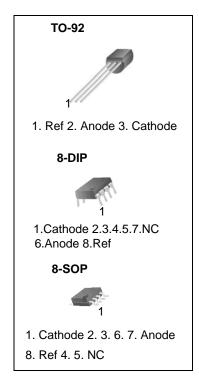
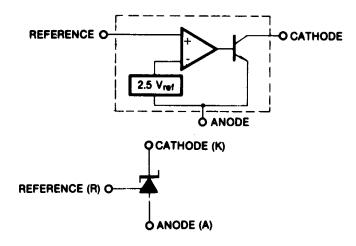


TL431/TL431A


Programmable Shunt Regulator

Features


- Programmable Output Voltage to 36 Volts
- Low Dynamic Output Impedance 0.2Ω Typical
- Sink Current Capability of 1.0 to 100mA
- Equivalent Full-Range Temperature Coefficient of 50ppm/°C Typical
- Temperature Compensated For Operation Over Full Rated Operating Temperature Range
- Low Output Noise Voltage
- Fast Turn-on Response

Description

The TL431/TL431A are three-terminal adjustable regulator series with a guaranteed thermal stability over applicable temperature ranges. The output voltage may be set to any value between VREF (approximately 2.5 volts) and 36 volts with two external resistors These devices have a typical dynamic output impedance of 0.2Ω Active output circuitry provides a very sharp turn-on characteristic, making these devices excel lent replacement for zener diodes in many applications.

Internal Block Diagram

Absolute Maximum Ratings

(Operating temperature range applies unless otherwise specified.)

Parameter	Symbol	Value	Unit
Cathode Voltage	VKA	37	V
Cathode Current Range (Continuous)	IKA	-100 ~ +150	mA
Reference Input Current Range	IREF	-0.05 ~ +10	mA
Power Dissipation D, LP Suffix Package P Suffix Package	PD	770 1000	mW mW
Operating Temperature Range	TOPR	-25 ~ +85	°C
Junction Temperature	TJ	150	°C
Storage Temperature Range	TSTG	-65 ~ +150	°C

Recommended Operating Conditions

Parameter	Symbol	Min	Тур	Max	Unit
Cathode Voltage	VKA	VREF	-	36	V
Cathode Current	IKA	1.0	-	100	mA

Electrical Characteristics

(TA = +25°C, unless otherwise specified)

Parameter	Symbol	Conditions		TL431			TL431A			Unit
raiailletei	Symbol			Min.	Тур.	Max.	Min.	Тур.	Max.	Unit
Reference Input Voltage	VREF	VKA=VREF, IKA=10mA		2.440	2.495	2.550	2.470	2.495	2.520	V
Deviation of Reference Input Voltage Over- Temperature (Note 1)	ΔVREF/ ΔT	VKA=VREF, IKA=10mA TMIN≤TA≤TMAX		-	4.5	17	-	4.5	17	mV
Ratio of Change in Reference Input Voltage	ΔVREF/		ΔV _K A=10V- VREF	-	- 1.0	-2.7	-	-1.0	-2.7	mV/V
to the Change in Cathode Voltage	ΔVΚΑ		ΔVKA=36V- 10V	-	-0.5	-2.0	-	-0.5	-2.0	111 V / V
Reference Input Current	IREF	IKA=10m/ R ₁ =10KΩ	,	-	1.5	4	-	1.5	4	μА
Deviation of Reference Input Current Over Full Temperature Range	ΔIREF/ΔT	I _{KA} =10mA, R ₁ =10KΩ,R ₂ =∞ T _A =Full Range		-	0.4	1.2	-	0.4	1.2	μА
Minimum Cathode Cur- rent for Regulation	IKA(MIN)	VKA=VREF		-	0.45	1.0	-	0.45	1.0	mA
Off - Stage Cathode Current	lka(off)	VKA=36V, VREF=0		-	0.05	1.0	-	0.05	1.0	μА
Dynamic Impedance (Note 2)	ZKA	VKA=VREF, IKA=1 to 100mA f ≥1.0KHz		-	0.15	0.5	-	0.15	0.5	Ω

[•] TMIN= -25 °C, TMAX= +85 °C

Test Circuits

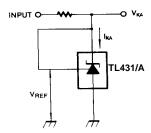


Figure 1. Test Circuit for VKA=VREF

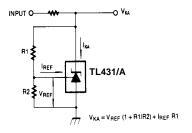


Figure 2. Test Circuit for VKA≥VREF



Figure 3. Test Circuit for IKA(OFF)

Typical Perfomance Characteristics



Figure 1. Cathode Current vs. Cathode Voltage

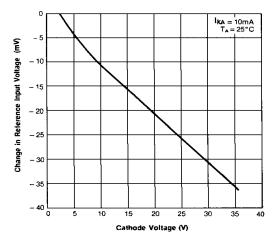


Figure 3. Change In Reference Input Voltage vs. Cathode Voltage

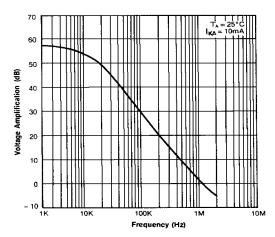


Figure 5. Small Signal Voltage Amplification vs. Frequency

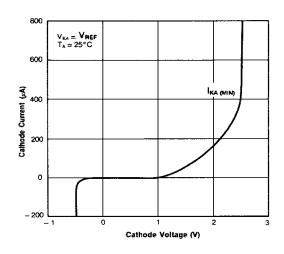


Figure 2. Cathode Current vs. Cathode Voltage

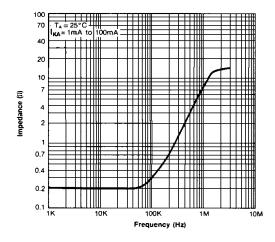
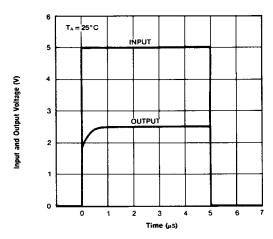
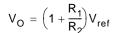
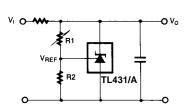
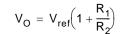
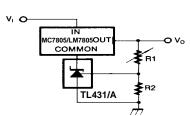


Figure 4. Dynamic Impedance Frequency


Figure 6. Pulse Response

Typical Application

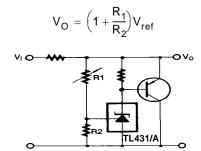
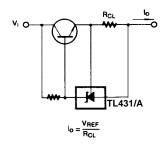
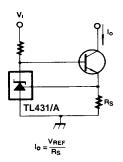
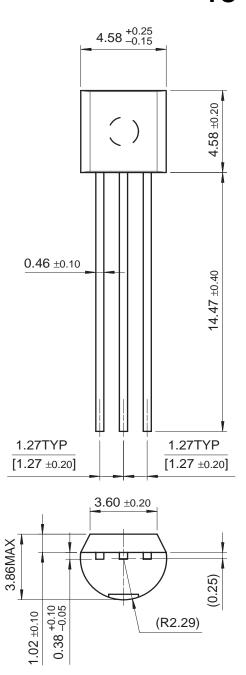



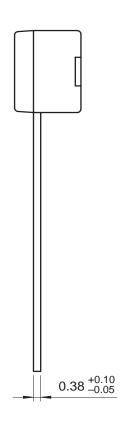
Figure 10. Shunt Regulator

Figure 11. Output Control for Three-Termianl Fixed Regulator

Figure 12. High Current Shunt Regulator

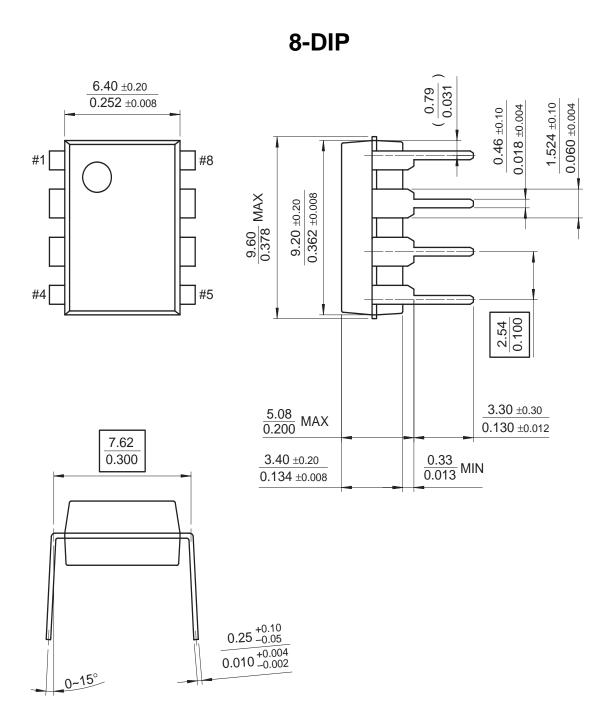



Figure 13. Current Limit or Current Source

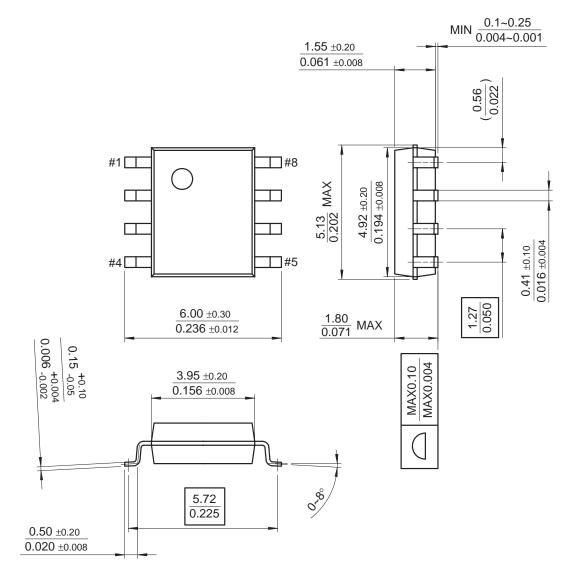

Figure 14. Constant-Current Sink

Mechanical Dimensions

Package


TO-92

Mechanical Dimensions (Continued)


Package

Mechanical Dimensions (Continued)

Package

8-SOP

Ordering Information

Product Number	Output Voltage Tolerance	Package	Operating Temperature
TL431ACLP	1%	TO-92	
TL431ACD	1 70	8-SOP	
TL431CLP		TO-92	-25 ~ + 85°C
TL431CP	2%	8-DIP	
TL431CD		8-SOP	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury of the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com

ON Semiconductor and III) are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.

Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com

N. American Technical Support: 800-282-9855 Toll Free Europe, Middle East and Africa Technical Support:

Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

www.onsemi.com