

v03.0513

GaAs MMIC I/Q DOWNCONVERTER 5.6 - 8.6 GHz

Data Taken As IRM With External IF 90° Hybrid, IF = 1000 MHz

[1] Data taken without external 90° hybrid.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v03.0513

GaAs MMIC I/Q DOWNCONVERTER 5.6 - 8.6 GHz

Data Taken as IRM With External IF 90° Hybrid, IF = 1000 MHz

+25C

+85C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

-40C

v03.0513

GaAs MMIC I/Q DOWNCONVERTER 5.6 - 8.6 GHz

Quadrature Channel Data Taken Without IF 90° Hybrid, IF = 1000 MHz

MIXERS - I/Q MIXERS, IRMS & RECEIVERS - SMT

9

[1] Data taken with IF = 1000 MHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

5.6 - 8.6 GHz

v03.0513

ROHS T

EARTH FRIENDLY Data Taken as IRM With External IF 90° Hybrid, IF = 1000 MHz

Image Rejection USB vs. Temperature

Input IP3, USB vs. Temperature

GaAs MMIC I/Q DOWNCONVERTER

Input P1dB, USB vs. Temperature

Input IP3, USB vs. LO Drive

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners. For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

5.6 - 8.6 GHz

v03.0513

Data Taken as IRM With External IF 90° Hybrid, IF = 2000 MHz

Image Rejection LSB vs. Temperature

Input IP3, LSB vs. Temperature

GaAs MMIC I/Q DOWNCONVERTER

Input IP3, LSB vs. LO Drive

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

5.6 - 8.6 GHz

8.6

8.6

GaAs MMIC I/Q DOWNCONVERTER

v03.0513

GAIN (dB)

CONVERSION

IMAGE REJECTION (dBc

IP3 (dBm)

-3

5.5

6

6.5

+25C

Data Taken as IRM With External IF 90° Hybrid, IF = 2000 MHz Conversion Gain, USB vs. Temperature Conversion Gain, USB vs. LO Drive 18 18 17 17 16 CONVERSION GAIN (dB) 16 15 15 14 14 13 13 12 12 11 11 10 10 9 g 8 R 6.1 7.1 8.6 6.6 7.6 8.1 6.6 5.6 7.6 8.1 5.6 7.1 RF FREQUENCY (GHz) **RF FREQUENCY (GHz)** +25C +85C -40C +2 dBm +4 dBm 0 Input P1dB, USB vs. Temperature Image Rejection USB vs. Temperature 45 40 35 30 -6 P1dB (dBm 25 -8 20 -10 15 -12 10 -14 5 0 -16 6.1 8.1 8.6 6.1 6.6 7.1 7.6 8.1 5.6 6.6 7.1 76 5.6 **RF FREQUENCY (GHz)** RF FREQUENCY (GHz) +25C -40C +85C -40 C +25 C +85 C Input IP3, USB vs. Temperature Input IP3, USB vs. LO Drive 6 6 5 5 3 (dBm) 2 ВЗ 1 0 0 -1 -1 -2 -2

-3

5.5

6.5

-2 dBm 0 dBm

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

8

8.5

-40C

7.5

+85C

FREQUENCY (GHz)

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

7.5

FREQUENCY (GHz)

8.5

+2 dBm +4 dBm

9 - 7

v03.0513

GaAs MMIC I/Q DOWNCONVERTER 5.6 - 8.6 GHz

MxN Spurious Outputs

	nLO					
mRF	0	1	2	3	4	
0	x	34	59	67	56	
1	23	0	52	71	80	
2	64	50	56	91	95	
3	92	93	53	45	90	
4	90 115 102 67 64					
RF = 6.1 GHz @ -20 dBm						
LO = 7.1 GHz @ 0 dBm						
Data taken without IF hybrid						

All values in dBc below IF power level (LO - RF = 1 GHz)

Outline Drawing

Absolute Maximum Ratings

RF	+15 dBm
LO Drive	+20 dBm
Vdd	+5.5V
Channel Temperature	150 °C
Continuous Pdiss (T=85°C) (derate 21.6 mW/°C above 85°C)	1.4 W
Thermal Resistance (R _{TH}) (channel to package bottom)	46.3 °C/W
Storage Temperature	-65 to +150 °C
Operating Temperature	-55 to +85 °C
ESD Sensitivity (HBM)	Class 1A

ELECTROSTATIC SENSITIVE DEVICE **OBSERVE HANDLING PRECAUTIONS**

-C-

- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM.
- PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

.003[0.08] C

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking ^[1]
HMC951LP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 ^[2]	<u>H951</u> XXXX

[1] 4-Digit lot number XXXX

[2] Max peak reflow temperature of 260 °C

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v03.0513

GaAs MMIC I/Q DOWNCONVERTER 5.6 - 8.6 GHz

Pin Descriptions

Pin Number	Function	Description	Interface Schematic
1, 4, 6, 7, 8, 9, 11, 12, 13, 19, 21, 22, 24	GND	These pins and package bottom must be connected to RF/DC ground	
2	VDD	Power supply voltage for RF Amplifier. Bypass capacitors are required. See application circuit	Vdd O E E SD =
3	VBIAS_RF	This pin is used to set the DC current of the RF amplifier by selection of the external bias resistor. See application circuit.	
5	RFIN	This pin is the RF input pin. It is AC coupled and matched to 50 Ohms	
10	LOIN	This pin is the LO input pin. It is AC coupled and matched to 50 Ohms	
14, 16	VDD1, VDD2	Power supply voltages for LO Amplifier. Bypass capacitors are required. See application circuit	Vdd1, Vdd2 ESD
15	VBIAS_LO	This pin is used to set the DC current of the LO amplifier by selection of the external bias resistor. See application circuit.	
17, 18	N/C	These pins are not connected internally; however, all data shown herein was measured with these pins connected to RF/DC ground externally.	
20	IF2	This pin is DC coupled. For applications not requiring operations to DC this port should be DC blocked externally using a series capacitor whose value has been chosen to	IF1,IF2
23	IF1	pass the necessary frequency range. For operation to DC, this pin must not sink / source more than 3 mA of current or part non-function and possible failure will result.	

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

v03.0513

GaAs MMIC I/Q DOWNCONVERTER 5.6 - 8.6 GHz

Typical Application Circuit

9

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v03.0513

GaAs MMIC I/Q DOWNCONVERTER 5.6 - 8.6 GHz

Evaluation PCB

List of Materials for Evaluation PCB 131372^[1]

Item	Description
J1, J2	PCB Mount SMA RF Connector, SRI
J3, J4	PCB Mount SMA Connector, Johnson
J5, J6	DC Pins
C1, C4, C6, C8, C10, C13	100 pF Capacitor, 0402 Pkg.
C2, C5, C7, C9, C11, C14	1000 pF Capacitor, 0402 Pkg.
C3, C12	4.7 μF Capacitor,1206 Pkg.
R1	390 Ohm Resistor, 0402 Pkg.
R3	1 kOhm Resistor, 0402 Pkg.
R4	0 Ohm Resistor, 0402 Pkg.
U1	HMC951LP4E
PCB [2]	129744 Evaluation Board

[1] Reference this number when ordering complete evaluation PCB

[2] Circuit Board Material: Rogers 4350

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

v03.0513

Notes:

GaAs MMIC I/Q DOWNCONVERTER 5.6 - 8.6 GHz

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.