
One of Eight Drivers

A2982SLW and A2984SLW

Dwg. GP-022-4A

ELECTRICAL CHARACTERISTICS at $T_A = +25^{\circ}C$ (unless otherwise specified).

		Applicable		Test	Limits			
Characteristic	Symbol	Devices	Test Conditions	Fig.	Min.	Тур.	Max.	Units
Output Leakage Current	I _{CEX}	2981/82†	$V_{IN} = 0.4 \text{ V*}, V_{S} = 50 \text{ V}, T_{A} = +70^{\circ}\text{C}$	1	_	_	200	μΑ
		2983/84†	$V_{IN} = 0.4 \text{ V}^*, V_S = 80 \text{ V}, T_A = +70^{\circ}\text{C}$	1	_	_	200	μΑ
Output Sustaining	V _{CE(SUS)}	2981/82†	I _{OUT} = -45 mA		35	_	_	V
Voltage		2983/84†	I _{OUT} = -70 mA	_	45	_	_	V
Collector-Emitter			V _{IN} = 2.4 V, I _{OUT} = -100 mA	2	_	1.6	1.8	V
Saturation Voltage	V _{CE(SAT)}	All	V _{IN} = 2.4 V, I _{OUT} = -225 mA	2	_	1.7	1.9	V
			V _{IN} = 2.4 V, I _{OUT} = -350 mA	2	_	1.8	2.0	V
Input Current		2981/83A	V _{IN} = 2.4 V	3	_	140	200	μΑ
	I _{IN(ON)}		V _{IN} = 3.85 V	3	_	310	450	μΑ
		2982/84†	V _{IN} = 2.4 V	3	_	140	200	μΑ
			V _{IN} = 12 V	3	_	1.25	1.93	mA
Output Source Current	I _{OUT}	2981/83A	V _{IN} = 2.4 V, V _{CE} = 2.0 V	2	-350	_	_	mA
(Outputs Open)		2982/84†	V _{IN} = 2.4 V, V _{CE} = 2.0 V	2	-350	_	_	mA
Supply Current	I _S	2981/82†	$V_{IN} = 2.4 \text{ V}^*, V_S = 50 \text{ V}$	4		_	10	mA
Leakage Current		2983/84†	$V_{IN} = 2.4 \text{ V}^*, V_S = 80 \text{ V}$	4	_	_	10	mA
Clamp Diode	I _R	2981/82†	V _R = 50 V, V _{IN} = 0.4 V*	5	_	_	50	μΑ
Forward Voltage		2983/84†	V _R = 80 V, V _{IN} = 0.4 V*	5	_	_	50	μΑ
Clamp Diode	V _F	All	I _F = 350 mA	6	_	1.5	2.0	V
Turn-On Delay	t _{ON}	All	$0.5~E_{IN}$ to $0.5~E_{OUT},~R_L=100\Omega,$ $V_S=35~V$	_	_	1.0	2.0	μs
Turn-Off Delay	t _{OFF}	All	$0.5~E_{\text{IN}}$ to $0.5~E_{\text{OUT}},~R_{\text{L}} = 100\Omega,$ $V_{\text{S}} = 35~V,~\text{See}$ Note	_	_	5.0	10	μs

NOTES: Turn-off delay is influenced by load conditions. Systems applications well below the specified output loading may require timing considerations for some designs, i.e., multiplexed displays or when used in combination with sink drivers in a totem pole configuration.

Negative current is defined as coming out of (sourcing) the specified device terminal.

UDN2982A, UDN2982LW, or A2982SLW,

UDN2983A,

UDN2984A, UDN2984LW, or A2984SLW.

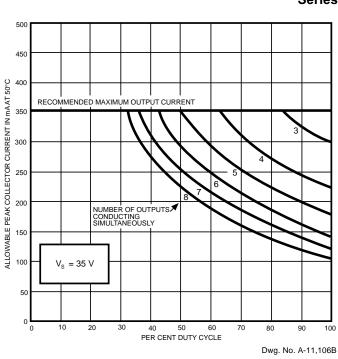
The A2984SLW, UDN2984A, & UDN2984LW are discontinued. Shown for reference only.

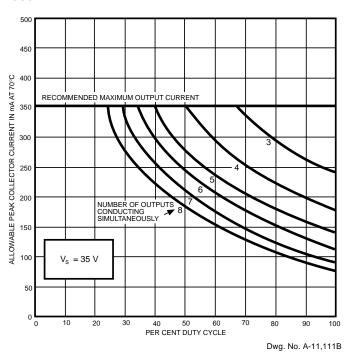
^{*} All inputs simultaneously.

[†] Complete part number includes a prefix (A or UDN) and a suffix (A or SLW) as follows: UDN2981A,

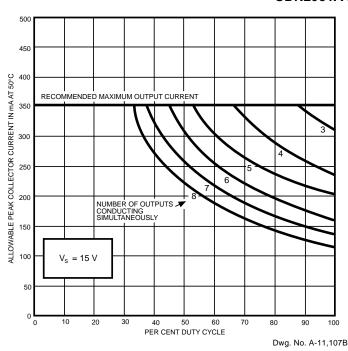
TEST FIGURES Figure 1 Figure 2 Figure 3 I_{IN} -O OPEN I_{OUT} Dwg. No. A-11,083 Dwg. No. A-11,084 Dwg. No. A-11,085 Figure 4 Figure 5 Figure 6 **OPEN** o OPEN OPEN

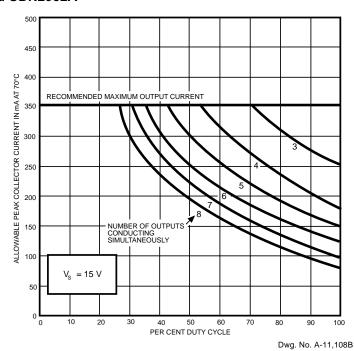
Dwg. No. A-11,086

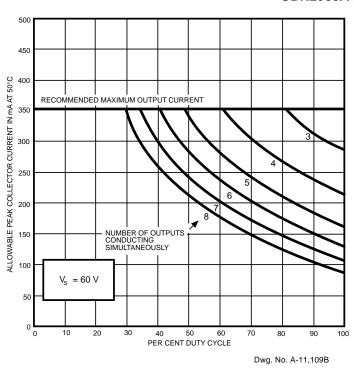

Dwg. No. A-11,087

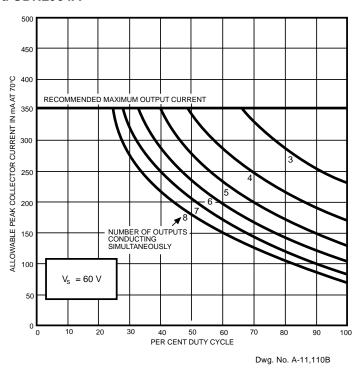

Dwg. No. A-11,088

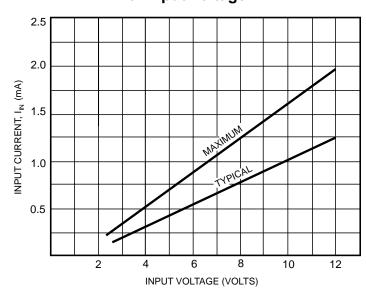
2981 THRU 2984 8-CHANNEL SOURCE DRIVERS


Allowable peak collector current as a function of duty cycle

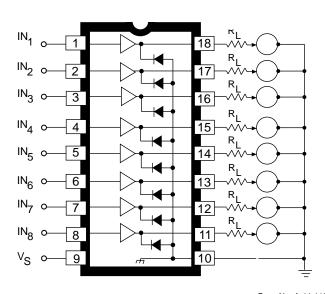

Series UDN2980A


UDN2981A and UDN2982A




Allowable peak collector current as a function of duty cycle

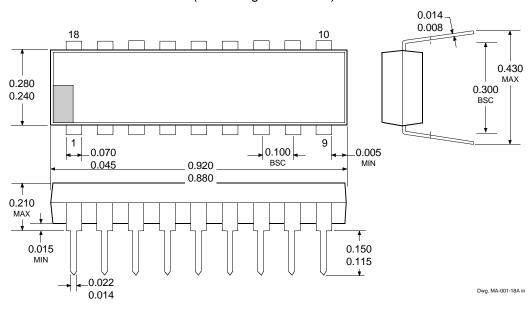
UDN2983A and UDN2984A



Input current as a function of input voltage

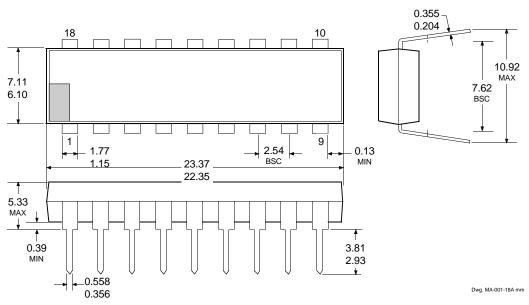
Dwg. No. A-11,115B

Typical electrosensitive printer application



Dwg. No. A-11,113A

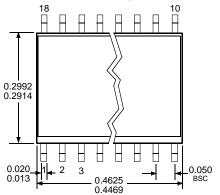
UDN2981A, UDN2982A, UDN2983A, and UDN2984A

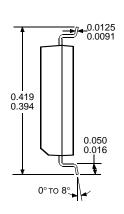

Dimensions in Inches

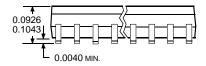
(controlling dimensions)

Dimensions in Millimeters

(for reference only)

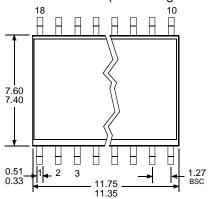

- NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.
 - 2. Lead spacing tolerance is non-cumulative.
 - 3. Lead thickness is measured at seating plane or below.
 - 4. Supplied in standard sticks/tubes of 21 devices.

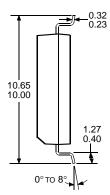

UDN2982LW and UDN2984LW

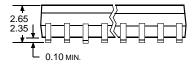

(add "TR" to part number for tape and reel)

Dimensions in Inches

(for reference only)



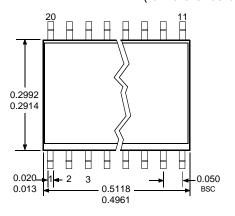


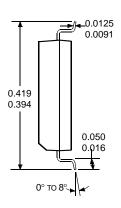

Dwg. MA-008-18A in

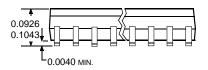
Dimensions in Millimeters

(controlling dimensions)

Dwg. MA-008-18A mm

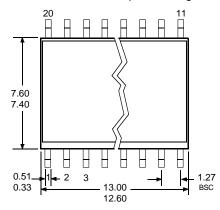

NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.

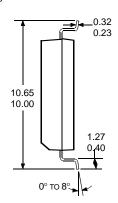

- 2. Lead spacing tolerance is non-cumetive.
- 3. Supplied in standard sticks/tubes of 41 devices or add "TR" to part number for tape and reel.

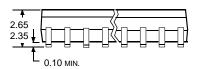


A2982SLW and A2984SLW

(add "TR" to part number for tape and reel) **Dimensions in Inches**(for reference only)






Dwg. MA-008-20 in

Dimensions in Millimeters

(controlling dimensions)

Dwg. MA-008-20 mm

NOTES: 1. Exact body and lead configuration at vendor's option within limits shown.

- 2. Lead spacing tolerance is non-cumulative.
- 3. Supplied in standard sticks/tubes of 37 devices or add "TR" to part number for tape and reel.

2981 THRU 2984 8-CHANNEL SOURCE DRIVERS

The products described here are manufactured under one or more U.S. patents or U.S. patents pending.

Allegro MicroSystems, Inc. reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current.

Allegro products are not authorized for use as critical components in life-support devices or systems without express written approval.

The information included herein is believed to be accurate and reliable. However, Allegro MicroSystems, Inc. assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use.

