1 Characteristics

Symbol	Parameter	•		Value	Unit
I _{T(rms)}	On-state rms current (full sine wave)	IPAK, DPAK	T _c = 110 °C	4	А
	Non repetitive surge peak on-state curre	t _p = 20 ms	35	А	
ITSM	T _j initial = 25 °C)	t _p = 16.7 ms	38		
l ² t	I ² t value for fusing	6	A²s		
dl/dt	Critical rate of rise of on-state current $I_G = 2 \times I_{GT}$, $t_r \le 100 \text{ ns}$	50	A/µs		
I _{GM}	Peak gate current	T _j = 125 °C	4	А	
P _{G(AV)}	Average gate power dissipation	0.5	W		
T _{stg} T _j	Storage junction temperature range Operating junction temperature range	- 40 to + 150 - 40 to + 125	°C		
V _{DSM} , V _{RSM}	Non repetitive surge peak off-state voltag	t _p = 10 ms	700	۷	

Table 2. Absolute maximum ratings ($T_j = 25$ °C unless otherwise stated)

Table 3. Electrical characteristics (T_j = 25 °C, unless otherwise stated)

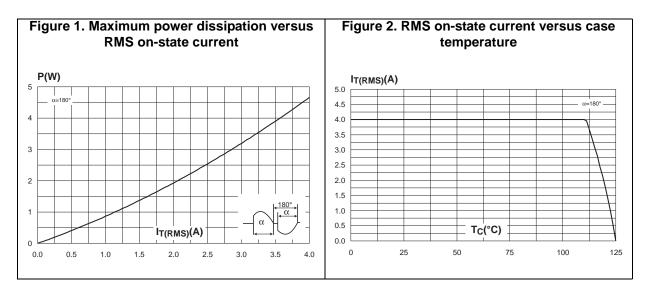
Test conditions	Quedrant		Value	Unit	
Test conditions	Quadrant		T405Q	Unit	
$V_{\rm D}$ = 12 V, R _L = 30 Ω	- - V	Max.	5 10	mA	
$V_{\rm D}$ = 12 V, R _L = 30 Ω	All	Max.	1.3	V	
$V_{\rm D} = V_{\rm DRM}, R_{\rm L} = 3.3 \text{ k} \Omega, T_{\rm j} = 125 \text{ °C}$	All	Min.	0.2	V	
_T = 100 mA		Max.	10	mA	
	I - III - IV	Max.	10	mA	
G = 1.2 IGT	II	Max.	15	ША	
$V_{\rm D} = 67\% V_{\rm DRM}$, gate open	T _j = 125 °C	Min.	10	V/µs	
(dV/dt)c = 2 V/µs	T _j = 125 °C	Min.	1.8	A/ms	
	$V_D = 12 \text{ V}, \text{ R}_L = 30 \Omega$ $V_D = \text{V}_{DRM}, \text{ R}_L = 3.3 \text{ k} \Omega, \text{ T}_j = 125 \text{ °C}$ $T_f = 100 \text{ mA}$ $G_G = 1.2 \text{ I}_{GT}$ $V_D = 67\% \text{ V}_{DRM}, \text{ gate open}$	$\begin{split} & I_{D} = 12 \text{ V, } \text{R}_{L} = 30 \Omega & I - II - III \\ \text{IV} \\ & I_{D} = 12 \text{ V, } \text{R}_{L} = 30 \Omega & \text{All} \\ & I_{D} = \text{V}_{\text{DRM}}, \text{R}_{L} = 3.3 \text{ k} \Omega, \text{T}_{j} = 125 \text{ °C} & \text{All} \\ & I_{T} = 100 \text{ mA} \\ & I_{G} = 1.2 \text{ I}_{\text{GT}} & \frac{\text{I} - III - IV}{\text{II}} \\ & I_{D} = 67\% \text{ V}_{\text{DRM}}, \text{ gate open} & \text{T}_{j} = 125 \text{ °C} \end{split}$	$\begin{split} & I - II - III \\ V_D &= 12 \text{ V}, \text{R}_L &= 30 \Omega \\ & I_D &= 12 \text{ V}, \text{R}_L &= 30 \Omega \\ & \text{Max.} \\ & V_D &= 12 \text{ V}, \text{R}_L &= 30 \Omega \\ & \text{Max.} \\ & M$	Test conditions Quadrant T405Q $T_D = 12 \text{ V}, \text{ R}_L = 30 \Omega$ $I - II - III$ Max. 5 $I_D = 12 \text{ V}, \text{ R}_L = 30 \Omega$ All Max. 10 $I_D = 12 \text{ V}, \text{ R}_L = 30 \Omega$ All Max. 1.3 $I_D = V_{DRM}, \text{ R}_L = 3.3 \text{ k} \Omega, \text{ T}_j = 125 ^{\circ}\text{C}$ All Min. 0.2 $I_T = 100 \text{ mA}$ Max. 10 10 $G_3 = 1.2 \text{ I}_{GT}$ I - III - IV Max. 10 $I_D = 67\% \text{ V}_{DRM}, \text{ gate open}$ $T_j = 125 ^{\circ}\text{C}$ Min. 10	

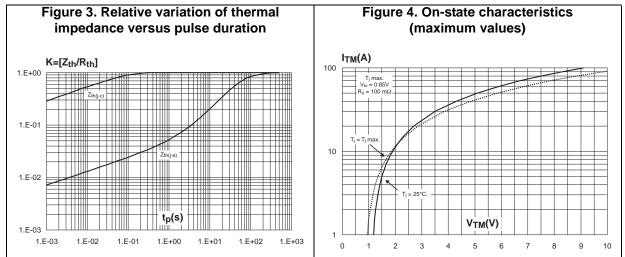
1. Minimum I_{GT} is guaranteed at 5% of I_{GT} max.

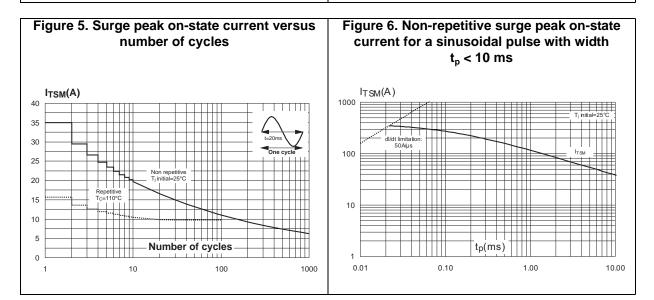
2. For both polarities of A2 referenced to A1

Symbol	Test o	Value	Unit		
V _{TM} ⁽¹⁾	I _{TM} = 5 A, t _p = 380 μs	T _j = 25 °C	Max.	1.5	V
V _{t0} ⁽¹⁾	Threshold voltage	T _j = 125 °C	Max.	0.85	V
R _d ⁽¹⁾	Dynamic resistance	T _j = 125 °C	Max.	100	mΩ
I _{DRM}		T _j = 25 °C	Max.	5	μA
I _{RRM}	$V_{DRM} = V_{RRM}$	T _j = 125 °C	ividX.	1	mA

Table 4. Static characteristics


1. For both polarities of A2 referenced to A1


Symbol	Par	Value	Unit				
R _{th(j-c)}	Junction to case (AC)			3	°C/W		
Р	lunction to ambient	$S^{(1)} = 0.5 \text{ cm}^2$	DPAK	70	°C/W		
R _{th(j-a)}	Junction to ambient		IPAK	100	°C/W		


Table 5. Thermal resistance

1. S = Copper surface under tab.

4/12

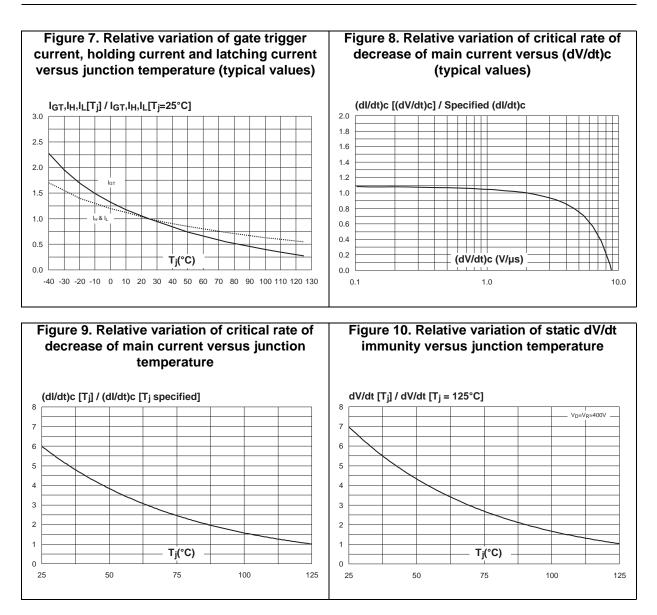
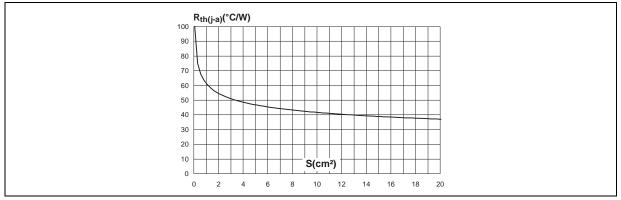



Figure 11. DPAK thermal resistance junction to ambient versus copper surface under tab (printed circuit board FR4, copper thickness: 35 µm)

2 Package information

- Epoxy meets UL94, V0
- Lead-free package
- Recommended torque: 0.4 to 0.6 N·m

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: <u>www.st.com</u>. ECOPACK[®] is an ST trademark.

2.1 DPAK package information

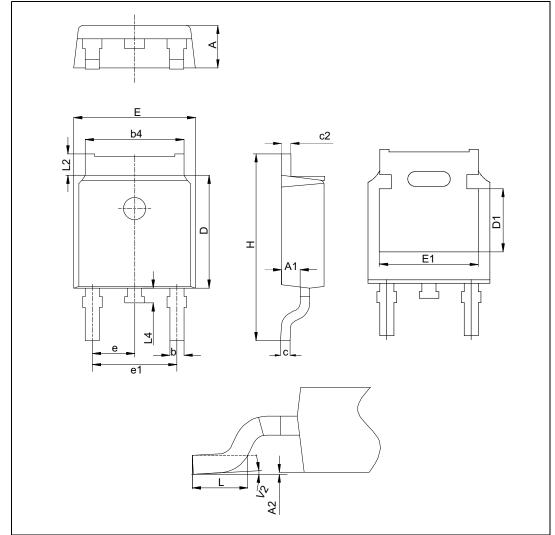
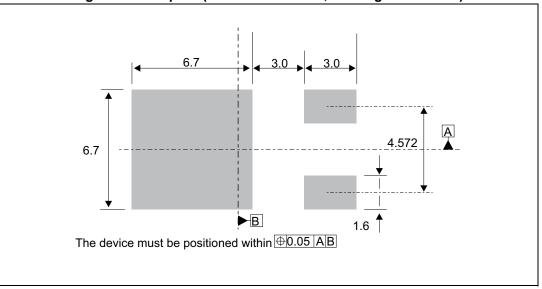


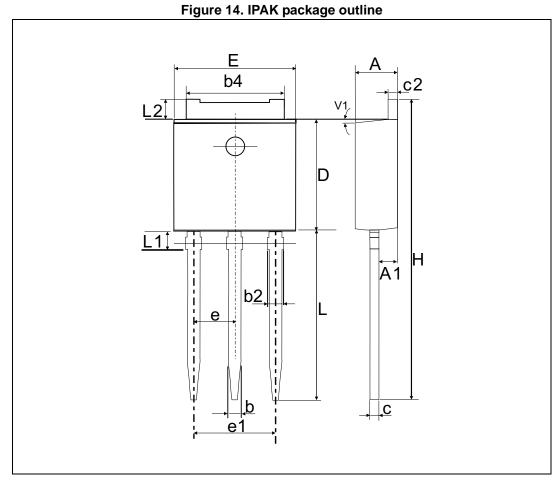
Figure 12. DPAK package outline


6/12

Note: This package drawing may slightly differ from the physical package. However, all the specified dimensions are guaranteed.

				nsions		
Ref.		Millimeters			Inches ⁽¹⁾	
	Min.	Тур.	Max.	Min.	Тур.	Max.
А	2.18		2.40	0.0858		0.0945
A1	0.90		1.10	0.0354		0.0433
A2	0.03		0.23	0.0012		0.0091
b	0.64		0.90	0.0252		0.0354
b4	4.95		5.46	0.1949		0.2150
С	0.46		0.61	0.0181		0.0240
c2	0.46		0.60	0.0181		0.0236
D	5.97		6.22	0.2350		0.2449
D1	4.95		5.60	0.1949		0.2204
E	6.35		6.73	0.2500		0.2650
E1	4.32		5.50	0.1701		0.2165
е		2.286			0.0900	
e1	4.40		4.70	0.1732		0.1850
Н	9.35		10.40	0.3681		0.4094
L	1.00		1.78	0.0394		0.0701
L2		1.27			0.0500	
L4	0.60		1.02	0.0236		0.0402
V2	-8°		8°	-8°		8°

Table 6. DPAK package mechanical data


1. Inch dimensions are only for reference

2.2 IPAK package information

Note: This package drawing may slightly differ from the physical package. However, all the specified dimensions are guaranteed.

	Dimensions								
Ref.		Millimeters	-	Inches ⁽¹⁾					
-	Min.	Тур.	Max.	Min.	Тур.	Max.			
А	2.20		2.40	0.0866		0.0945			
A1	0.90		1.10	0.0354		0.0433			
b	0.64		0.90	0.0252		0.0354			
b2			0.95			0.0374			
b4	5.20		5.43	0.2047		0.2138			
С	0.45		0.60	0.0177		0.0236			
c2	0.46		0.60	0.0181		0.0236			
D	6		6.20	0.2362		0.2441			
Е	6.40		6.65	0.2520		0.2618			
е		2.28			0.0898				
e1	4.40		4.60	0.1732		0.1811			
Н		16.10			0.6339				
L	9		9.60	0.3543		0.3780			
L1	0.8		1.20	0.0315		0.0472			
L2		0.80	1.25		0.0315	0.0492			
V1		10°			10°				

Table 7. IPAK package mechanical data

1. Inch dimensions are only for reference

3 Ordering information

T de la calca	т 	4	05	Q 	- (006 	B 	(-TR)	
Triac series									
Current									
4 = 4A									
Sensitivity									
05 = 5mA in Quandrant I - II - III; 10m	A in Quadra	ant I	/						
Number of quadrants									
Q = 4									
Voltage									
600 = 600V									
Package									
B= DPAK									
H= IPAK									
Packing mode									
Blank= Tube									
-TR= Tape and reel									

Figure 15. Order information scheme

Table 8. Product selector

Part Number	Voltage	Sensitivity	Туре	Package
T405Q-600B-TR	600 V	5 / 10 mA	Sensitive	DPAK
T405Q-600H	600 V	5 / 10 mA	Sensitive	IPAK

Table 9. Ordering information

Order code	Marking	Package	Weight	Base qty	Delivery mode
T405Q-600B-TR	T405Q 600	DPAK	0.3 g	2500	Tape and reel
T405Q-600H	T405Q 600	IPAK	0.4 g	75	Tube

4 Revision history

Date Revision		Changes
July-2002	1	First issue.
29-May-2014	2	Updated DPAK and IPAK package information and reformatted to current standard.
25-Sep-2015	3	Updated Features in cover page. Updated Table 3 and Section 2: Package information.
11-Feb-2016	4	Updated DPAK package information and reformatted to current standard. Added $\rm V_{\rm DSM}$ parameter.

Table 10. Document revision history

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics – All rights reserved

