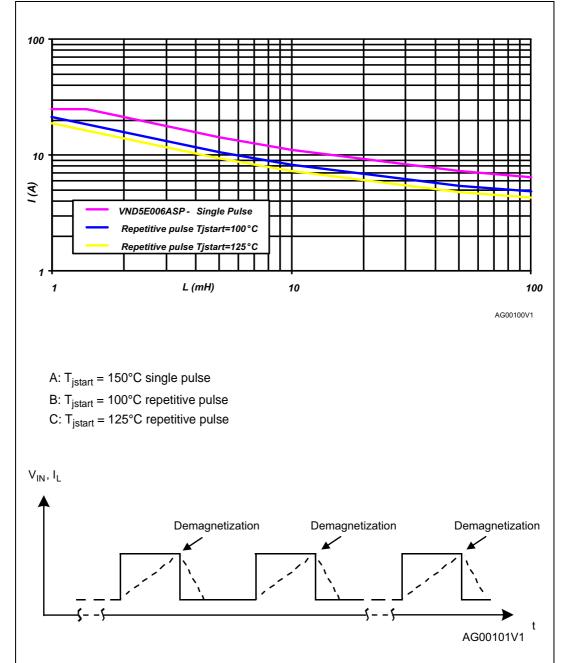


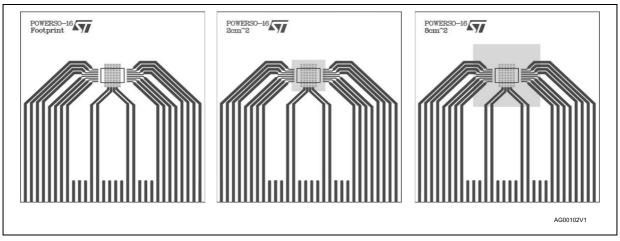

Figure 34. Maximum turn-off current versus inductance

Note:

Values are generated with  $R_L = 0 \Omega$ .

In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves A and B.

5


DocID17362 Rev 6

27/37

### 4 Package and PCB thermal data

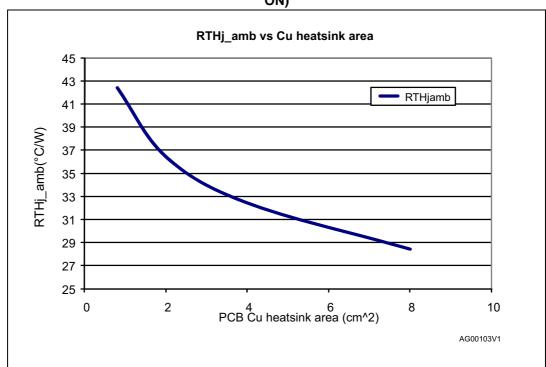

#### 4.1 PowerSO-16 thermal data

Figure 35. PowerSO-16 PC board<sup>(1)</sup>



Layout condition of R<sub>th</sub> and Z<sub>th</sub> measurements (PCB: Double layer, Thermal Vias, FR4 area= 77mm x 86mm, PCB thickness=1.6mm, Cu thickness=70μm (front and back side), Copper areas: from minimum pad lay-out to 8cm<sup>2</sup>).

Figure 36. R<sub>thj-amb</sub> vs PCB copper area in open box free air condition (one channel ON)



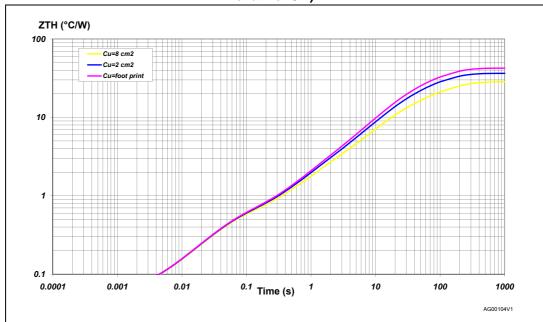
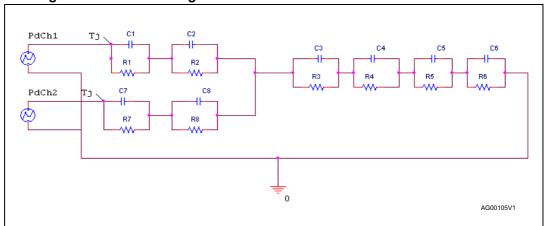




Figure 37. PowerSO-16 thermal impedance junction ambient single pulse (one channel ON)

Figure 38. Thermal fitting model of a double channel HSD in PowerSO-16<sup>(1)</sup>



1. The fitting model is a semplified thermal tool and is valid for transient evolutions where the embedded protections (power limitation or thermal cycling during thermal shutdown) are not triggered.

5

#### **Equation 2: pulse calculation formula**

$$\begin{split} & Z_{TH\delta} = R_{TH} \cdot \delta + Z_{THtp} (1 - \delta) \\ & \text{where} \quad \delta = t_p / T \end{split}$$

**Table 15. Thermal parameters** 

| Area/island (cm <sup>2</sup> ) | Footprint | 2  | 8  |
|--------------------------------|-----------|----|----|
| R1=R7 (°C/W)                   | 0.05      |    |    |
| R2=R8 (°C/W)                   | 0.4       |    |    |
| R3 (°C/W)                      | 1         |    |    |
| R4 (°C/W)                      | 7         |    |    |
| R5 (°C/W)                      | 12        | 10 | 8  |
| R6 (°C/W)                      | 22        | 18 | 12 |
| C1=C7 (W.s/°C)                 | 0.01      |    |    |
| C2=C8 (W.s/°C)                 | 0.1       |    |    |
| C3 (W.s/°C)                    | 1         |    |    |
| C4 (W.s/°C)                    | 2         |    |    |
| C5 (W.s/°C)                    | 3         | 4  | 7  |
| C6 (W.s/°C)                    | 5         | 6  | 12 |



VND5E006ASP-E Package information

## 5 Package information

# 5.1 ECOPACK® packages

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: <a href="https://www.st.com">www.st.com</a>. ECOPACK® is an ST trademark.

#### 5.2 PowerSO-16 mechanical data

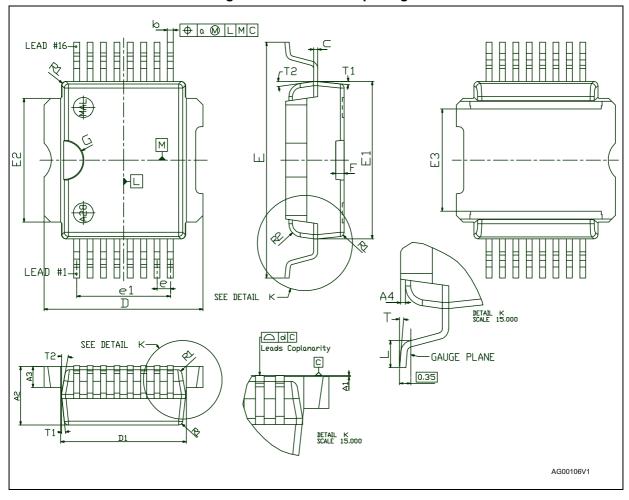



Figure 39. PowerSO-16 package dimensions

57

DocID17362 Rev 6

31/37

Package information VND5E006ASP-E

Table 16. PowerSO-16 mechanical data

| Dim   | mm         |           |       |  |
|-------|------------|-----------|-------|--|
| Dim.  | Min.       | Тур.      | Max.  |  |
| A1    | 0          | 0.05      | 0.1   |  |
| A2    | 3.4        | 3.5       | 3.6   |  |
| А3    | 1.2        | 1.3       | 1.4   |  |
| A4    | 0.15       | 0.2       | 0.25  |  |
| а     |            | 0.2       |       |  |
| b     | 0.27       | 0.35      | 0.43  |  |
| С     | 0.23       | 0.27      | 0.32  |  |
| D     | 9.4        | 9.5       | 9.6   |  |
| D1    | 7.4        | 7.5       | 7.6   |  |
| d     | 0          | 0.05      | 0.1   |  |
| E (1) | 13.85      | 14.1      | 14.35 |  |
| E1    | 9.3        | 9.4       | 9.5   |  |
| E2    | 7.3        | 7.4       | 7.5   |  |
| E3    | 5.9        | 6.1       | 6.3   |  |
| е     |            | 0.8       |       |  |
| e1    |            | 5.6       |       |  |
| F     |            | 0.5       |       |  |
| G     |            | 1.2       |       |  |
| L     | 0.8        | 1         | 1.1   |  |
| R1    |            |           | 0.25  |  |
| R2    |            | 0.8       |       |  |
| Т     | 2°         | 5°        | 8°    |  |
| T1    |            | 6° (typ.) |       |  |
| T2    | 10° (typ.) |           |       |  |

VND5E006ASP-E Package information

### 5.3 Packing information

Figure 40. PowerSO-16 tube shipment (no suffix)

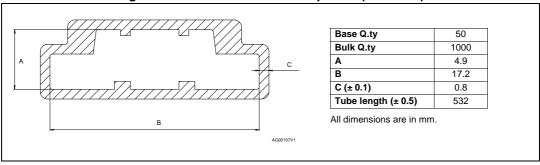
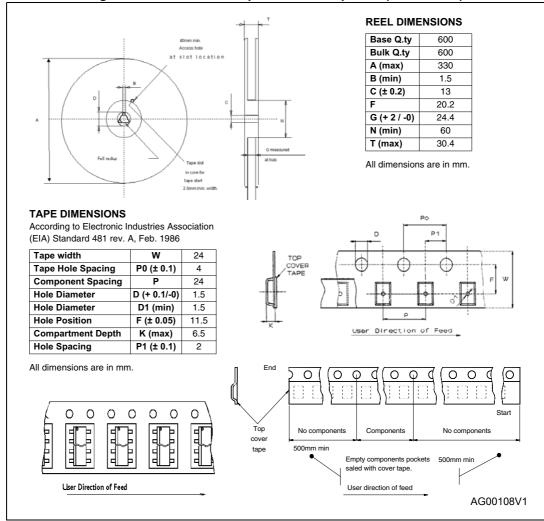




Figure 41. PowerSO-16 tape and reel shipment (suffix "TR")





Package information VND5E006ASP-E

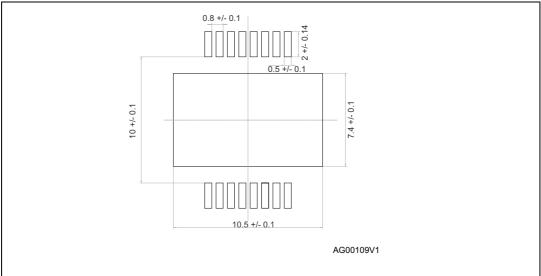



Figure 42. PowerSO-16 suggested pad layout



VND5E006ASP-E Order codes

## 6 Order codes

**Table 17. Device summary** 

| Packago    | Order codes   |                 |  |
|------------|---------------|-----------------|--|
| Package    | Tube          | Tape and reel   |  |
| PowerSO-16 | VND5E006ASP-E | VND5E006ASPTR-E |  |

Revision history VND5E006ASP-E

# 7 Revision history

**Table 18. Document revision history** 

| Date        | Revision                     | Changes                                                                                                                                                                                                               |  |
|-------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 18-Apr-2010 | 1                            | Initial release.                                                                                                                                                                                                      |  |
| 02-Jul-2010 | 2                            | Updated Features list.                                                                                                                                                                                                |  |
| 21-Jul-2010 | 3                            | Updated Table 9: Current sense (8 V < VCC < 18 V).                                                                                                                                                                    |  |
| 19-Jan-2011 | 4                            | Added Section 3.4: Maximum demagnetization energy (VCC = 13.5 V)  Table 3: Absolute maximum ratings:  - E <sub>MAX</sub> : updated value and test condition  Table 4: Thermal data  - Added R <sub>thj-case</sub> row |  |
| 19-Sep-2013 | 0-2013 5 Updated Disclaimer. |                                                                                                                                                                                                                       |  |
|             |                              | Updated footnote 2 into the <i>Table 12: Electrical transient</i> requirements (part 1/3) and <i>Table 13: Electrical transient</i> requirements (part 2/3).                                                          |  |



#### Please Read Carefully:

Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice.

All ST products are sold pursuant to ST's terms and conditions of sale.

Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein.

UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B) AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT PURCHASER'S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR "AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL" INDUSTRY DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.

Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST.

ST and the ST logo are trademarks or registered trademarks of ST in various countries.

Information in this document supersedes and replaces all information previously supplied.

The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.

© 2013 STMicroelectronics - All rights reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America

www.st.com



DocID17362 Rev 6 37/37