Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Мах.	Units	Conditions	
V _{(BR)CES}	Collector-to-Emitter Breakdown Voltage®	600			V	$V_{GE} = 0V, I_{C} = 250\mu A$	
ΔV _{(BR)CES} /ΔT	Temperature Coeff. of Breakdown Voltage		0.69	_	V/°C	V_{GE} = 0V, I_{C} = 1.0mA	
V _{CE(on)}	Collector-to-Emitter Saturation Voltage		1.59	1.8		I _C = 17A	V _{GE} = 15V
			1.99		V	I _C = 31A	See Fig. 2, 5
			1.70			I _C = 17A, T _J = 150°C	
$V_{\text{GE(th)}}$	Gate Threshold Voltage	3.0	-	6.0		$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	
ΔV _{GE(th)} /ΔT _J	Temperature Coeff. of Threshold Voltage	_	-11		mV/°C	$V_{CE} = V_{GE}, I_{C} = 250 \mu A$	
g fe	Forward Transconductance ④	6.1	10		S	V_{CE} = 100V, I_{C} = 17A	
I _{CES}	Zero Gate Voltage Collector Current			250	μΑ	$V_{GE} = 0V$, $V_{CE} = 600V$	
		—		2500		$V_{GE} = 0V$, $V_{CE} = 600V$,	T _J = 150°C
V_{FM}	Diode Forward Voltage Drop		1.4	1.7	V	I _C = 12A	See Fig. 13
			1.3	1.6		$I_{\rm C}$ = 12A, $T_{\rm J}$ = 150°C	
I _{GES}	Gate-to-Emitter Leakage Current			±100	nΑ	$V_{GE} = \pm 20V$	

Switching Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Мах.	Units	Conditions		
Q_g	Total Gate Charge (turn-on)		51	77		I _C = 17A		
Qge	Gate - Emitter Charge (turn-on)		7.9	12	пC	V _{CC} = 400V See Fig. 8		
Q_{gc}	Gate - Collector Charge (turn-on)		19	28		V _{GE} = 15V		
t _{d(on)}	Turn-On Delay Time		42			T _J = 25°C		
tr	Rise Time		26		ns	I _C = 17A, V _{CC} = 480V		
t _{d(off)}	Turn-Off Delay Time		230	350		V_{GE} = 15V, R_{G} = 23 Ω		
tf	Fall Time		160	230		Energy losses include "tail" and		
Eon	Turn-On Switching Loss		0.63			diode reverse recovery.		
E _{off}	Turn-Off Switching Loss		1.39		mJ	See Fig. 9, 10, 11, 18		
Ets	Total Switching Loss		2.02	3.9				
t _{d(on)}	Turn-On Delay Time		42			T _J = 150°C, See Fig. 9, 10, 11, 18		
t _r	Rise Time		27		ns	$I_{C} = 17A, V_{CC} = 480V$		
t _{d(off)}	Turn-Off Delay Time		310			V_{GE} = 15V, R_{G} = 23 Ω		
tf	Fall Time		310			Energy losses include "tail" and		
Ets	Total Switching Loss		3.2		mJ	diode reverse recovery.		
LE	Internal Emitter Inductance		7.5		nΗ	Measured 5mm from package		
Cies	Input Capacitance		1100	_		V _{GE} = 0V		
Coes	Output Capacitance		74		рF	$V_{CC} = 30V$ See Fig. 7		
C _{res}	Reverse Transfer Capacitance		14			f = 1.0MHz		
t _{rr}	Diode Reverse Recovery Time		42	60	ns	T」= 25°C See Fig.		
			80	120	1	T _J = 125°C 14 I _F = 12A		
Irr	Diode Peak Reverse Recovery Current		3.5	6.0	Α	T」= 25°C See Fig.		
			5.6	10	1	T _J = 125°C 15 V _R = 200V		
Q _{rr}	Diode Reverse Recovery Charge		80	180	пC	T _J = 25°C See Fig.		
			220	600	1	T _J = 125°C 16 di/dt 200A/µs		
di _{(rec)M} /dt	Diode Peak Rate of Fall of Recovery		180		A/µs	T」= 25°C See Fig.		
. ,	During t _b		120		1	T _J = 125°C 17		

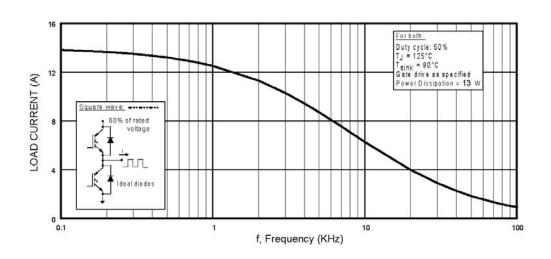


Fig. 1 - Typical Load Current vs. Frequency (Load Current = I_{RMS} of fundamental)

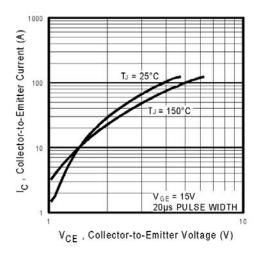


Fig. 2 - Typical Output Characteristics

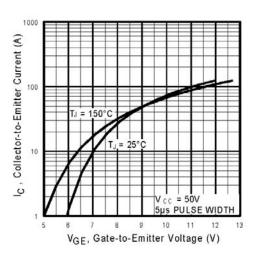
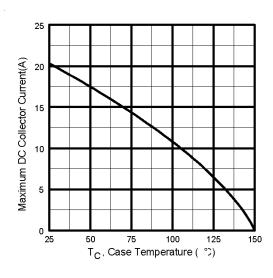



Fig. 3 - Typical Transfer Characteristics

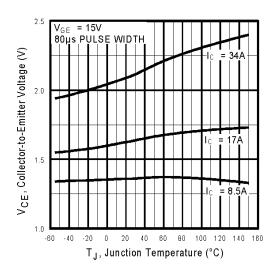


Fig. 4 - Maximum Collector Current vs. Case Temperature

Fig. 5 - Typical Collector-to-Emitter Voltage vs. Junction Temperature

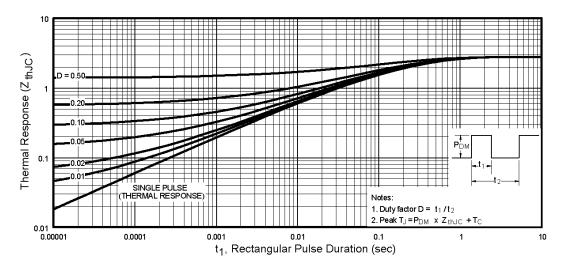
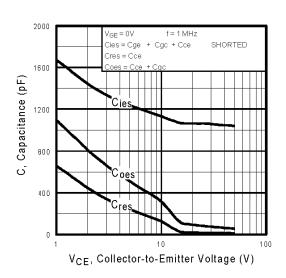



Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case

International TOR Rectifier

IRG4IBC30FDPbF

Fig. 7 - Typical Capacitance vs. Collector-to-Emitter Voltage

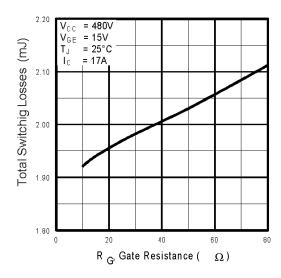
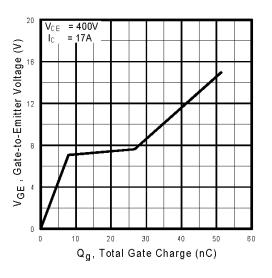
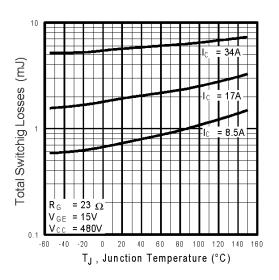




Fig. 9 - Typical Switching Losses vs. Gate Resistance

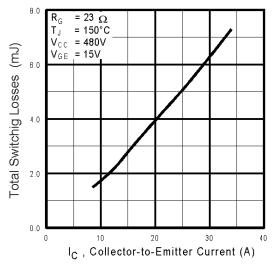

Fig. 8 - Typical Gate Charge vs. Gate-to-Emitter Voltage

Fig. 10 - Typical Switching Losses vs. JunctionTemperature

International

TOR Rectifier

V_{GE} = 20V T_J = 125°C

SAFE OPERATING AREA

V_{CE}, Collector-to-Emitter Voltage (V)

Fig. 11 - Typical Switching Losses vs. Collector-to-Emitter Current

Fig. 12 - Turn-Off SOA

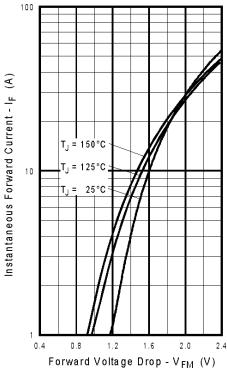


Fig. 13 - Maximum Forward Voltage Drop vs. Instantaneous Forward Current



Fig. 14 - Typical Reverse Recovery vs. di_f/dt

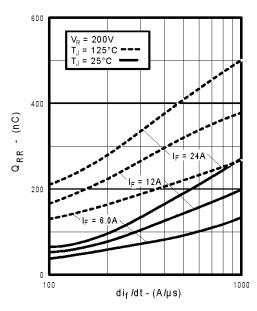


Fig. 16 - Typical Stored Charge vs. dif/dt

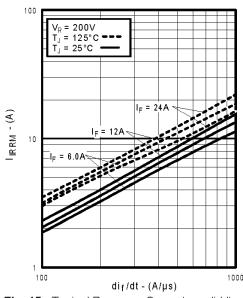


Fig. 15 - Typical Recovery Current vs. dif/dt

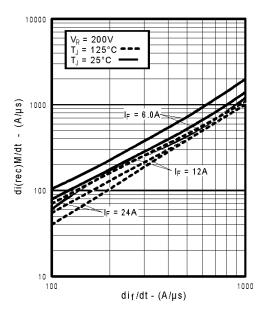
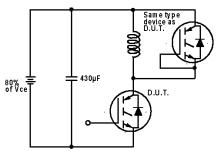
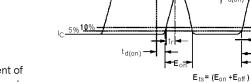
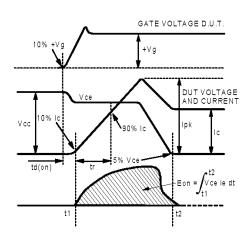
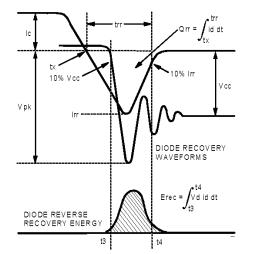




Fig. 17 - Typical di_{(rec)M}/dt vs. di_f/dt




90%

 $\label{eq:Fig. 18a} \textbf{Fig. 18a} \textbf{ -} \textbf{ Test Circuit for Measurement of } \\ \textbf{I}_{LM}, \textbf{E}_{on}, \textbf{E}_{off(diode)}, \textbf{t}_{rr}, \textbf{Q}_{rr}, \textbf{I}_{rr}, \textbf{t}_{d(on)}, \textbf{t}_{r}, \textbf{t}_{d(off)}, \textbf{t}_{f} \\$

Fig. 18b - Test Waveforms for Circuit of Fig. 18a, Defining $E_{\text{off}},\,t_{\text{d(off)}},\,t_{\text{f}}$

90%

 $\label{eq:Fig. 18c} \textbf{Fig. 18c} \mbox{ - Test Waveforms for Circuit of Fig. 18a,} \\ \mbox{ Defining E_{on}, $t_{d(on)}$, t_r}$

International TOR Rectifier

IRG4IBC30FDPbF

.

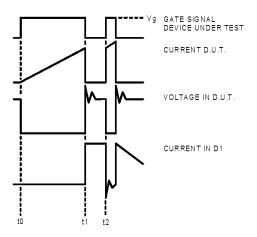


Figure 18e. Macro Waveforms for Figure 18a's Test Circuit

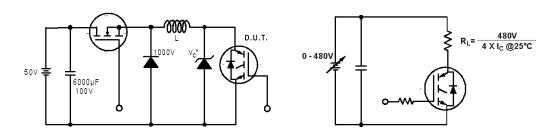
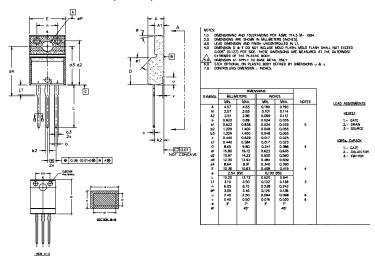
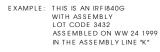


Figure 19. Clamped Inductive Load Test Circuit

Figure 20. Pulsed Collector Current Test Circuit



Notes:


- ① Repetitive rating: V_{GE}=20V; pulse width limited by maximum junction temperature (figure 20)
- V_{CC}=80%(V_{CES}), V_{GE}=20V, L=10 μ H, R_G = 23 Ω (figure 19)
- ③ Pulse width ≤ $80\mu s$; duty factor ≤ 0.1%.
- @ Pulse width 5.0µs, single shot.
- 5 t = 60s, f = 60Hz

TO-220 Full-Pak Package Outline

Dimensions are shown in millimeters (inches)

TO-220 Full-Pak Part Marking Information

Note: "P" in assembly line position indicates "Lead-Free"

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.07/04 www.irf.com

10

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/