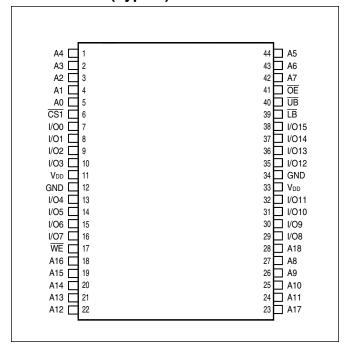


PIN CONFIGURATIONS


48-Pin mini BGA (9mmx11mm)

PIN DESCRIPTIONS

A0-A18	Address Inputs
I/O0-I/O15	Data Inputs/Outputs
CS1, CS2	Chip Enable Input
ŌĒ	Output Enable Input
WE	Write Enable Input
LB	Lower-byte Control (I/O0-I/O7)
ŪB	Upper-byte Control (I/O8-I/O15)
NC	No Connection
V _{DD}	Power
GND	Ground

44-Pin TSOP (Type II)

TRUTH TABLE

_					•	•	I/O	PIN	
Mode	WE	CS1	CS2	ŌĒ	ĪΒ	ŪΒ	1/00-1/07	I/O8-I/O15	VDD Current
Not Selected	Х	Н	Х	Х	Х	Х	High-Z	High-Z	ISB1, ISB2
	Χ	Χ	L	Χ	Χ	Χ	High-Z	High-Z	ISB1, ISB2
	Χ	Χ	Χ	Χ	Н	Н	High-Z	High-Z	ISB1, ISB2
Output Disabled	Н	L	Н	Н	L	Х	High-Z	High-Z	Icc
	Н	L	Н	Н	Χ	L	High-Z	High-Z	Icc
Read	Н	L	Н	L	L	Н	D оит	High-Z	Icc
	Н	L	Н	L	Н	L	High-Z	D out	
	Н	L	Н	L	L	L	Dоит	D оит	
Write	L	L	Н	Х	L	Н	Din	High-Z	Icc
	L	L	Н	Χ	Н	L	High-Z	DIN	
	L	L	Н	Χ	L	L	DIN	DIN	

OPERATING RANGE (VDD)

Range	Ambient Temperature	VDD	Speed	
Commercial	0°C to +70°C	4.5V - 5.5V	45ns	
Industrial	–40°C to +85°C	4.5V - 5.5V	55ns	
Automotive	-40°C to +125°C	4.5V - 5.5V	55ns	

CAPACITANCE^(1,2)

Symbol	Parameter	Conditions	Max.	Unit
Cin	Input Capacitance	$V_{IN} = 0V$	5	pF
Соит	Output Capacitance	Vout = $0V$	7	pF

Notes:

- Tested initially and after any design or process changes that may affect these parameters.
 Test conditions: TA = 25°C, f = 1 MHz, VDD = 5.0V.

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
Тѕтс	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	1.5	W
Іоит	DC Output Current (LOW)	20	mA

Notes:

DC ELECTRICAL CHARACTERISTICS (Over Operating Range)

Symbol	Parameter	Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	$V_{DD} = Min., I_{OH} = -1 \text{ mA}$		2.4	_	V
Vol	Output LOW Voltage	$V_{DD} = Min., IoL = 2.1 mA$		_	0.4	V
Vін	Input HIGH Voltage			2.2	VDD + 0.5	V
VIL	Input LOW Voltage(1)			-0.3	0.8	V
ILI	Input Leakage	$GND \leq V IN \leq V DD$	Com.	-1	1	μA
			Ind.	-2	2	
			Auto.	-5	5	
ILO	Output Leakage	$GND \leq VOUT \leq VDD$	Com.	-1	1	μA
		Outputs Disabled	Ind.	-2	2	
		·	Auto.	– 5	5	

Note:

Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

V_{IL} (min) = -0.3V DC; V_{IL} (min) = -2.0V AC (pulse width -2.0 ns). Not 100% tested.
 V_{IH} (max) = V_{DD} + 0.3V DC; V_{IH} (max) = V_{DD} + 2.0V AC (pulse width -2.0 ns). Not 100% tested.

ACTEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	5 ns
Input and Output Timing and Reference Level	1.5V
Output Load	See Figures 1 and 2

ACTEST LOADS

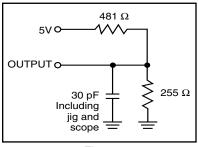


Figure 1

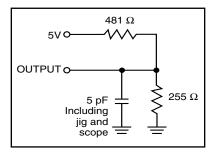


Figure 2

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

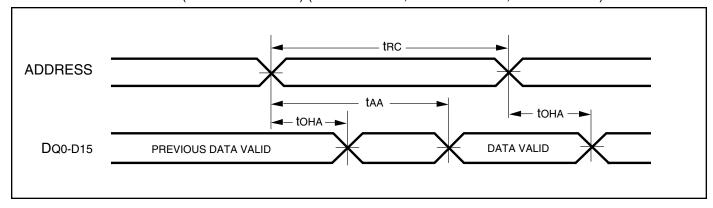
Symbol	Parameter	Test Conditions		-45 Min.	ns Max.		55 ns Max.	Unit
Icc	VDD Dynamic Operating		Com.		25	IVIIII.	IVIQA.	mA
100	Supply Current	$IOUT = 0 \text{ mA}, f = f_{MAX}$	Ind.		20	_	25	ША
		VIN = VIH or VIL	Auto.			_	40	
			typ. ⁽²⁾	13	3	1	2	
Icc1	Average operating	CE = VIL,	Com.	_	10			mA
	Current	VIN = VIH or VIL,	Ind.			_	10	
		I I/O= 0 mA	Auto.			_	20	
Is _B 1	TTL Standby Current	V _{DD} = Max.,	Com.	_	1			mA
	(TTL Inputs)	$V_{IN} = V_{IH} \text{ or } V_{IL}, \overline{CE} \ge V_{IH},$	Ind.			_	1.5	
		f = 0	Auto.			_	2	
IsB2	CMOS Standby	V _{DD} = Max.,	Com.	_	40			μA
	Current (CMOS Inputs)	$\overline{CE} \geq V_{DD} - 0.2V$,	Ind.			_	60	
		$V_{IN} \ge V_{DD} - 0.2V$	Auto.			_	180	
		or $V_{IN} \le V_{SS} + 0.2V$, $f = 0$	typ. ⁽²⁾	15	5			

Note:

^{1.} At $f = f_{MAX}$, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

^{2.} Typical Values are measured at Vcc = 5V, TA = 25°C and not 100% tested.

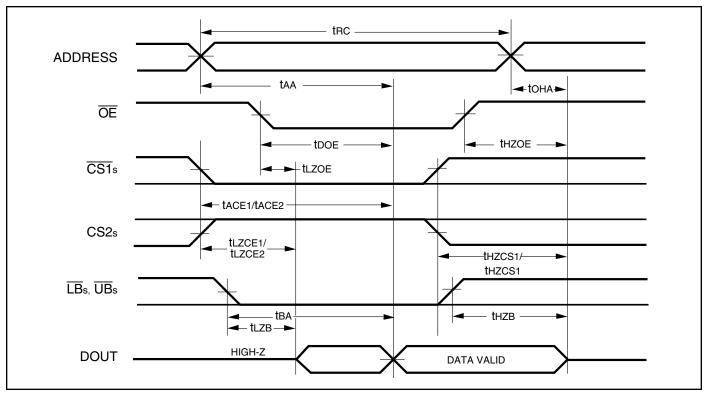
READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)


		45 r	าร	55 r	ns	70 r	าร	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
t rc	Read Cycle Time	45	_	55	_	70	_	ns
t AA	Address Access Time	_	45	_	55	_	70	ns
toha³	Output Hold Time	10	_	10	_	10	_	ns
tacs1/tacs2	CS1/CS2 Access Time	_	45	_	55	_	70	ns
t DOE	OE Access Time	_	20	_	25	_	35	ns
thzoe ⁽²⁾	OE to High-Z Output	_	15	_	20	_	25	ns
tLZOE ⁽²⁾	OE to Low-Z Output	5	_	5	_	5	_	ns
thzcs1/thzcs2 ⁽²⁾	CS1/CS2 to High-Z Output	0	15	0	20	0	25	ns
tLZCS1/tLZCS2 ⁽²⁾	CS1/CS2 to Low-Z Output	10	_	10	_	10	_	ns
t BA	LB, UB Access Time	_	45	_	55	_	70	ns
tнzв	LB, UB to High-Z Output	0	15	0	20	0	25	ns
t LZB	LB, UB to Low-Z Output	0	_	0	_	0	_	ns

Notes:

- 1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0V to 3.0V and output loading specified in Figure 1.
- 2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
- 3. 10ns for CMOS Loading. 8ns @ AC Loading.

AC WAVEFORMS


READ CYCLE NO. 1^(1,2) (Address Controlled) ($\overline{CS1} = \overline{OE} = V_{IL}$, $\overline{CS2} = \overline{WE} = V_{IH}$, \overline{UB} or $\overline{LB} = V_{IL}$)

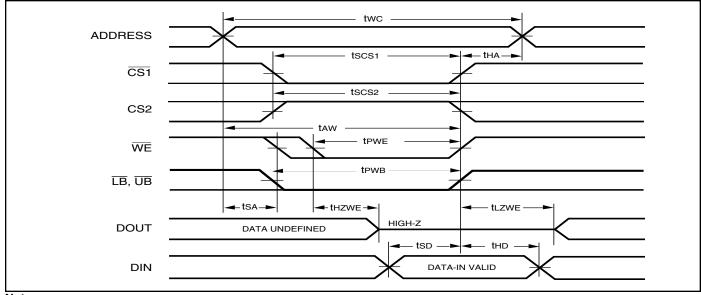
AC WAVEFORMS

READ CYCLE NO. 2^(1,3) ($\overline{CS1}$, CS2, \overline{OE} , AND $\overline{UB}/\overline{LB}$ Controlled)

Notes:

- 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , $\overline{CS1}$, \overline{UB} , or $\overline{LB} = V_{IL}$. $CS2 = \overline{WE} = V_{IH}$.
- 3. Address is valid prior to or coincident with $\overline{\text{CS1}}$ LOW transition.

WRITE CYCLE SWITCHING CHARACTERISTICS^(1,2) (Over Operating Range)

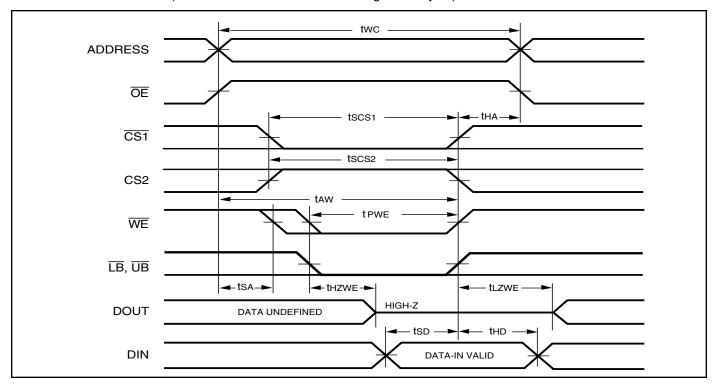

		45	ns	55	ns	70	ns	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
twc	Write Cycle Time	45	_	55	_	70	_	ns
tscs1/tscs	2 CS1/CS2 to Write End	35	_	45	_	60	_	ns
taw	Address Setup Time to Write End	35	_	45	_	60	_	ns
tна	Address Hold from Write End	0	_	0	_	0	_	ns
t sa	Address Setup Time	0	_	0	_	0	_	ns
t PWB	LB, UB Valid to End of Write	35	_	45	_	60	_	ns
tpwE ⁽⁴⁾	WE Pulse Width	35	_	40	_	50	_	ns
tsp	Data Setup to Write End	25	_	30	_	30	_	ns
thd	Data Hold from Write End	0	_	0	_	0	_	ns
thzwe ⁽³⁾	WE LOW to High-Z Output	_	20	_	20	_	30	ns
tLZWE ⁽³⁾	WE HIGH to Low-Z Output	5	_	5	_	5	_	ns

Notes:

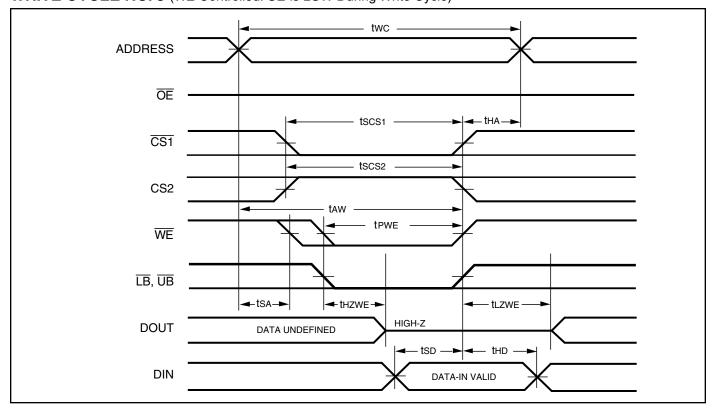
- 1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0V to 3.0V and output loading specified in Figure 1.
- 2. The internal write time is defined by the overlap of $\overline{\text{CS1}}$ LOW, CS2 HIGH and $\overline{\text{UB}}$ or $\overline{\text{LB}}$, and $\overline{\text{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write
- 3. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
- 4. $t_{PWE} > t_{HZWE} + t_{SD}$ when \overline{OE} is LOW.

AC WAVEFORMS

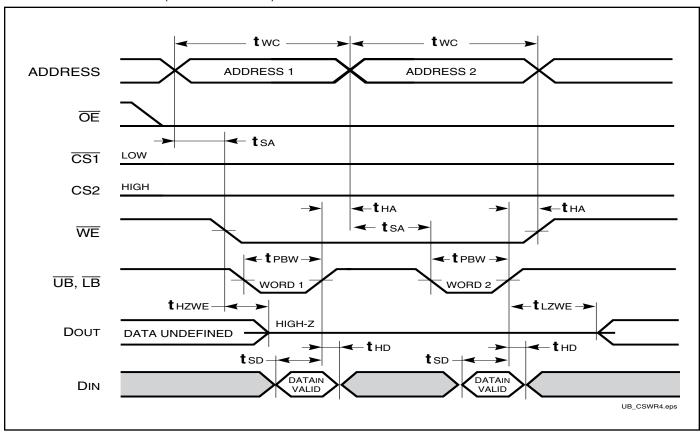
WRITE CYCLE NO. $1^{(1,2)}$ ($\overline{CS1}$ Controlled, \overline{OE} = HIGH or LOW)



Notes:

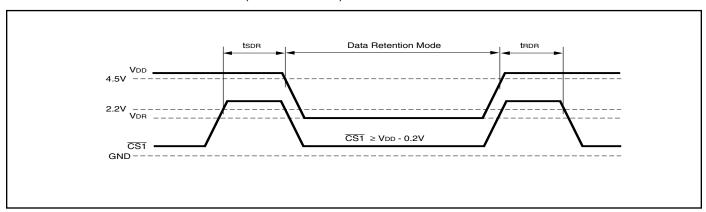

- 1. WRITE is an internally generated signal asserted during an overlap of the LOW states on the $\overline{\text{CS1}}$, CS2 and $\overline{\text{WE}}$ inputs and at least one of the $\overline{\text{LB}}$ and $\overline{\text{UB}}$ inputs being in the LOW state.
- 2. WRITE = $(\overline{CS1})$ [(\overline{LB}) = (\overline{UB})] (\overline{WE}) .

WRITE CYCLE NO. 2 (WE Controlled: OE is HIGH During Write Cycle)

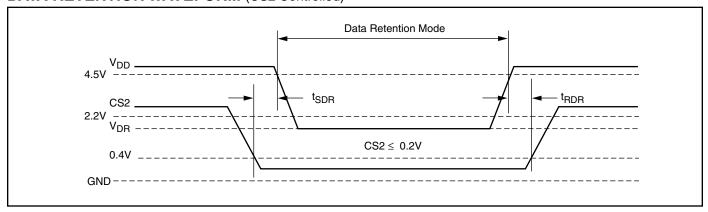


WRITE CYCLE NO. 3 (WE Controlled: OE is LOW During Write Cycle)

WRITE CYCLE NO. 4 (UB/LB Controlled)



DATA RETENTION SWITCHING CHARACTERISTICS (4.5V - 5.5V)


Symbol	Parameter	Test Condition		Min.	Typ. ⁽¹⁾	Max.	Unit
V_{DR}	VDD for Data Retention	See Data Retention Waveform		2.0		5.5	٧
Idr	Data Retention Current	VDD = 2.0V and — 20 $\overline{CS1}$ ≥ VDD – 0.2V and Com. — 15 40 (a) $CS2$ ≥ VDD – 0.2V or Ind. — — 60 (b) $CS2$ ≤ GND + 0.2V Auto. — — 180		μА			
tsdr	Data Retention Setup Time	See Data Retention Waveform	0 — ns		ns		
trdr	Recovery Time	See Data Retention Waveform	trc — ns		ns		

Note:

DATA RETENTION WAVEFORM (CS1 Controlled)

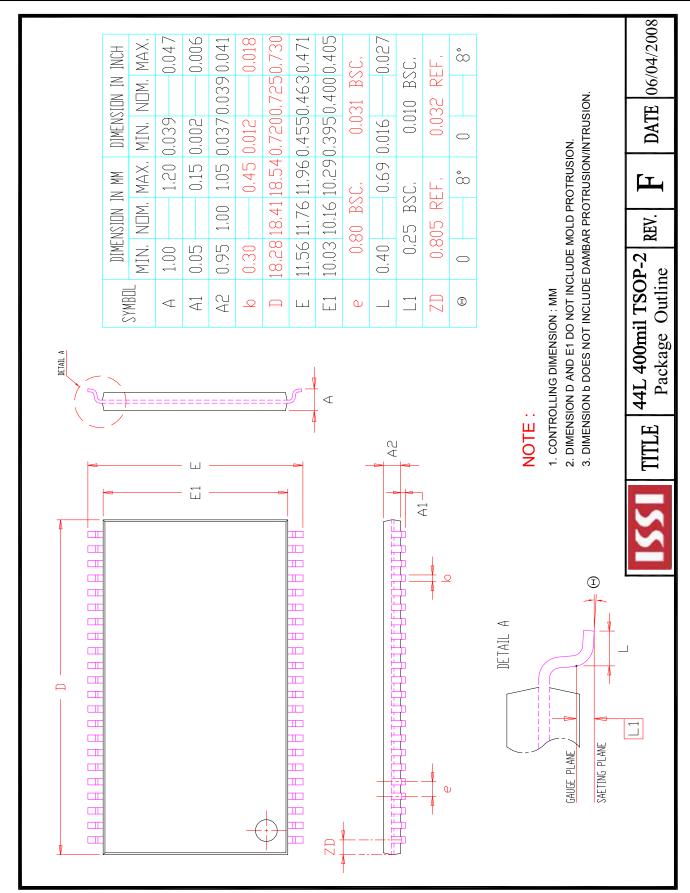
DATA RETENTION WAVEFORM (CS2 Controlled)

^{1.} Typical Values are measured at Vcc = 5V, TA = 25°C and not 100% tested.

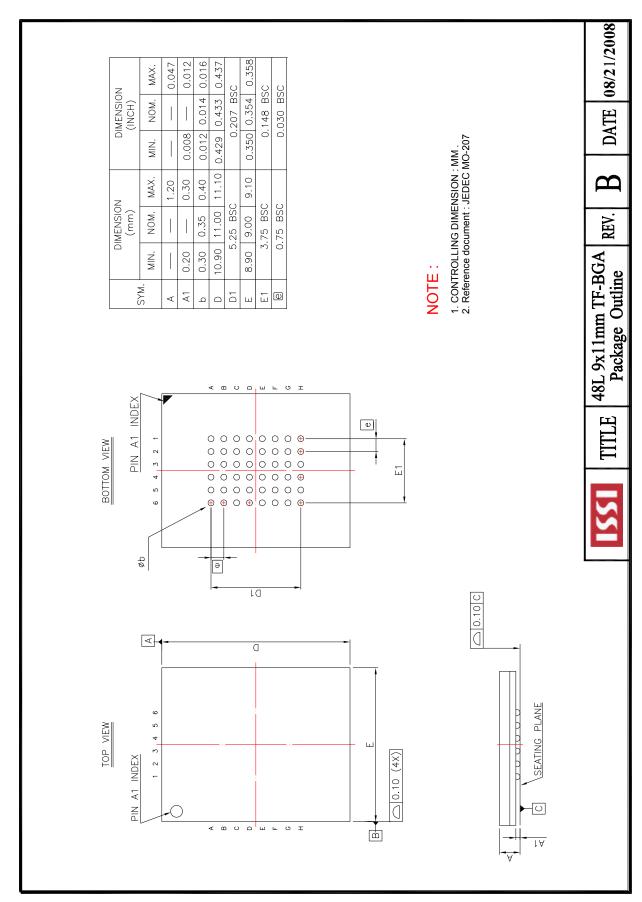
IS62C51216AL (4.5V - 5.5V)

Industrial Range: -40°C to +85°C

Speed (ns)	Order Part No.*	Package	
55	IS62C51216AL-55TLI	TSOP-II, Lead-free	
	IS62C51216AL-55MLI	mini BGA, Lead-free (9mmx11mm)	


^{*}Devices will meet 45ns when used in 0°C to +70°C temperature range.

IS65C51216AL (4.5V - 5.5V)


Automotive Range: -40°C to +125°C

Speed (ns)	Order Part No.	Package
55	IS65C51216AL-55CTLA3	TSOP-II, Lead-free, Copper Lead-frame
	IS65C51216AL-55MLA3	mini BGA, Lead-free (9mmx11mm)

