PIN CONNECTIONS AND INTERNAL BLOCK DIAGRAM

Pin No.	Pin Name	
1	OUTPUT/Vcc2	
2	Vbias + Venable	
3	Vcont	
4	INPUT	
5	Vcc1	
6	GND	

Remark Exposed pad : GND

ABSOLUTE MAXIMUM RATINGS (TA = +25°C, unless otherwise specified)

Parameter	Symbol	Ratings	Unit
Supply Voltage	Vcc1, 2	5.5	V
	V _{bias} + V _{enable}	3.6	V
Control Voltage	Vcont	3.6	V
Circuit Current	Icc	400	mA
Control Current	Icont	0.5	mA
Input Power	Pin	+10	dBm
Power Dissipation	PD	700 Note	mW
Operating Ambient Temperature	TA	-40 to +85	°C
Storage Temperature	T _{stg}	-55 to +150	ç

Note Mounted on double-sided copper-clad $50 \times 50 \times 1.6$ mm epoxy glass PWB, T_A = +85°C

RECOMMENDED OPERATING RANGE (TA = +25°C, unless otherwise specified)

Parameter	Symbol	MIN.	TYP.	MAX.	Unit
Operating Frequency	fopt	2 400	2 450	2 500	MHz
Supply Voltage	Vcc1, 2	2.7	3.0	3.6	V
	V _{bias} + V _{enable}	0	3.0	3.1	V
Control Voltage	Vcont	0	3.0	3.6	V

ELECTRICAL CHARACTERISTICS

(TA = +25°C, Vcc1, 2 = Vbias + Venable = 3.0 V, f = 2 450 MHz, Pout = +20 dBm, External input and output matching, unless otherwise specified)

Parameter	Symbol	Test Conditions	MIN.	TYP.	MAX.	Unit
Circuit Current	Icc	V _{cont} = 3.0 V, P _{in} = 0 dBm	_	65	70	mA
Shut Down Current	Ishut down	$\begin{aligned} &V_{cont} = 3.0 \text{ V}, \text{ Pin} = 0 \text{ dBm }, \\ &V_{bias} + V_{enable} = 0 \text{ V} \end{aligned}$	_	0	1	μΑ
Output Power 1	Pout1	$V_{cont} = 3.0 \text{ V}, P_{in} = 0 \text{ dBm}$	+18.0	+20.0		dBm
Output Power 2	Pout2	V _{cont} = 0 V, P _{in} = 0 dBm	-	-3.0	+1.0	dBm
Gain Control Range	GCR	V _{cont} = 0 to 3.0 V, P _{in} = 0 dBm	17	23	-	dB
Efficiency	PAE	V _{cont} = 3.0 V, P _{in} = 0 dBm	-	50	-	%

EVALUATION CIRCUIT

The application circuits and their parameters are for reference only and are not intended for use in actual design-ins.

TYPICAL CHARACTERISTICS (TA = +25°C, unless otherwise specified)

Condition: f = 2 450 MHz, Vcc1 = Vcc2 = Vbias + Venable = Vcont = 3.0 V, with external input and output matching circuit

Condition: f = 2 450 MHz, Vcc1 = Vcc2 = Vbias + Venable = 3.0 V, Pin = 0 dBm, with external input and output matching circuit

Remark The graphs indicate nominal characteristics.

5

Condition: f = 2 450 MHz, Vcc1 = Vcc2 = Vcont = 3.0 V, Pin = 0 dBm, with external input and output matching circuit

Condition : $Vcc1 = Vcc2 = V_{bias} + V_{enable} = V_{cont} = 3.0 \text{ V}$, $P_{in} = -20 \text{ dBm}$, with external input and output matching circuit

6

MOUNTING PAD AND SOLDER MASK LAYOUT DIMENSIONS

6-PIN PLASTIC TSON (UNIT: mm)

MOUNTING PAD

SOLDER MASK

Solder thickness: 0.08 mm

Remark The mounting pad and solder mask layouts in this document are for reference only.

<R> PACKAGE DIMENSIONS

6-PIN PLASTIC TSON (UNIT: mm)

RECOMMENDED SOLDERING CONDITIONS

This product should be soldered and mounted under the following recommended conditions. For soldering methods and conditions other than those recommended below, contact your nearby sales office.

Soldering Method	Soldering Conditions	Condition Symbol	
Infrared Reflow	Peak temperature (package surface temperature) Time at peak temperature Time at temperature of 220°C or higher Preheating time at 120 to 180°C Maximum number of reflow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 60 seconds or less : 120±30 seconds : 3 times : 0.2%(Wt.) or below	IR260
Wave Soldering	Peak temperature (molten solder temperature) Time at peak temperature Preheating temperature (package surface temperature) Maximum number of flow processes Maximum chlorine content of rosin flux (% mass)	: 260°C or below : 10 seconds or less : 120°C or below : 1 time : 0.2%(Wt.) or below	WS260
Partial Heating	Peak temperature (terminal temperature) Soldering time (per side of device) Maximum chlorine content of rosin flux (% mass)	: 350°C or below : 3 seconds or less : 0.2%(Wt.) or below	HS350

Caution Do not use different soldering methods together (except for partial heating).

Caution

GaAs Products

This product uses gallium arsenide (GaAs).

GaAs vapor and powder are hazardous to human health if inhaled or ingested, so please observe the following points.

- Follow related laws and ordinances when disposing of the product. If there are no applicable laws and/or ordinances, dispose of the product as recommended below.
 - Commission a disposal company able to (with a license to) collect, transport and dispose of materials that contain arsenic and other such industrial waste materials.
 - Exclude the product from general industrial waste and household garbage, and ensure that the product is controlled (as industrial waste subject to special control) up until final disposal.
- Do not burn, destroy, cut, crush, or chemically dissolve the product.
- Do not lick the product or in any way allow it to enter the mouth.

