Order Numbers:

ORDER NUMBERS*	ORDER NUMBERS* DESCRIPTION		TEMPERATURE RANGE	
USB5434B-JZX	USB 3.0 4-Port Hub	64QFN 9 x 9mm 6.0 mm exposed pad	0°C to 70°C	

^{*} Add "TR" to the end of any order number to order tape and reel. Reel size is 3000 pieces.

This product meets the halogen maximum concentration values per IEC61249-2-21 For RoHS compliance and environmental information, please visit www.smsc.com/rohs

Please contact your SMSC sales representative for additional documentation related to this product such as application notes, anomaly sheets, and design guidelines.

Copyright © 2012 SMSC or its subsidiaries. All rights reserved.

Circuit diagrams and other information relating to SMSC products are included as a means of illustrating typical applications. Consequently, complete information sufficient for construction purposes is not necessarily given. Although the information has been checked and is believed to be accurate, no responsibility is assumed for inaccuracies. SMSC reserves the right to make changes to specifications and product descriptions at any time without notice. Contact your local SMSC sales office to obtain the latest specifications before placing your product order. The provision of this information does not convey to the purchaser of the described semiconductor devices any licenses under any patent rights or other intellectual property rights of SMSC or others. All sales are expressly conditional on your agreement to the terms and conditions of the most recently dated version of SMSC's standard Terms of Sale Agreement dated before the date of your order (the "Terms of Sale Agreement"). The product may contain design defects or errors known as anomalies which may cause the product's functions to deviate from published specifications. Anomally sheets are available upon request. SMSC products are not designed, intended, authorized or warranted for use in any life support or other application where product failure could cause or contribute to personal injury or severe property damage. Any and all such uses without prior written approval of an Officer of SMSC and further testing and/or modification will be fully at the risk of the customer. Copies of this document or other SMSC literature, as well as the Terms of Sale Agreement, may be obtained by visiting SMSC's website at http://www.smsc.com. SMSC is a registered trademark of Standard Microsystems Corporation ("SMSC"). Product names and company names are the trademarks of their respective holders.

The Microchip name and logo, and the Microchip logo are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SMSC DISCLAIMS AND EXCLUDES ANY AND ALL WARRANTIES, INCLUDING WITHOUT LIMITATION ANY AND ALL IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, TITLE, AND AGAINST INFRINGEMENT AND THE LIKE, AND ANY AND ALL WARRANTIES ARISING FROM ANY COURSE OF DEALING OR USAGE OF TRADE. IN NO EVENT SHALL SMSC BE LIABLE FOR ANY DIRECT, INCIDENTAL, INDIRECT, SPECIAL, PUNITIVE, OR CONSEQUENTIAL DAMAGES; OR FOR LOST DATA, PROFITS, SAVINGS OR REVENUES OF ANY KIND; REGARDLESS OF THE FORM OF ACTION, WHETHER BASED ON CONTRACT; TORT; NEGLIGENCE OF SMSC OR OTHERS; STRICT LIABILITY; BREACH OF WARRANTY; OR OTHERWISE; WHETHER OR NOT ANY REMEDY OF BUYER IS HELD TO HAVE FAILED OF ITS ESSENTIAL PURPOSE, AND WHETHER OR NOT SMSC HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Conventions

Within this manual, the following abbreviations and symbols are used to improve readability.

Example	Description
BIT	Name of a single bit within a field
FIELD.BIT	Name of a single bit (BIT) in FIELD
xy	Range from x to y, inclusive
BITS[m:n]	Groups of bits from m to n, inclusive
PIN	Pin Name
zzzzb	Binary number (value zzzz)
0xzzz	Hexadecimal number (value zzz)
zzh	Hexadecimal number (value zz)
rsvd	Reserved memory location. Must write 0, read value indeterminate
code	Instruction code, or API function or parameter
Section Name	Section or Document name
Х	Don't care
<parameter></parameter>	<> indicate a Parameter is optional or is only used under some conditions
{,Parameter}	Braces indicate Parameter(s) that repeat one or more times
[Parameter]	Brackets indicate a nested Parameter. This Parameter is not real and actually decodes
[i arameter]	into one or more real parameters.

Table of Contents

Chaj	pter 1	Block Diagram	7
Chaj	pter 2	Overview	8
Cha _] 3.1 3.2 3.3	Pin Co Pin De	Pin Information onfigurations escriptions (Grouped by Function) Type Descriptions	9 10
Cha _] 4.1 4.2 4.3 4.4	Maxim Opera DC Ele	DC Parameters num Guaranteed Ratings ating Conditions ectrical Characteristics citance	14 15 16
Cha _] 5.1 5.2	Oscilla Extern	AC Specifications ator/Crystal. nal Clock. USB 2.0	18 19
Chaj	pter 6	Package Drawing	20
Chaj	pter 7	Revision History	22
App	endix A	A(Acronyms)	23
App	endix H	B (References)	24

List of Tables

Table 3.1	USB5434B Pin Descriptions	10
Table 3.2	Buffer Type Descriptions	13
	DC Electrical Characteristics	
Table 4.2	Pin Capacitance	17
Table 5.1	Crystal Circuit Legend	18
Table 6.1	USB5434B 64-Pin QFN Dimensions	20
Table 7.1	Customer Revision History	22

List of Figures

Figure 1.1	USB5434B Block Diagram	. 7
Figure 3.1	USB5434B 64-Pin QFN	. (
Figure 4.1	Supply Rise Time Model	15
Figure 5.1	Typical Crystal Circuit	18
Figure 5.2	Formula to Find the Value of C1 and C2	18
Figure 6.1	USB5434B 64 Pin QFN Package	20
Figure 6.2	Recommended PCB Land Pattern	21

Chapter 1 Block Diagram

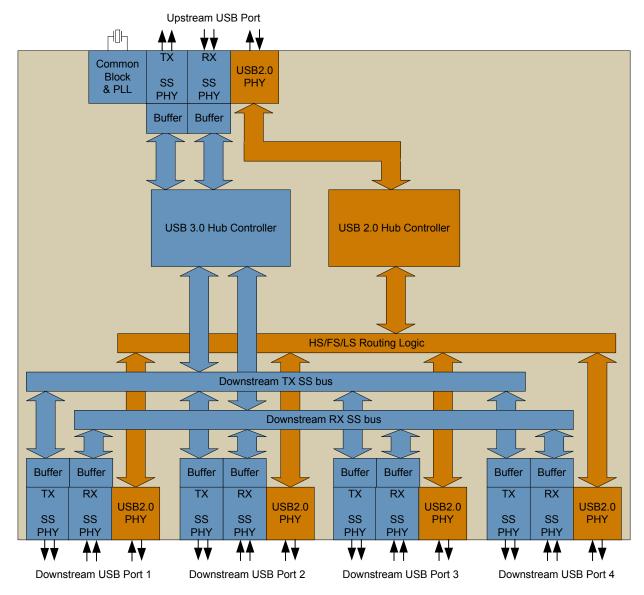


Figure 1.1 USB5434B Block Diagram

Chapter 2 Overview

The SMSC USB5434B hub is a 4-port, low-power Hub Controller fully compliant with the *USB 3.0 Specification* [2]. The USB5434B supports 5 Gbps SuperSpeed (SS), 480 Mbps Hi-Speed (HS), 12 Mbps Full-Speed (FS) and 1.5 Mbps Low-Speed (LS) USB signalling for complete coverage of all defined USB operating speeds.

All required resistors on the USB ports are integrated into the hub. This includes all series termination resistors and all required pull-down and pull-up resistors on D+ and D- pins. The over-current sense inputs for the downstream facing ports have internal pull-up resistors.

The USB5434B includes MultiTRAK[™] technology, which implements a dedicated Transaction Translator (TT) for each port. Dedicated TTs help maintain consistent full-speed data throughput regardless of the number of active downstream connections.

The hub controller provides a default configuration, expediting implementation.

Chapter 3 Pin Information

This chapter outlines the pinning configurations for each chip. The detailed pin descriptions are listed by function in Section 3.2: *Pin Descriptions (Grouped by Function)* on page 10.

3.1 Pin Configurations

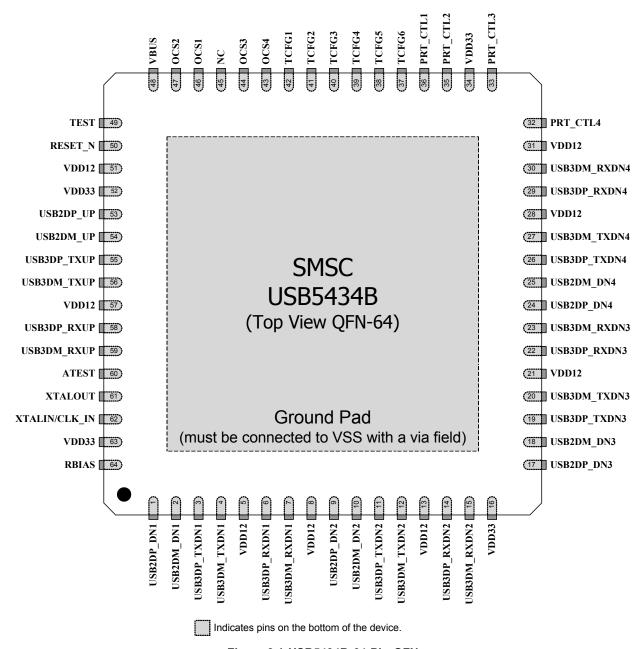


Figure 3.1 USB5434B 64-Pin QFN

3.2 Pin Descriptions (Grouped by Function)

An N at the end of a signal name indicates that the active (asserted) state occurs when the signal is at a low voltage level. When the N is not present, the signal is asserted when it is at a high voltage level. The terms assertion and negation are used exclusively in order to avoid confusion when working with a mixture of active low and active high signals. The term assert, or assertion, indicates that a signal is active, independent of whether that level is represented by a high or low voltage. The term negate, or negation, indicates that a signal is inactive.

Table 3.1 USB5434B Pin Descriptions

SYMBOL	SYMBOL BUFFER TYPE DESCRIPTION					
USB 3.0 INTERFACE						
USB3DP_TXUP	IO-U	USB 3 Upstream				
		Upstream SuperSpeed transmit data plus				
USB3DM_TXUP	IO-U	USB 3 Upstream				
		Upstream SuperSpeed transmit data minus				
USB3DP_RXUP	IO-U	USB 3 Upstream				
		Upstream SuperSpeed receive data plus				
USB3DM_RXUP	IO-U	USB 3 Upstream				
		Upstream SuperSpeed receive data minus				
USB3DP_TXDN[4:1]	IO-U	USB 3 Downstream				
		Downstream SuperSpeed transmit data plus for ports 1 through 4.				
USB3DM_TXDN[4:1]	IO-U	USB 3 Downstream				
		Downstream SuperSpeed transmit data minus for ports 1 through 4.				
USB3DP_RXDN[4:1]	IO-U	USB 3 Downstream				
		Downstream SuperSpeed receive data plus for ports 1 through 4.				
USB3DM_RXDN[4:1]	IO-U	USB 3 Downstream				
		Downstream SuperSpeed receive data minus for ports 1 through 4.				
		USB 2.0 INTERFACE				
USB2DP_UP	IO-U	USB Bus Data				
		These pins connect to the upstream USB bus data signals.				
USB2DM_UP	IO-U	USB Bus Data				
		These pins connect to the upstream USB bus data signals.				
USB2DP_DN[4:1]	IO-U	USB Downstream				
	10-0	Downstream Hi-Speed data plus for ports 1 through 4.				
USB2DM_DN[4:1]	IO-U	USB Downstream				
	10-0	Downstream Hi-Speed data minus for ports 1 through 4.				

Table 3.1 USB5434B Pin Descriptions (continued)

SYMBOL	BUFFER TYPE	DESCRIPTION				
USB PORT CONTROL						
PRT_PWR[4:1]/ PRT_CTL[4:1]	O12	USB Power Enable Enables power to USB peripheral devices downstream.				
VBUS	I/O12	Upstream VBUS Power Detect This pin can be used to detect the state of the upstream bus power.				
OCS1	I/O12	Over-Current Sense 1 Input from external current monitor indicating an over-current condition.				
OCS2	I/O12	Over-Current Sense 2 Input from external current monitor indicating an over-current condition.				
OCS3	I/O12	Over-Current Sense 3 Input from external current monitor indicating an over-current condition.				
OCS4	I/O12	Over-Current Sense 4 Input from external current monitor indicating an over-current condition.				
		MISC				
RESET_N	IS	Reset Input The system uses this active low signal to reset the chip. The active low pulse should be at least 1 μs wide.				
XTALIN	- ICLKx	Crystal Input: 25 MHz crystal. This pin connects to either one terminal of the crystal or to an external 25 MHz clock when a crystal is not used.				
CLK_IN		External Clock Input This pin connects to either one terminal of the crystal or to an external 25 MHz clock when a crystal is not used.				
XTALOUT	OCLKx	Crystal Output The clock output, providing a crystal 25 MHz. When an external clock source is used to drive XTALIN/CLK_IN, this pin becomes a no connect.				
TEST	IPD	Test Pin Treat as a no connect pin or connect to ground. No trace or signal should be routed or attached to this pin.				
RBIAS	I-R	USB Transceiver Bias A12.0 k Ω (+/- 1%) resistor is attached from ground to this pin to set the transceiver's internal bias settings.				
ATEST	А	Analog Test Pin This signal is used for testing the chip and must always be connected to ground.				
TCFG1	-	Test Configuration 1 In the default configuration, this pin is tied to VDD33.				

Table 3.1 USB5434B Pin Descriptions (continued)

SYMBOL	BUFFER TYPE	DESCRIPTION			
TCFG2	-	Test Configuration 2			
		In the default configuration, this pin is pulled-up to VDD33 through a 10 $k\Omega$ resistor.			
TCFG3	-	Test Configuration 3			
		In the default configuration, this pin is tied to VDD33.			
TCFG4	-	Test Configuration 4			
		In the default configuration, this pin is a no connect.			
TCFG5	-	Test Configuration 5			
		In the default configuration, this pin is pulled-down to VSS through a 10 $k\Omega$ resistor.			
TCFG6	-	Test Configuration 6			
		In the default configuration, this pin is pulled-up to VDD33 through a 10 $k\Omega$ resistor.			
(1) NC	-	No connect pins			
		DIGITAL AND POWER			
(4) VDD33		3.3 V Power			
(8) VDD12		1.25 V Power			
VSS		Ground Pad			
		This exposed pad is the device's only connection to VSS and the primary thermal conduction path. Connect to an appropriate via field.			

3.3 Buffer Type Descriptions

Table 3.2 Buffer Type Descriptions

BUFFER TYPE	DESCRIPTION
I	Input
I/O	Input/output
IPD	Input with internal weak pull-down resistor
IPU	Input with internal weak pull-up resistor
IS	Input with Schmitt trigger
O12	Output 12 mA
I/O12	Input/output buffer with 12 mA sink and 12 mA source
I/OSD12	Open drain with Schmitt trigger and 12 mA sink.
ICLKx	XTAL clock input
OCLKx	XTAL clock output
I-R	RBIAS
I/O-U	Analog input/output defined in USB specification

Chapter 4 DC Parameters

4.1 Maximum Guaranteed Ratings

PARAMETER	SYMBOL	MIN	MAX	UNITS	COMMENTS
Storage Temperature	T _A	-55	150	°C	
Lead Temperature				°C	Refer to JEDEC Specification J-STD-020D.
1.25 V supply voltage	V _{DD12}	-0.5	1.6	V	
3.3 V supply voltage	V _{DD33}	-0.5	4.0	V	
Voltage on USB+ and USB- pins		-0.5	(3.3 V supply voltage + 2) ≤ 6	V	
Voltage on any signal powered by VDD33 rail		-0.5	V _{DD33} + 0.3	V	
Voltage on any signal pin powered by the VDD12		-0.5	VDD12 + 0.3	V	
HBM ESD Performance			2	kV	

Notes:

- Stresses above the specified parameters could cause permanent damage to the device. This is a stress rating only. Therefore, functional operation of the device at any condition above those indicated in the operation sections of this specification are not implied.
- When powering this device from laboratory or system power supplies, it is important that the absolute maximum ratings not be exceeded or device failure can result. Some power supplies exhibit voltage spikes on their outputs when the AC power is switched on or off. In addition, voltage transients on the AC power line may appear on the DC output. When this possibility exists, it is suggested that a clamp circuit be used.

4.2 Operating Conditions

PARAMETER	SYMBOL	MIN	MAX	UNITS	COMMENTS
USB5434Bi Operating Temperature	T _A	-40	85	°C	
USB5434B Operating Temperature	T _A	0	70	°C	
1.25 V supply voltage	V _{DD12}	1.22	1.31	V	
3.3 V supply voltage	V _{DD33}	3.0	3.6	V	
1.25 V supply rise time	t _{RT}	0	400	μS	(Figure 4.1)
3.3 V supply rise time	t _{RT}	0	400	μS	(Figure 4.1)
Voltage on USB+ and USB- pins		-0.3	5.5	V	If any 3.3 V supply voltage drops below 3.0 V, then the MAX becomes: (3.3 V supply voltage) + 0.5 ≤ 5.5
National and a second		0.0		.,	(3.5 v supply voltage) + 0.5 \(\) 5.5
Voltage on any signal powered by VDD33 rail		-0.3	V _{DD33}	V	

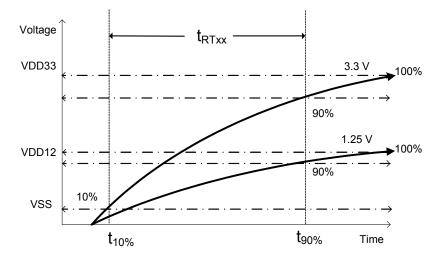


Figure 4.1 Supply Rise Time Model

Downloaded from Arrow.com.

4.3 DC Electrical Characteristics

Table 4.1 DC Electrical Characteristics

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	COMMENTS
IS Type Input Buffer						
Low Input Level	V _{ILI}			0.8	V	TTL Levels
High Input Level	V _{IHI}	2.0			V	
Hysteresis (IS only)	V _{HYSI}		420		mV	
I, IPU, IPD Type Input Buffer						
Low Input Level	V _{ILI}			0.8	V	TTL Levels
High Input Level	V _{IHI}	2.0			V	
Pull Down	PD		72		μΑ	V _{IN} = 0
Pull Up	PU		58		μΑ	$V_{IN} = VDD33$
ICLK Input Buffer						
Low Input Level	V _{ILCK}			0.3	V	
High Input Level	V _{IHCK}	0.8			V	
Input Leakage	I _{IL}	-10		+10	μА	$V_{IN} = 0$ to VDD33
Input Leakage (All I and IS buffers)						
Low Input Leakage	I _{IL}	-10		+10	μА	V _{IN} = 0
High Input Leakage	I _{IH}	-10		+10	μΑ	$V_{IN} = VDD33$
O12 Type Buffer						
Low Output Level	V _{OL}			0.4	V	I _{OL} = 12 mA @ VDD33 = 3.3 V
High Output Level	V _{OH}	V _{DD33} -0.4			V	I _{OH} = -12 mA @ VDD33 = 3.3 V
Output Leakage	I _{OL}	-10		+10	μА	V _{IN} = 0 to VDD33 (Note 4.1)

Table 4.1 DC Electrical Characteristics

PARAMETER	SYMBOL	MIN	TYP	MAX	UNITS	COMMENTS
I/O12, I/O12PU & I/O12PD Type Buffer						
Low Output Level	V _{OL}			0.4	V	I _{OL} = 12 mA @ VDD33 = 3.3 V
High Output Level	V _{OH}	V _{DD33} -0.4			V	I _{OH} = -12 mA @ VDD33 = 3.3 V
Output Leakage	I _{OL}	-10		+10	μΑ	V _{IN} = 0 to VDD33 (Note 4.1)
Pull Down	PD		72		μΑ	
Pull Up	PU		58		μΑ	
IO-U (Note 4.2)						

Note 4.1 Output leakage is measured with the current pins in high impedance.

Note 4.2 See USB 2.0 Specification [1] for USB DC electrical characteristics.

4.4 Capacitance

Table 4.2 Pin Capacitance

		LIMITS				
PARAMETER	SYMBOL	MIN	TYP	MAX	UNIT	TEST CONDITION
Clock Input Capacitance	C _{XTAL}			2	pF	All pins except USB pins and the pins under the test tied to AC ground
Input Capacitance	C _{IN}			5	pF	
Output Capacitance	C _{OUT}			10	pF	

Note 4.3 Capacitance $T_A = 25^{\circ}C$; fc = 1 MHz; VDD33 = 3.3 V

Chapter 5 AC Specifications

5.1 Oscillator/Crystal

Crystal: Parallel resonant, fundamental mode, 25 MHz ± 30 ppm

External Clock: 50% duty cycle \pm 10%, 25 MHz \pm 30 ppm, jitter < 100 ps rms

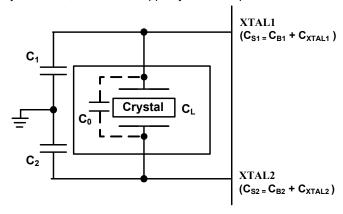


Figure 5.1 Typical Crystal Circuit

Table 5.1 Crystal Circuit Legend

SYMBOL	DESCRIPTION	IN ACCORDANCE WITH		
C ₀	Crystal shunt capacitance	Crystal manufacturar's angeliantian (Nets E 1)		
C _L	Crystal load capacitance	Crystal manufacturer's specification (Note 5.1)		
C _B	Total board or trace capacitance	OEM board design		
C _S	Stray capacitance	SMSC IC and OEM board design		
C _{XTAL}	XTAL pin input capacitance	SMSC IC		
C ₁	Load capacitors installed on	Calculated values based on Figure 5.2 (Note 5.2)		
C ₂	OEM board			

$$C_1 = 2 \times (C_L - C_0) - C_{S1}$$

$$C_2 = 2 \times (C_L - C_0) - C_{S2}$$

Figure 5.2 Formula to Find the Value of C_1 and C_2

- Note 5.1 C_0 is usually included (subtracted by the crystal manufacturer) in the specification for C_L and should be set to 0 for use in the calculation of the capacitance formulas in Figure 5.2. However, the PCB itself may present a parasitic capacitance between XTALIN and XTALOUT. For an accurate calculation of C_1 and C_2 , take the parasitic capacitance between traces XTALIN and XTALOUT into account.
- Note 5.2 Consult crystal manufacturer documentation for recommended capacitance values.

5.2 External Clock

50% duty cycle \pm 10%, 25 MHz \pm 30 ppm, jitter < 100 ps rms.

Note: The external clock is based upon 1.2 V CMOS Logic. **XTALOUT** should be treated as a no connect when an external clock is supplied.

5.2.1 USB 2.0

The SMSC hub conforms to all voltage, power, and timing characteristics and specifications as set forth in the *USB* 2.0 Specification [1].

Chapter 6 Package Drawing

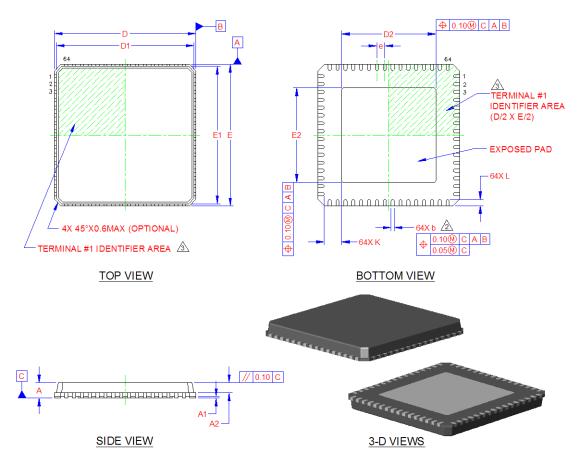


Figure 6.1 USB5434B 64 Pin QFN Package

Table 6.1 USB5434B 64-Pin QFN Dimensions

	MIN	NOMINAL	MAX	REMARKS
Α	0.80	0.85	1.00	Overall Package Height
A1	0	0.02	0.05	Standoff
A2	-	0.65	0.80	Mold Cap Thickness
D/E	8.90	9.00	9.10	X/Y Body Size
D1/E1	8.65	8.75	8.85	X/Y Mold Cap Size
D2/E2	5.90	6.00	6.10	X/Y Exposed Pad Size
L	0.30	0.40	0.50	Terminal Length
b	0.18	0.25	0.30	Terminal Width
K	0.90	-	-	Center Pad to Pin Clearance
е		0.50 BSC	•	Terminal Pitch

Notes:

- 1. All dimensions are in millimeters unless otherwise noted.
- 2. Dimension "b" applies to plated terminals and is measured between 0.15 and 0.30 mm from the terminal tip.
- 3. The pin 1 identifier may vary, but is always located within the zone indicated.

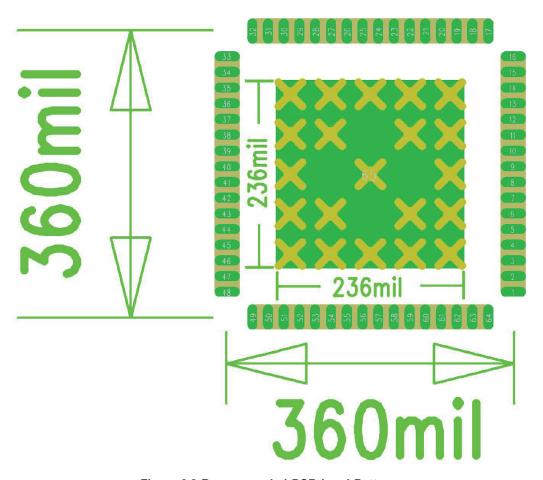


Figure 6.2 Recommended PCB Land Pattern

Chapter 7 Revision History

Table 7.1 Customer Revision History

REVISION LEVEL & DATE	SECTION/FIGURE/ENTRY	CORRECTION
Rev. 1.0 (09-06-12)	All	Initial revision.

Appendix A (Acronyms)

I²C®: Inter-Integrated Circuit¹

OCS: Over-Current Sense

PCB: Printed Circuit Board

PHY: Physical Layer

PLL: Phase-Locked Loop **QFN**: Quad Flat No Leads

RoHS: Restriction of Hazardous Substances Directive

SCL: Serial Clock

SIE: Serial Interface Engine

SMBus: System Management Bus

TT: Transaction Translator

^{1.}I²C is a registered trademark of Philips Corporation.

Appendix B (References)

- [1] Universal Serial Bus Specification, Version 2.0, April 27, 2000 (12/7/2000 and 5/28/2002 Errata) USB Implementers Forum, Inc. http://www.usb.org
- [2] Universal Serial Bus Specification, Version 3.0, November 13, 2008 USB Implementers Forum, Inc. http://www.usb.org
- [3] System Management Bus Specification, version 1.0 SMBus. http://smbus.org/specs/
- [4] MicroChip 24AA02/24LC02B (Revision C)
 Microchip Technology Inc. http://www.microchip.com/

Downloaded from Arrow.com.