SM20

SM25

SM30

January 7, 1998

CHARACTERISTICS (@ 25°C unless otherwise specified)

	Symbol	1N3645 1N3646 1N3647 SM20 SM25 SM30	Unit
Average forward current for sine wave - max. pcb mounted - max. in unstirred oil	If(AV) If(AV)	←————————————————————————————————————	mA mA
I^2 t for fusing (t = 8.3mS) max.	I ² t	← 0.026	A^2S
Forward voltage drop max. @ $I_F = 250 \text{mA}$, $T_j = 25^{\circ}\text{C}$	VF	← 5.00 →	v
Reverse current max. @ V_{RWM} , $T_j = 25^{\circ}C$ @ V_{RWM} , $T_j = 100^{\circ}C$	I _R I _R	→ 1.00 → → 20.0 →	μΑ μΑ
Reverse recovery time max. 50mA If to 100mA IR. Recover to 25mA IRR.	t _{rr}	← 2.5 →	μS
Junction capacitance typ. @ $V_R = 5V$, $f = 1MHz$	Cj	← 8.0 →	ρF
Thermal resistance - junction to oil Unstirred @ 55°C Stirred @ 55°C	Rejo Rejo		°C/W °C/W
Thermal resistance - junction to amb. on 0.06" thick pcb. 1oz copper.	R _{0JA}	← 90.0	°C/W

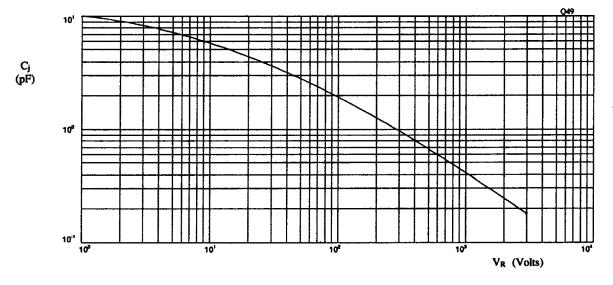


Fig 1. Typical junction capacitance as a function of reverse voltage.

January 7, 1998

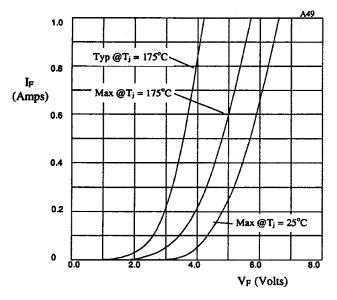


Fig 2. Forward voltage drop as a function of forward current.

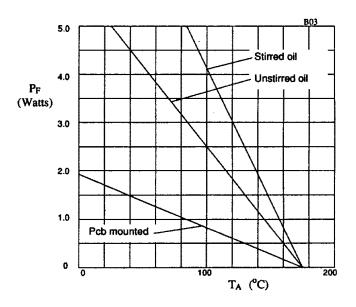


Fig 3. Power derating in oil and air.

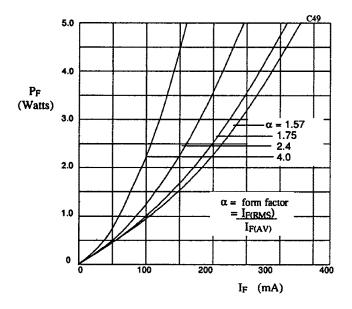


Fig 4. Forward power dissipation as a function of forward current, for sinusoidal operation.

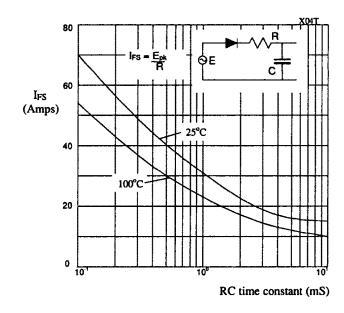


Fig 5. Maximum ratings for capacitive loads.