Contents STH6N95K5-2

Contents

1	Electric	Electrical ratings3				
2	Electric	cal characteristics	4			
	2.1	Electrical characteristics (curves)	6			
3	Test cir	cuits	9			
4	Packag	e mechanical data	10			
	4.1	Package mechanical data	11			
5	Packing	g information	14			
6	Revision history1					

Downloaded from Arrow.com.

STH6N95K5-2 Electrical ratings

1 Electrical ratings

Table 2: Absolute maximum ratings

Symbol	Parameter	Value	Unit	
V _G s	Gate-source voltage	± 30	V	
I_D	Drain current at T _C = 25 °C	6	Α	
ΙD	Drain current at T _C = 100 °C	3.8	Α	
I _{DM} ⁽¹⁾	Drain current (pulsed)	24	Α	
P _{TOT}	Total dissipation at T _C = 25 °C	110	W	
I _{AR} ⁽²⁾	Max current during repetitive or single pulse avalanche	3	Α	
E _{AS} ⁽³⁾	Single pulse avalanche energy 90			
dv/dt ⁽⁴⁾	Peak diode recovery voltage slope	4.5	V/ns	
dv/dt ⁽⁵⁾	MOSFET dv/dt ruggedness	50	V/ns	
Tj	Operating junction temperature	55 to 150	°C	
T _{stg}	Storage temperature	- 55 to 150		

Notes:

Table 3: Thermal data

Symbol	Parameter	Value	Unit
R _{thj-case}	Thermal resistance junction-case max	1.14	
R _{thj-pcb} ⁽¹⁾	Thermal resistance junction-pcb max	30	°C/W

Notes:

 $^{(1)}$ When mounted on 1 inch² FR-4 board, 2 oz Cu.

⁽¹⁾Pulse width limited by safe operating area.

 $[\]ensuremath{^{(2)}}\mbox{Pulse}$ width limited by $T_{jmax}.$

 $^{^{(3)}}$ Starting T_j = 25 °C, I_D = I_{AS} , V_{DD} = 50 V.

 $^{^{(4)}}I_{SD} \leq 6$ A, di/dt \leq 100 A/µs, $V_{DS(peak)} \leq V_{(BR)DSS}.$

 $^{^{(5)}}V_{DS} \le 760 \text{ V}.$

Electrical characteristics STH6N95K5-2

2 Electrical characteristics

T_C = 25 °C unless otherwise specified

Table 4: On/off states

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{(BR)DSS}	Drain-source breakdown voltage	$V_{GS} = 0 \text{ V}, I_D = 1 \text{ mA}$	950			V
	Zara gata valtaga drain	$V_{GS} = 0 \text{ V}, V_{DS} = 950 \text{ V}$			1	μΑ
IDSS	Zero gate voltage drain current	V _{GS} = 0 V, V _{DS} = 950 V, T _c = 125 °C			50	μΑ
I _{GSS}	Gate body leakage current	$V_{DS} = 0 \text{ V}, V_{GS} = \pm 20 \text{ V}$			± 10	μΑ
V _{GS(th)}	Gate threshold voltage	$V_{DS} = V_{GS}$, $I_D = 100 \mu A$	3	4	5	V
R _{DS(on)}	Static drain-source on- resistance	Vcs = 10 V, I _D = 3 A		1	1.25	Ω

Table 5: Dynamic

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
Ciss	Input capacitance		-	450	-	
Coss	Output capacitance	$V_{GS} = 0 \text{ V}, V_{DS} = 100 \text{ V}, f = 1 \text{ MHz}$	-	30	-	pF
Coss	Output capacitance		-	1.6	-	
C _{o(tr)} ⁽¹⁾	Equivalent capacitance, time-related	V _{GS} = 0 V, V _{DS} = 0 to 760 V	-	45	-	۲. د
Co(er) ⁽²⁾	Equivalent capacitance, energy-related	VGS = 0 V, VDS = 0 to 700 V	-	19	-	pF
R _G	Intrinsic gate resistance	f = 1 MHz, I _D =0 A	-	7	-	Ω
Qg	Total gate charge	V _{DD} = 760 V, I _D = 6 A, V _{GS} = 10 V	-	13	-	
Q_{gs}	Gate-source charge	(see Figure 16: "Gate charge test		3	-	nC
Q _{gd}	Gate-drain charge	circuit")	-	7	-	

Notes:

Table 6: Switching times

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
t _{d(on)}	Turn-on delay time		-	12	ı	ns
tr	Rise time	$V_{DD} = 475 \text{ V}, I_D = 3 \text{ A},$	-	12	-	ns
t _{d(off)}	Turn-off-delay time	$R_G = 4.7 \Omega, V_{GS} = 10 V$	-	33	-	ns
tf	Fall time		-	21	1	ns

4/17 DocID027383 Rev 3

 $^{^{(1)}}$ Time-related is defined as a constant equivalent capacitance giving the same charging time as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

 $^{^{(2)}}$ Energy-related is defined as a constant equivalent capacitance giving the same stored energy as C_{oss} when V_{DS} increases from 0 to 80% V_{DSS} .

Table 7: Source drain diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
I _{SD}	Source-drain current		-		6	Α
I _{SDM} ⁽¹⁾	Source-drain current (pulsed)		ı		24	Α
V _{SD} ⁽²⁾	Forward on voltage	I _{SD} = 6 A, V _{GS} = 0	ı		1.6	V
t _{rr}	Reverse recovery time	I _{SD} = 6 A,	-	372		ns
Qrr	Reverse recovery charge	di/dt = 100 A/μs	-	4		μC
I _{RRM}	Reverse recovery current	$V_{DD} = 60 \text{ V}$	-	22		Α
t _{rr}	Reverse recovery time	I _{SD} = 6 A,	-	522		ns
Qrr	Reverse recovery charge	di/dt = 100 A/µs	-	5		μC
I _{RRM}	Reverse recovery current	$V_{DD} = 60 \text{ V}, T_j = 150 ^{\circ}\text{C}$	-	20		Α

Notes:

Table 8: Gate-source Zener diode

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
$V_{(BR)GSO} \\$	Gate-source breakdown voltage	$I_{GS} = \pm 1 \text{mA}, I_{D}=0$	30	-	-	V

The built-in back-to-back Zener diodes have specifically been designed to enhance the device's ESD capability. In this respect the Zener voltage is appropriate to achieve an efficient and cost-effective intervention to protect the device's integrity. These integrated Zener diodes thus avoid the usage of external components.

⁽¹⁾Pulse width limited by safe operating area

⁽²⁾Pulsed: pulse duration = 300 μs, duty cycle 1.5%

Electrical characteristics STH6N95K5-2

2.1 Electrical characteristics (curves)



Figure 4: Output characteristics

(A)

12

10

8

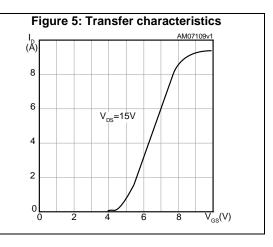
7V

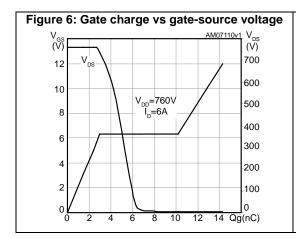
6V

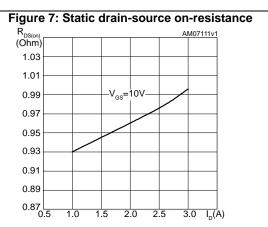
2

00

5


10


15


20

25

V_{DS}(V)

Ay/

STH6N95K5-2 Electrical characteristics

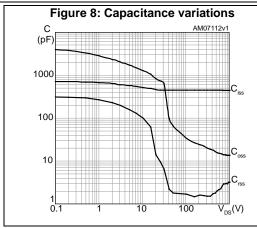


Figure 9: Output capacitance stored energy

AM07113V1

20

16

12

8

4

0

200

400

600

800

V_{DS}(V)

Figure 10: Normalized gate threshold voltage vs temperature

V_{GS(th)} (norm)

1.2

1.1

1.0

0.9

0.8

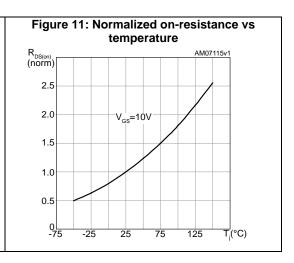
0.7

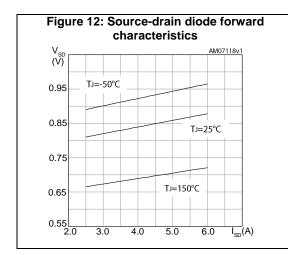
0.6

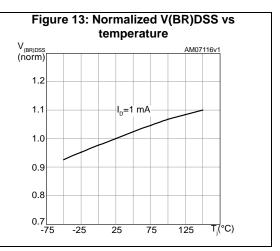
0.5

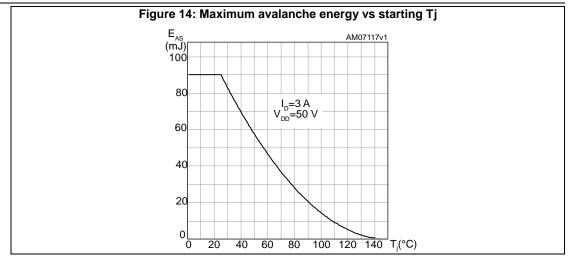
0.4

-75

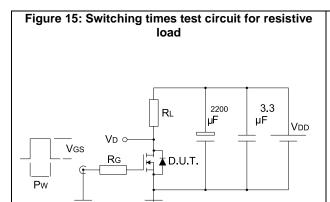

-25

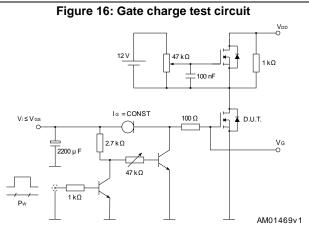

25

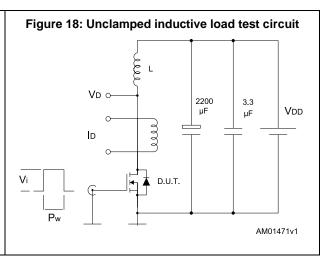

75

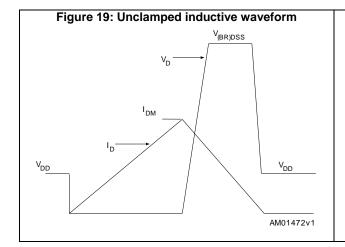

125

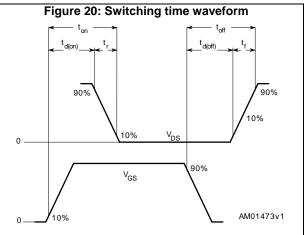
T_J(°C)

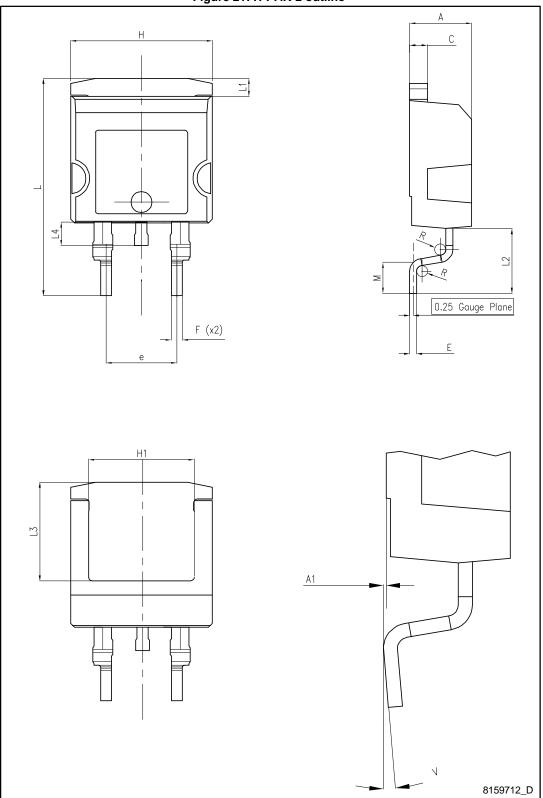





STH6N95K5-2 Test circuits


AM01468v1


3 Test circuits


4 Package mechanical data

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK® packages, depending on their level of environmental compliance. ECOPACK® specifications, grade definitions and product status are available at: **www.st.com**. ECOPACK® is an ST trademark.

DocID027383 Rev 3

4.1 Package mechanical data

Figure 21: H²PAK-2 outline

577

DocID027383 Rev 3

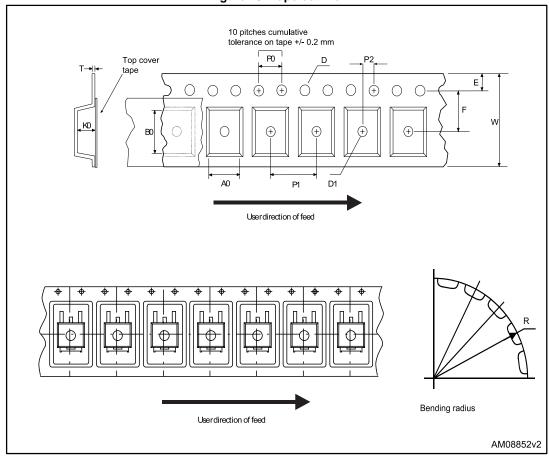
Table 9: H²PAK-2 mechanical data

Table 5. H-FAK-2 Illectianical data				
Dim.		mm		
Diiii.	Min.	Тур.	Max.	
А	4.30		4.80	
A1	0.03		0.20	
С	1.17		1.37	
е	4.98		5.18	
Е	0.50		0.90	
F	0.78		0.85	
Н	10.00		10.40	
H1	7.40		7.80	
L	15.30	-	15.80	
L1	1.27		1.40	
L2	4.93		5.23	
L3	6.85		7.25	
L4	1.5		1.7	
М	2.6		2.9	
R	0.20		0.60	
V	0°		8°	

12.20 2.54

Figure 22: H²PAK-2 recommended footprint

57/


1.60

8159712_D

Packing information STH6N95K5-2

5 Packing information

Figure 23: Tape outline

STH6N95K5-2 Packing information

Figure 24: Reel outline Т REEL DIMENSIONS 40 mm min. Access hole At slot location В D С Α G measured Tape slot In core for Full radius At hub Tape start

Table 10: Tape and reel mechanical data

	Таре	·		Reel	
Dim.	n	nm	Dim.	m	m
Dim.	Min.	Max.	Dilli.	Min.	Max.
A0	10.5	10.7	А		330
B0	15.7	15.9	В	1.5	
D	1.5	1.6	С	12.8	13.2
D1	1.59	1.61	D	20.2	
Е	1.65	1.85	G	24.4	26.4
F	11.4	11.6	N	100	
K0	4.8	5.0	Т		30.4
P0	3.9	4.1			
P1	11.9	12.1	Base q	uantity	1000
P2	1.9	2.1	Bulk qu	uantity	1000
R	50				
Т	0.25	0.35			
W	23.7	24.3			

Revision history STH6N95K5-2

6 Revision history

Table 11: Document revision history

Date	Revision	Changes
23-Jan-2015	1	First release.
04-Feb-2015	2	Updated Section 2: "Electrical characteristics"
12-Mar-2015	3	Document status changed from preliminary to producion data.

IMPORTANT NOTICE - PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2015 STMicroelectronics - All rights reserved

