

Absolute Maximum Rating

Symbol	Parameter	Мах	κ.	Units	
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	76			
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	54		А	
I _{DM}	Pulsed Drain Current ①	280)		
P _D @T _C = 25°C	Maximum Power Dissipation	125	5	W	
	Linear Derating Factor	0.8	3	W/°C	
V _{GS}	Gate-to-Source Voltage	± 2	0	V	
Tj T _{STG}	Operating Junction and Storage Temperature Range	-55 to +	+ 175	°C	
Soldering Temperature, for 10 seconds (1.6mm from case) 30)			
	Mounting Torque, 6-32 or M3 Screw	10 lbf∙in (1.1 N·m)			
Avalanche Chara	cteristics				
EAS (Thermally limited)	Single Pulse Avalanche Energy 2	144	ł	m	
EAS (Thermally limited)	Single Pulse Avalanche Energy ^③	209		mJ	
I _{AR}	Avalanche Current ①			А	
E _{AR}	Repetitive Avalanche Energy ①	See Fig 15, 16, 23a, 23b		mJ	
Thermal Resistan	ce				
Symbol	Parameter	Тур.	Max.	Units	
$R_{ ext{ heta}JC}$	Junction-to-Case ⊘		1.2		
$R_{ ext{ heta}CS}$	Case-to-Sink, Flat Greased Surface	0.50 <u> </u>		°C/W	
$R_{ ext{ heta}JA}$	Junction-to-Ambient				

Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	75			V	V _{GS} = 0V, I _D = 250µA
$\Delta V_{(BR)DSS} / \Delta T_J$	Breakdown Voltage Temp. Coefficient		0.06		V/°C	Reference to 25°C, $I_D = 1mA$ ①
R _{DS(on)}	Static Drain-to-Source On-Resistance		6.9	8.4	mΩ	V _{GS} = 10V, I _D = 46A
			8.2			V _{GS} = 6.0V, I _D = 23A
V _{GS(th)}	Gate Threshold Voltage	2.1		3.7	V	V _{DS} = V _{GS} , I _D = 100µA
1	Drain to Source Lookage Current			1.0		V _{DS} = 75 V, V _{GS} = 0V
I _{DSS}	Drain-to-Source Leakage Current			150	μA	V _{DS} = 75V,V _{GS} = 0V,T _J =125°C
1	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	ПА	V _{GS} = -20V
R _G	Gate Resistance		2.1		Ω	

Notes:

① Repetitive rating; pulse width limited by max. junction temperature.

- \odot Limited by T_{Jmax}, starting T_J = 25°C, L = 0.138mH, R_G = 50 Ω , I_{AS} = 46A, V_{GS} =10V.
- ④ Pulse width \leq 400µs; duty cycle \leq 2%.
- \odot C_{oss} eff. (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- \odot C_{oss} eff. (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- \circledast R₀ is measured at T_J approximately 90°C.
- (9) Limited by T_{Jmax} , starting $T_J = 25^{\circ}$ C, L = 1mH, $R_G = 50\Omega$, $I_{AS} = 20$ A, $V_{GS} = 10$ V.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994: <u>http://www.irf.com/technical-info/appnotes/an-994.pdf</u>

2

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
gfs	Forward Transconductance	154			S	V _{DS} = 10V, I _D =46A
Q _g	Total Gate Charge		73	109		I _D = 46A
Q _{gs}	Gate-to-Source Charge		18		nC	V _{DS} = 38V
Q _{gd}	Gate-to-Drain Charge		23			V _{GS} = 10V
Q _{sync}	Total Gate Charge Sync. (Qg– Qgd)		50	_		
t _{d(on)}	Turn-On Delay Time		11			V _{DD} = 38V
t _r	Rise Time		48			I _D = 46A
t _{d(off)}	Turn-Off Delay Time		51		ns	R _G = 2.7Ω
t _f	Fall Time		39			V _{GS} = 10V④
C _{iss}	Input Capacitance		4020			V _{GS} = 0V
C _{oss}	Output Capacitance		330			V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		205		ΒF	f = 1.0MHz, See Fig.7
$C_{\text{oss eff.}(\text{ER})}$	Effective Output Capacitance (Energy Related)		295			V_{GS} = 0V, VDS = 0V to 60V (6)
$C_{oss eff.(TR)}$	Output Capacitance (Time Related)		380			V _{GS} = 0V, VDS = 0V to 60V⑤
Diode Cha	racteristics					
Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current (Body Diode)			76		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			280	A	integral reverse p-n junction diode.
V _{SD}	Diode Forward Voltage			1.2	V	$T_{J} = 25^{\circ}C, I_{S} = 46A, V_{GS} = 0V @$
dv/dt	Peak Diode Recovery dv/dt3		10		V/ns	T _J = 175°C,I _S =46A,V _{DS} = 75V③
1			33			$T_{\rm J} = 25^{\circ}C \qquad V_{\rm DD} = 64V$
t _{rr}	Reverse Recovery Time		39		ns	$T_{\rm J} = 125^{\circ}C$ I _F = 46A,
0	Deveree Deservery Observe		42			<u>T_j = 25°C</u> di/dt = 100A/µs ④
Q _{rr}	Reverse Recovery Charge		61		nC	$T = 125^{\circ}C$
			01			<u>T」= 125°C</u>

:::-

Downloaded from Arrow.com.

www.irf.com

I_{RRM}

Reverse Recovery Current

Α

T, = 25°C

2.2

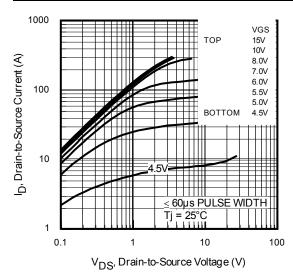


Fig 3. Typical Output Characteristics

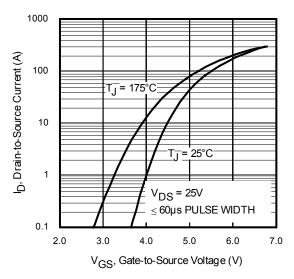


Fig 5. Typical Transfer Characteristics

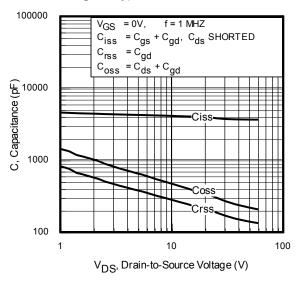


Fig 7. Typical Capacitance vs. Drain-to-Source Voltage

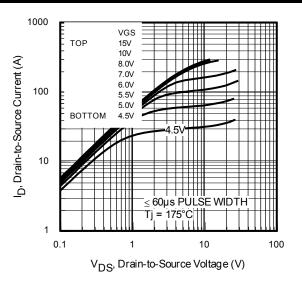


Fig 4. Typical Output Characteristics

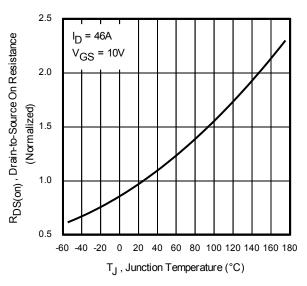
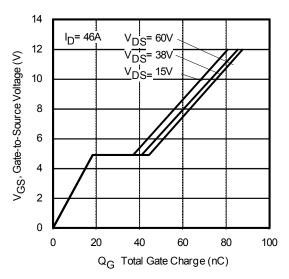



Fig 6. Normalized On-Resistance vs. Temperature

Fig 8. Typical Gate Charge vs. Gate-to-Source Voltage

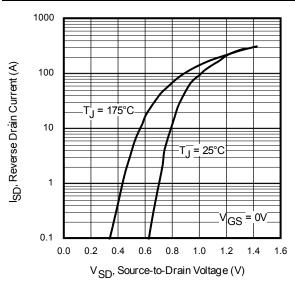


Fig 9. Typical Source-Drain Diode Forward Voltage

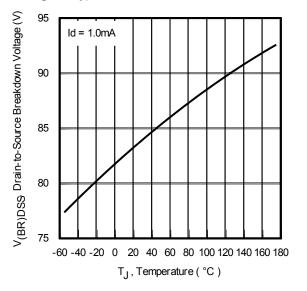
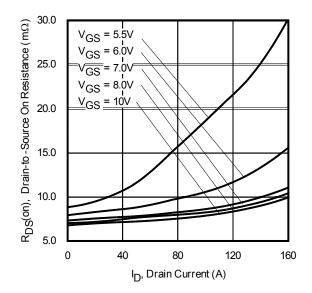
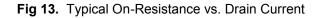




Fig 11. Drain-to-Source Breakdown Voltage

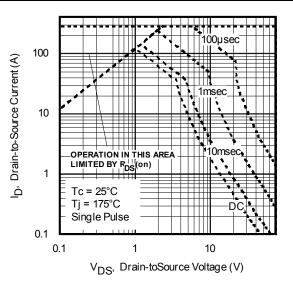


Fig 10. Maximum Safe Operating Area

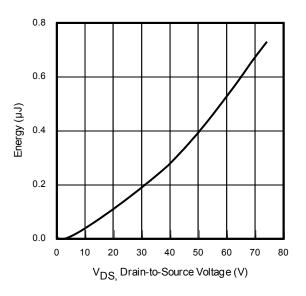
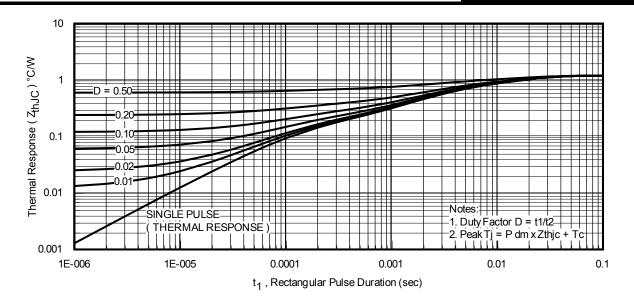



Fig 12. Typical Coss Stored Energy

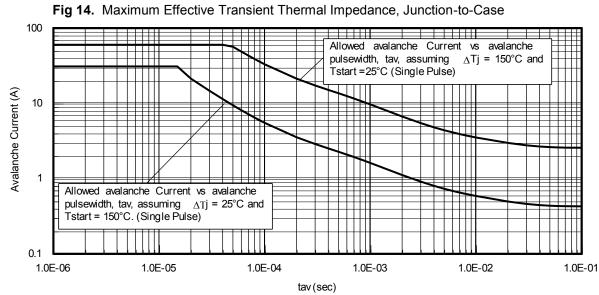


Fig 15. Avalanche Current vs. Pulse Width

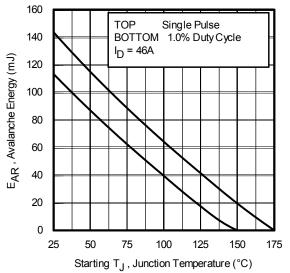


Fig 16. Maximum Avalanche Energy vs. Temperature

Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1.Avalanche failures assumption:

Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.

- 2. Safe operation in Avalanche is allowed as long asT_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b.
- 4. P_{D (ave)} = Average power dissipation per single avalanche pulse.
- 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. I_{av} = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 15, 16).
 - t_{av} = Average time in avalanche.

D = Duty cycle in avalanche = tav $\cdot f$

- $\begin{aligned} Z_{thJC}(D, t_{av}) &= \text{Transient thermal resistance, see Figures 14} \\ \text{PD (ave)} &= 1/2 \text{ (} 1.3 \cdot \text{BV} \cdot I_{av}) = \Delta \text{T} / Z_{thJC} \end{aligned}$
 - $I_{av} = 2\Delta T / [1.3 \cdot BV \cdot Z_{th}]$
 - E_{AS (AR)} = P_{D (ave)}.t_{av}

6

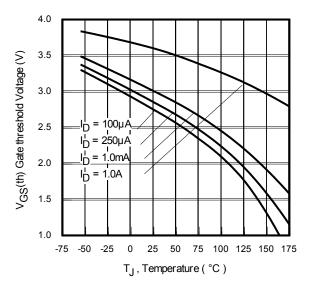


Fig 17. Threshold Voltage vs. Temperature

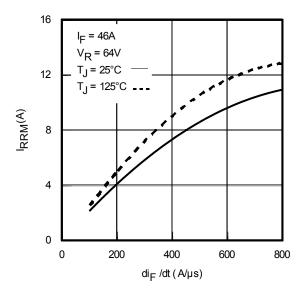


Fig 19. Typical Recovery Current vs. dif/dt

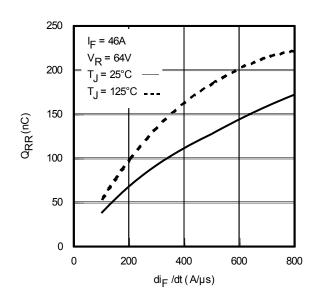


Fig 21. Typical Stored Charge vs. dif/dt

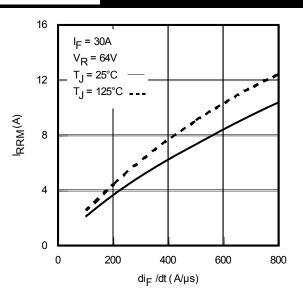


Fig 18. Typical Recovery Current vs. dif/dt

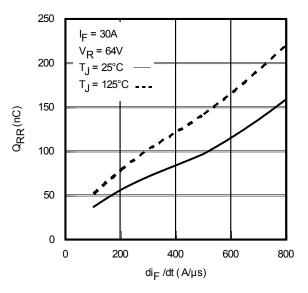


Fig 20. Typical Stored Charge vs. dif/dt

www.irf.com © 2015 Inter

7

Downloaded from Arrow.com.

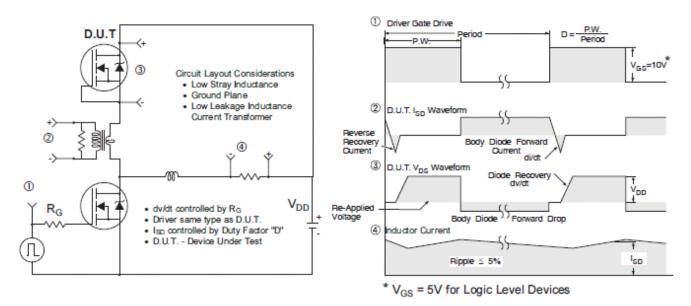


Fig 22. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET[®] Power MOSFETs

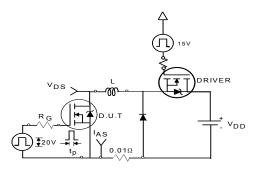


Fig 23a. Unclamped Inductive Test Circuit

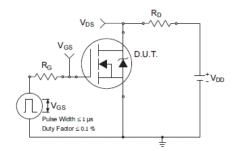


Fig 24a. Switching Time Test Circuit

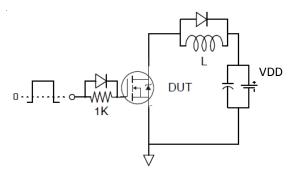
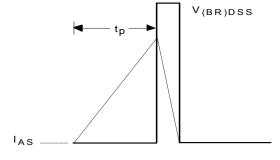




Fig 25a. Gate Charge Test Circuit

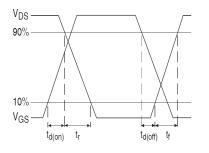


Fig 24b. Switching Time Waveforms

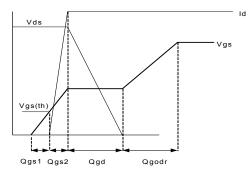
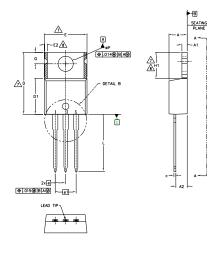


Fig 25b. Gate Charge Waveform

8 www.ir


TO-220AB Package Outline (Dimensions are shown in millimeters (inches))

A

DETAIL B

h2) BASE METAL 11

ß -b1,b3-SECTION C-C & D-D

THERMA

A

A

TO-220AB Part Marking Information

VIEW A-A

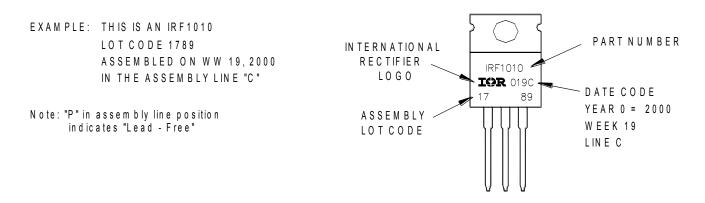
NOTES:

- 1.-DIMENSIONING AND TOLERANCING AS PER ASME Y14.5 M- 1994.
- 2.-DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS]
- LEAD DIMENSION AND FINISH UNCONTROLLED IN L1. 3 -4. -
 - Dimension D, D1 & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- DIMENSION b1, b3 & c1 APPLY TO BASE METAL ONLY. <u>/5.-</u>
- 6 -CONTROLLING DIMENSION : INCHES.
- 7.-THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSIONS E,H1,D2 & E1
- DIMENSION E2 X H1 DEFINE A ZONE WHERE STAMPING AND SINGULATION IRREGULARITIES ARE ALLOWED. 8.-
- OUTLINE CONFORMS TO JEDEC TO-220, EXCEPT A2 (mox.) AND D2 (min.) WHERE DIMENSIONS ARE DERIVED FROM THE ACTUAL PACKAGE OUTLINE. 9.-

SYMBOL	MILLIM	ETERS	INC	HES	
	MIN.	MAX.	MIN.	MAX.	NOTES
А	3.56	4.83	.140	.190	
A1	1.14	1.40	.045	.055	
A2	2.03	2.92	.080	.115	
b	0.38	1.01	.015	.040	
b1	0.38	0.97	.015	.038	5
b2	1.14	1.78	.045	.070	
b3	1.14	1.73	.045	.068	5
с	0.36	0.61	.014	.024	
c1	0.36	0.56	.014	.022	5
D	14.22	16.51	.560	.650	4
D1	8.38	9.02	.330	.355	
D2	11.68	12.88	.460	.507	7
E	9.65	10.67	.380	.420	4,7
E1	6.86	8.89	.270	.350	7
E2	-	0.76	-	.030	8
е	2.54			BSC	
e1	5.08	BSC	.200	BSC	
H1	5.84	6.86	.230	.270	7,8
L	12.70	14.73	.500	.580	
L1	3.56	4.06	.140	.160	3
øР	3.54	4.08	.139	.161	
Q	2.54	3.42	.100	.135	

LEAD ASSIGNMENTS

HEXFET 1.- GATE 2.- DRAIN 3.- SOURCE

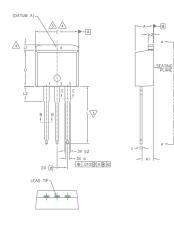

IGBTs, CoPACK

1.- GATE

2.- COLLECTOR 3.- EMITTER

DIODES

1.- ANODE 2.- CATHODE 3.- ANODE



TO-220AB packages are not recommended for Surface Mount Application.

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

TO-262 Package Outline (Dimensions are shown in millimeters (inches)

S						
S Y M		DIMENSIONS				
B	MILLIM	ETERS	INC	HES	O T E S	
0 L	MIN.	MAX.	MIN.	MAX.	S	
A	4.06	4.83	.160	.190		
A1	2.03	3.02	.080	.119		
b	0.51	0.99	.020	.039		
b1	0.51	0.89	.020	.035	5	
b2	1.14	1.78	.045	.070		
b3	1.14	1.73	.045	.068	5	
с	0.38	0.74	.015	.029		
c1	0.38	0.58	.015	.023	5	
c2	1.14	1.65	.045	.065		
D	8.38	9.65	.330	.380	3	
D1	6.86	-	.270	-	4	
E	9.65	10.67	.380	.420	3,4	
E1	6.22	-	.245		4	
e	2.54	BSC	.100	BSC		
L	13.46	14.10	.530	.555		
L1	-	1.65	-	.065	4	
L2	3.56	3.71	.140	.146		

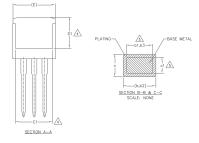
- NOTES:
- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

3. DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.

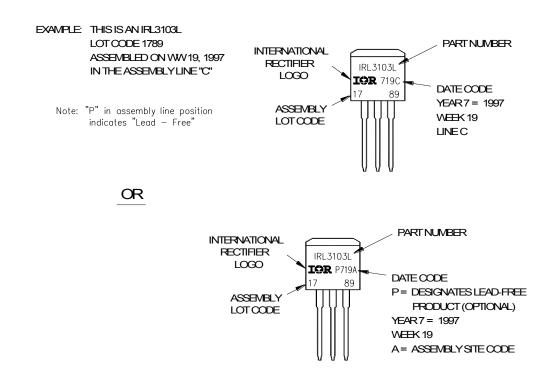
- 4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.
- 5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

6. CONTROLLING DIMENSION: INCH.

7.- OUTLINE CONFORM TO JEDEC TO-262 EXCEPT A1(max.), b(min.) AND D1(min.) WHERE DIMENSIONS DERIVED THE ACTUAL PACKAGE OUTLINE.


LEAD ASSIGNMENTS

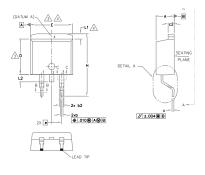
IGBTS, COPACK

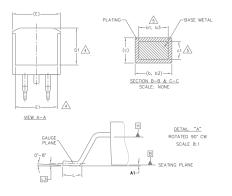

- 1.- GATE
- 2.- COLLECTOR 3.- EMITTER
- 4.- COLLECTOR

HEXFET DIODES

- 1.- GATE 2.- DRAIN 3.- SOURCE 4.- DRAIN 1.- ANODE (TWO DIE) / OPEN (ONE DIE) 2, 4.- CATHODE
 - 3.- ANODE

TO-262 Part Marking Information




Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Downloaded from Arrow.com.

D²Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches))

S Y M		DIMEN	ISIC	ONS		N
В	MILLIM	ETERS		INC	HES	N O T E S
0 L	MIN.	MAX.		MIN.	MAX.	E S
A	4.06	4.83		.160	.190	
A1	0.00	0.254		.000	.010	
b	0.51	0.99		.020	.039	
b1	0.51	0.89		.020	.035	5
b2	1.14	1.78		.045	.070	
b3	1.14	1.73		.045	.068	5
с	0.38	0.74		.015	.029	
c1	0.38	0.58		.015	.023	5
c2	1.14	1.65		.045	.065	
D	8.38	9.65		.330	.380	3
D1	6.86	-		.270	-	4
Ε	9.65	10.67		.380	.420	3,4
E1	6.22	-		.245	-	4
е	2.54	BSC		.100	BSC	
н	14.61	15.88		.575	.625	
L	1.78	2.79		.070	.110	
L1	-	1.68		-	.066	4
L2	-	1.78		-	.070	
L3	0.25	BSC		.010	BSC	

NOTES:

1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994

2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

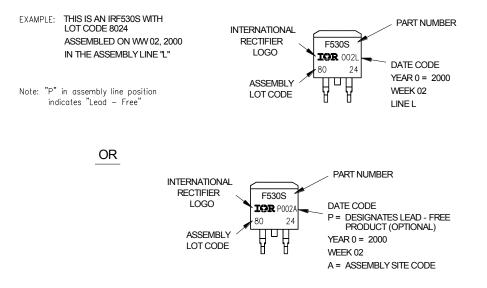
5. DIMENSION 61, 63 AND c1 APPLY TO BASE METAL ONLY.

6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.

7. CONTROLLING DIMENSION: INCH.

8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

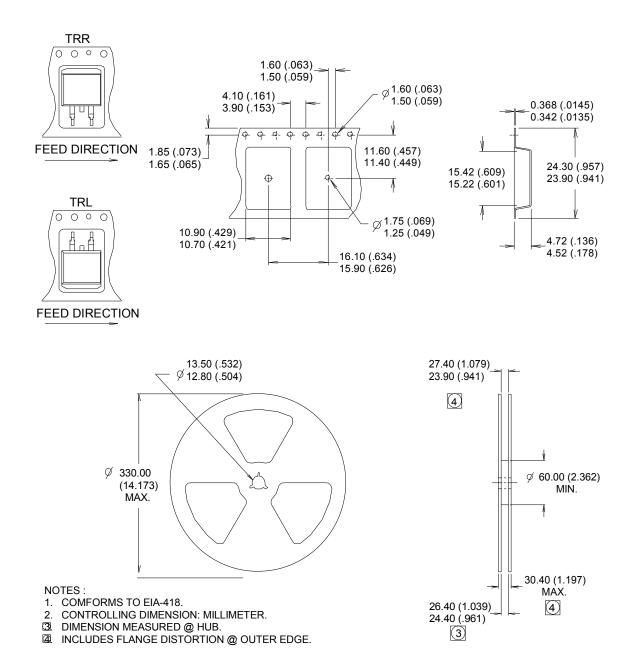
LEAD ASSIGNMENTS


DIODES

1.- ANODE (TWO DIE) / OPEN (ONE DIE) 2, 4.- CATHODE

3.- ANODE

HEXFET	IGBTs, CoPACK
1 GATE	1 GATE
2, 4 DRAIN	2, 4 COLLECTOR
3 SOURCE	3 EMITTER


D²Pak (TO-263AB) Part Marking Information

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

Downloaded from Arrow.com.

D²Pak (TO-263AB) Tape & Reel Information (Dimensions are shown in millimeters (inches))

Note: For the most current drawing please refer to IR website at http://www.irf.com/package/

www.irf.com

 12
 www.ir

 Downloaded from
 Arrow.com.

Qualification Information[†]

Qualification Level		Industrial (per JEDEC JESD47F) ^{††}
Moisture Sensitivity Level	TO-220	N/A
	D ² Pak	MSL1
	TO-262	(per JEDEC J-STD-020D ^{††})
RoHS Compliant		Yes

+ Qualification standards can be found at International Rectifier's web site: <u>http://www.irf.com/product-info/reliability/</u>

† Applicable version of JEDEC standard at the time of product release.

Revision History

Date	Comment
03/05/2015	 Updated E_{AS (L=1mH)} = 209mJ on page 2 Updated note 9 "Limited by T_{Jmax}, starting T_J = 25°C, L = 1mH, R_G = 50Ω, I_{AS} = 20A, V_{GS} =10V" on page 2 Updated package outline on page 9,10,11.
04/21/15	Updated Vsd curve Fig 9 on page 5

IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA To contact International Rectifier, please visit <u>http://www.irf.com/whoto-call/</u>

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.