Absolute Maximum Ratings(Note 1)

@V_{IN} >6V +20 mA

DC Output Diode Current (I_{OK})

Junction Temperature under Bias (T_J) 150°C

Junction Lead Temperature (T_L) ;

Soldering, 10 seconds 260°C

Power Dissipation (PD) @ +85°C

SOT23-5 200 mW SC70-5 150 mW

Recommended Operating Conditions (Note 2)

Input Rise and Fall Time (t_r, t_f)

$$\begin{split} & V_{CC} = 1.8 \text{V, } 2.5 \text{V} \pm 0.2 \text{V} & 0 \text{ ns/V to 20 ns/V} \\ & V_{CC} = 3.3 \text{V} \pm 0.3 \text{V} & 0 \text{ ns/V to 10 ns/V} \\ & V_{CC} = 5.0 \text{V} \pm 0.5 \text{V} & 0 \text{ ns/V to 5 ns/V} \end{split}$$

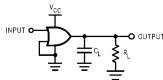
Thermal Resistance (θ_{JA})

SOT23-5 300°C/W SC70-5 425°C/W

Note 1: Absolute Maximum Ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics


Symbol	Parameter	V _{CC}	T _A = +25°C		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions		
		(V)	Min	Тур	Max	Min	Max	Onnes		ilations
V _{IH}	HIGH Level Input Voltage	1.65 to 1.95	0.75 V _{CC}			0.75 V _{CC}		٧		
		2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		v		
V _{IL}	LOW Level Input Voltage	1.65 to 1.95			0.25 V _{CC}		0.25 V _{CC}	V		
		2.3 to 5.5			$0.3 V_{\rm CC}$		$0.3 V_{\rm CC}$	v		
V _{OH}	HIGH Level Output Voltage	1.65	1.55	1.65		1.55				
		1.8	1.7	1.8		1.7				
		2.3	2.2	2.3		2.2		V	$V_{IN} = V_{IH} \\$	$I_{OH} = -100 \ \mu A$
		3.0	2.9	3.0		2.9				
		4.5	4.4	4.5		4.4				
		1.65	1.29	1.52		1.29				$I_{OH} = -4 \text{ mA}$
		2.3	1.9	2.15		1.9				$I_{OH} = -8 \text{ mA}$
		3.0	2.4	2.80		2.4		V		$I_{OH} = -16 \text{ mA}$
		3.0	2.3	2.68		2.3				$I_{OH} = -24 \text{ mA}$
		4.5	3.8	4.20		3.8				$I_{OH} = -32 \text{ mA}$
V _{OL}	LOW Level Output Voltage	1.65		0.0	0.1		0.1			
		1.8		0.0	0.1		0.1			
		2.3		0.0	0.1		0.1	V	$V_{IN} = V_{IL}$	$I_{OL} = 100 \mu A$
		3.0		0.0	0.1		0.1			
		4.5		0.0	0.1		0.1			
		1.65		0.08	0.24		0.24			$I_{OL} = 4 \text{ mA}$
		2.3		0.10	0.3		0.3			$I_{OL} = 8 \text{ mA}$
		3.0		0.15	0.4		0.4	V		I _{OL} = 16 mA
		3.0		0.22	0.55		0.55			$I_{OL} = 24 \text{ mA}$
		4.5		0.22	0.55		0.55			$I_{OL} = 32 \text{ mA}$
I _{IN}	Input Leakage Current	0 to 5.5			±1		±10	μΑ	V _{IN} = 5.5\	, GND
I _{OFF}	Power Off Leakage Current	0.0			1		10	μΑ	V _{IN} or V _{OUT} = 5.5V	
I _{CC}	Quiescent Supply Current	1.65 to 5.5			2.0		20	μΑ	V _{IN} = 5.5\	/, GND

AC Electrical Characteristics

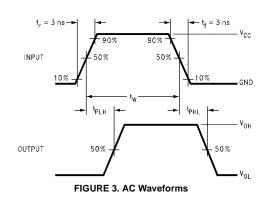
Symbol	Parameter	V _{CC}		$T_A = +25^{\circ}C$		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$		Units	Conditions	Fig. No.
		(V)	Min	Тур	Max	Min	Max	Onito	Conditions	1 ig. ivo.
t _{PLH} ,	Propagation Delay	1.65	2.0	5.5	12.0	2.0	12.7	ns	C_L = 15 pF, R_L = 1M Ω	Figures 1, 3
t _{PHL}		1.8	2.0	4.6	10	2.0	10.5			
		2.5 ± 0.2	0.8	3.0	7.0	0.8	7.5			
		3.3 ± 0.3	0.5	2.4	4.7	0.5	5.0			
		5.0 ± 0.5	0.5	1.9	4.1	0.5	4.4			
t _{PLH} ,	Propagation Delay	3.3 ± 0.3	1.5	3.0	5.2	1.5	5.5		$C_L = 50 \text{ pF},$	Figures 1, 3
t _{PHL}		5.0 ± 0.5	8.0	2.4	4.5	0.8	4.8	ns	$R_L = 500\Omega$	
C _{IN}	Input Capacitance	0		4				pF		
C_{PD}	Power Dissipation	3.3		20				pF	(Note 3)	Figure 2
	Capacitance	5.0		26				ы		

Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression:
I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC}static).

AC Loading and Waveforms

C_L includes load and stray capacitance.

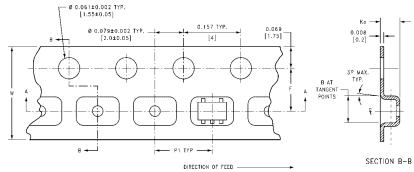
Input PRR = 1.0 MHz, $t_{\rm W}$ = 500 ns.

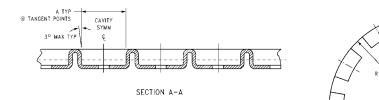

FIGURE 1. AC Test Circuit

Input = AC Waveforms; $t_r = t_f = 1.8 \text{ ns}$;

PRR = 10 MHz; Duty Cycle = 50%

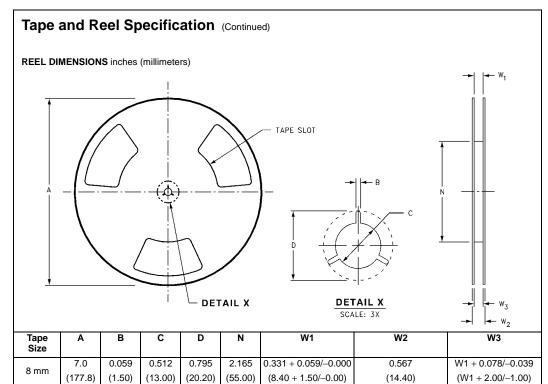
FIGURE 2. I_{CCD} Test Circuit

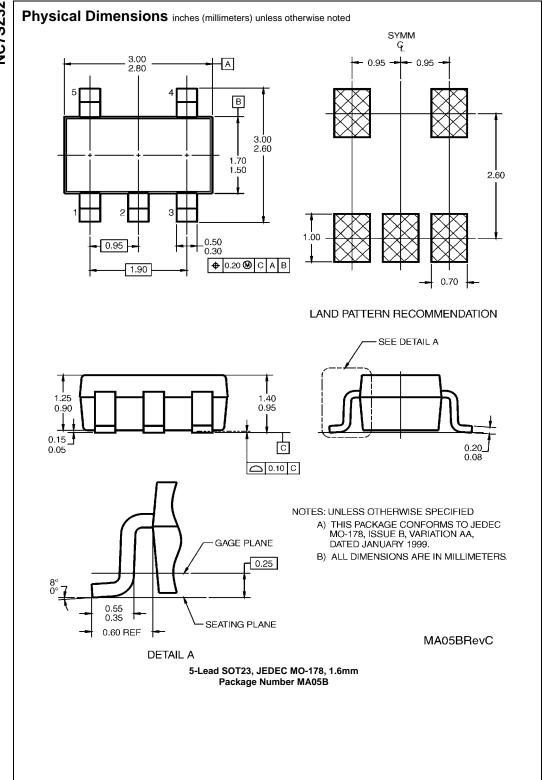


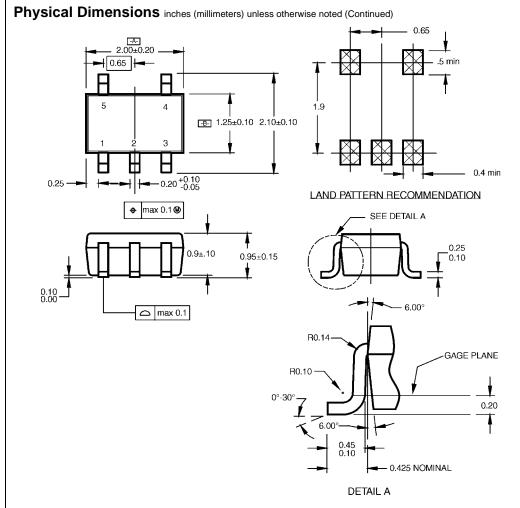

www.fairchildsemi.com

Tape and Reel Specification TAPE FORMAT

Package	Tape	Number	Cavity	Cover Tape
Designator	Section	Cavities	Status	Status
	Leader (Start End)	125 (typ)	Empty	Sealed
M5, P5	Carrier	250	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed
	Leader (Start End)	125 (typ)	Empty	Sealed
M5X, P5X	Carrier	3000	Filled	Sealed
	Trailer (Hub End)	75 (typ)	Empty	Sealed


TAPE DIMENSIONS inches (millimeters)




BEND RADIUS NOT TO SCALE

Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-5	8 mm	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004
		(2.35)	(2.45)	(3.5 ± 0.10)	(1.35 ± 0.10)	(4)	(8 ± 0.1)
SOT23-5	8 mm	0.130	0.130	0.138 ± 0.002	0.055 ± 0.004	0.157	0.315 ± 0.012
30123-3		(3.3)	(3.3)	(3.5 ± 0.05)	(1.4 ± 0.11)	(4)	(8 ± 0.3)

NOTES:

- A. CONFORMS TO EIAJ REGISTERED OUTLINE DRAWING SC88A.
- B. DIMENSIONS DO NOT INCLUDE BURRS OR MOLD FLASH.

MAA05ARevC

C. DIMENSIONS ARE IN MILLIMETERS.

5-Lead SC70, EIAJ SC-88a, 1.25mm Wide Package Number MAA05A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

www.fairchildsemi.com