

Figure 3. Pin Configuration (Top View)

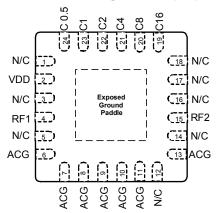


Table 2. Pin Descriptions

Table 2. Till Descriptions					
Pin No.	Pin Name	Description			
1	N/C ⁷	No Connect			
2	V_{DD}	Power supply pin			
3	N/C⁵	No Connect			
4	RF1	RF port			
5	N/C⁵	No Connect			
6	ACG ⁶	AC Ground connection			
7	ACG ⁶	AC Ground connection			
8	ACG ⁶	AC Ground connection			
9	ACG ⁶	AC Ground connection			
10	ACG ⁶	AC Ground connection			
11	ACG ⁶	AC Ground connection			
12	N/C ⁷	No Connect			
13	ACG ⁶	AC Ground connection			
14	N/C ⁵	No Connect			
15	RF2	RF port			
16	N/C⁵	No Connect			
17	N/C⁵	No Connect			
18	N/C ⁵	No Connect			
19	C16	Attenuation control bit, 16 dB			
20	C8	Attenuation control bit, 8 dB			
21	C4	Attenuation control of, 4 dB			
22	C2	Atteruation control bit, 2 dB			
23	CI	Attenuation control bit, 1 dB			
24	C0.5	Attenuation control bit, 0.5 dB			
Paddle	GND	Ground for proper operation			

Notes: 5. For improved RF nce these No Connect pins can be connected

- 6. Pins can eit ounded directly or through coupling capacito
- 7. Pin ca be grounded or No Connect

Exposed Solder ad Connection

d solder pad on the bottom of the package The expos must be grounded for proper device operation.

©2007 Peregrine Semiconductor Corp. All rights reserved.

Table 3. Operating Ranges

Parameter	Min	Тур	Max	Units
V _{DD} Power Supply Voltage	3.0	3.3	5.5	V
I _{DD} Power Supply Current		100	250	μA
P _{IN} Input power (50Ω)			+24	dBm

Table 4. Absolute Maximum Ratings

Symbol	Parameter/Conditions	Min	Max	Units
V_{DD}	Power supply voltage	-0.3	60	V
V_{I}	Voltage on any DC input	-0.3	6.0	V
T _{ST}	Storage temperature range	-65	150	°C
T _{OP}	Operating temperature tange	-40	85	°C
P _{IN}	Input power (50Ω)		30	dBm
V _{ESD}	ESD voltage (Human Body Model)		2000	V

atic Discharge (ESD)

When handling this UltraCMOS™ device, observe the ame precautions that you would use with other ESDdevices. Although this device contains om damage due to ESD, ken to avoid exceeding the ate specified able 4.

Latch-Up Avoidance

onventional CMOS devices, UltraCMOS™ evices are immune to latch-up.

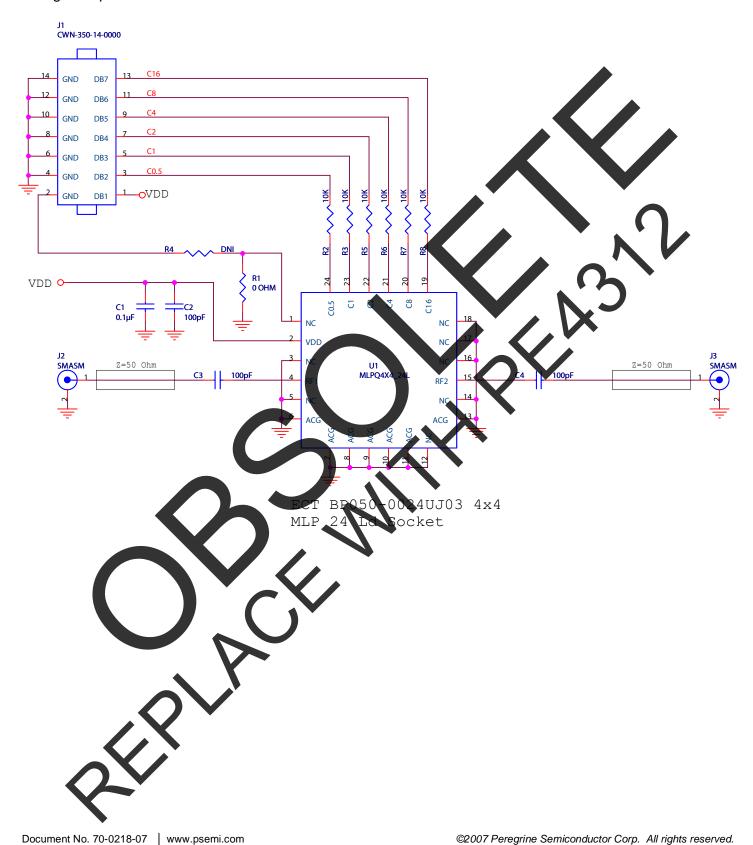
Switching Frequency

The PE4309 has a maximum 25 kHz switching rate.

Table 5. Control Voltage

State	Bias Condition		
Low	0 to +1.0 Vdc at 2 μA (typ)		
High	+2.0 to +5 Vdc at 10 μA (typ)		

The standard 3V or 5V CMOS control logic is independent of supply voltage.


Table 6. Truth Table

C16	C8	C4	C2	C1	C0.5	Attenuation State
1	1	1	1	1	1	Reference Loss (IL)
1	1	1	1	1	0	0.5 dB
1	1	1	1	0	1	1 dB
1	1	1	0	1	1	2 dB
1	1	0	1	1	1	4 dB
1	0	1	1	1	1	8 dB
0	1	1	1	1	1	16 dB
0	0	0	0	0	0	31.5 dB

Figure 4. Test Circuit Block Diagram

Peregrine Specification 102-0371

Evaluation Kit

The Digital Attenuator Evaluation Kit board was designed to ease customer evaluation of the PE4309 Digital Step Attenuator. Connect J2 by mini clip to Vdd to power the IC. Connect J8 by mini clip to power the evaluation board support circuits. The control bits for the six parallel data inputs (C0.5 to C16) are controlled using S2-S7 to select bits or bit combinations. This allows any attenuation setting to be specified as shown in Table 6.

The de-embed trace (J6 to J7) estimates the PCB insertion loss for removal from the evaluation board measurement data.

To evaluate using customer software, J1 can be installed using a standard 0.100 IDC header (some circuit modification required, see schematic).

The ability to supply different voltages for the Control circuitry (using J8) and IC Vdd (using circuits allows for evaluation of circuits using different control vs. supply voltages.

Figure 5. Evaluation Board Layout

Peregrine Specification 101/0299

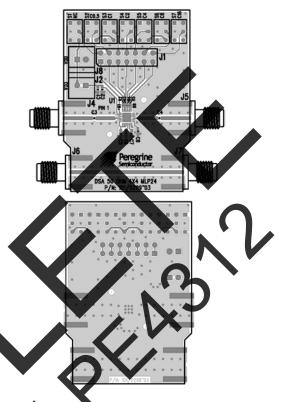
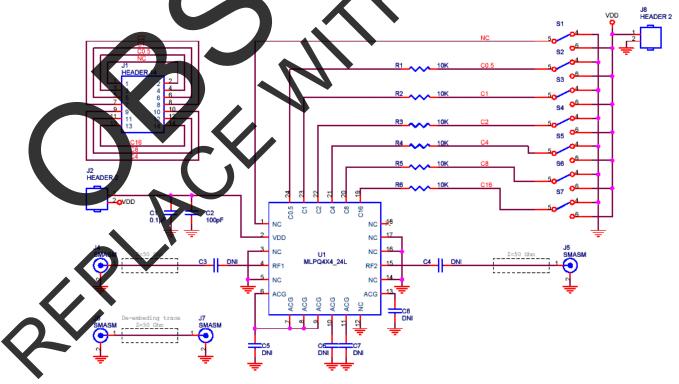



Figure 6. Evaluation Board Schematic

Petegrine Specification 102/0366

©2007 Peregrine Semiconductor Corp. All rights reserved.

Typical Performance Data

Figure 7. Insertion Loss, $V_{dd} = 3.0 \text{ V}$

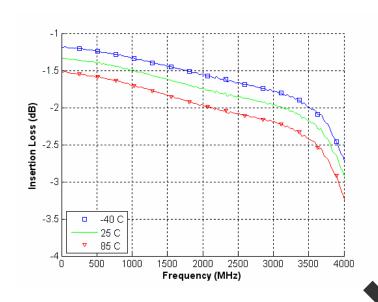


Figure 8. Attenuation at Major Steps

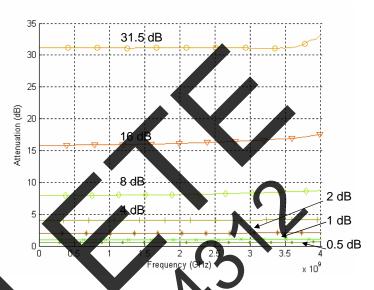
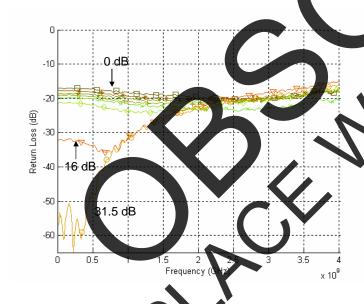
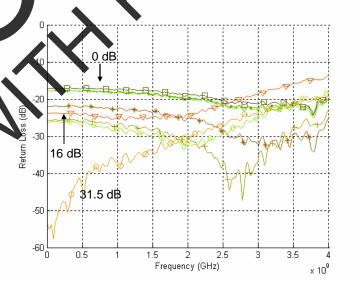




Figure 9. Input Return Loss at Major **Attenuation Steps**

Output Return Lotter uation Steps Return Loss at Major

Document No. 70-0218-07 | www.psemi.com

©2007 Peregrine Semiconductor Corp. All rights reserved.

Typical Performance Data

Figure 11. Attenuation Error Vs. Frequency

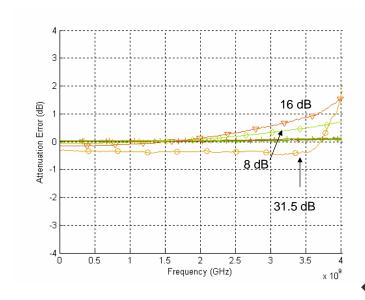
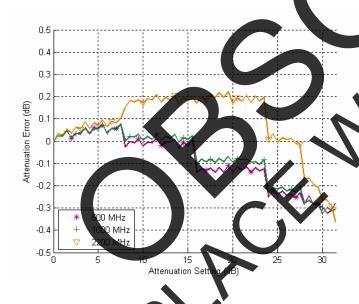
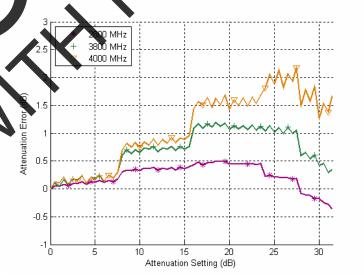




Figure 12. Attenuation Error vs. Setting: **Low Frequency**

Attenuation Error vs. Setting: High Frequency

©2007 Peregrine Semiconductor Corp. All rights reserved.

Figure 16. Package Drawing

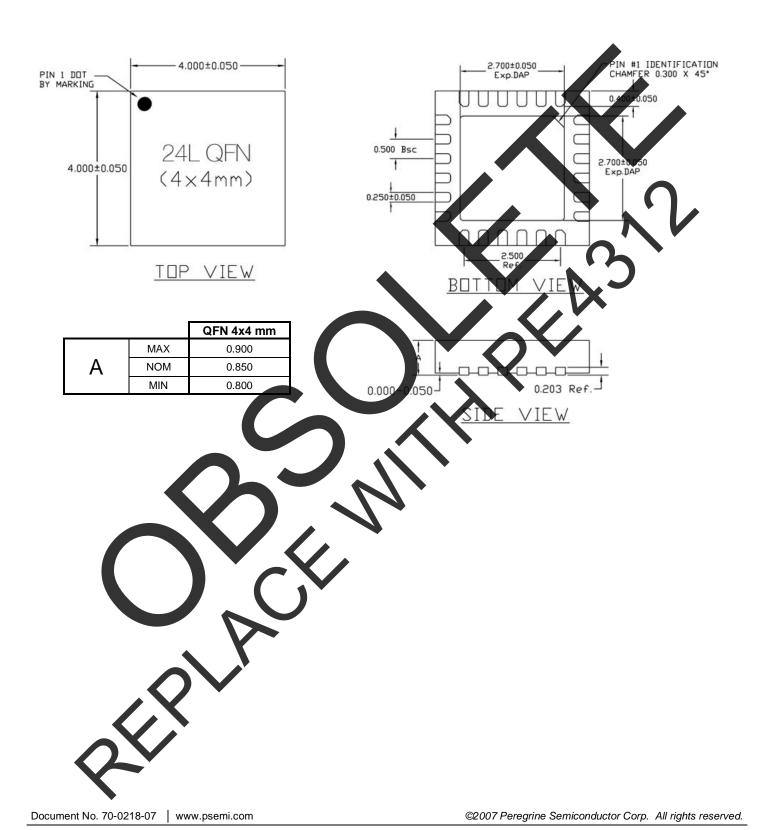


Figure 17. Tape and Reel Drawing

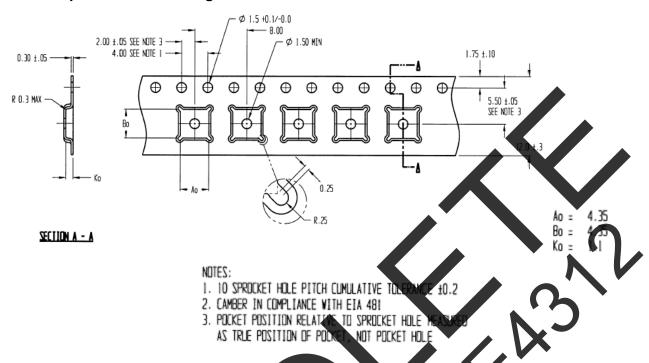
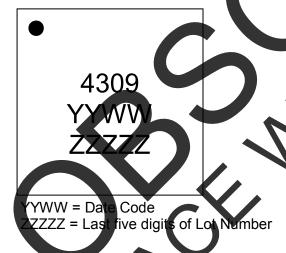



Figure 18. Marking Specifications

Table 7. Ordering Information

Order Code	Part Marking	Description	Package	Shipping Method
4309-00	PE4309-EK	PE4309-24QFN 4x4mm-EK	Evaluation Kit	1 / Box
4309-51	4309	PE4309G-24QFN 4x4mm-75A	Green 24-lead 4x4mm QFN	75 units / Tube
4309-52	4309	PE4309G-24QFN 4x4mm-3000C	Green 24-lead 4x4mm QFN	3000 units / T&R

Sales Offices

The Americas

Peregrine Semiconductor Corporation

9380 Carroll Park Drive San Diego, CA 92121 Tel: 858-731-9400 Fax: 858-731-9499

Europe

Peregrine Semiconductor Europe

Bâtiment Maine 13-15 rue des Quatre Vents F-92380 Garches, France Tel: +33-1-4741-9173 Fax: +33-1-4741-9173

Space and Defense Products

Americas:

Tel: 858-731-9453 Europe, Asia Pacific: 180 Rue Jean de Guiramand 13852 Aix-En-Provence Cedex 3, France Tel: +33-4-4239-3361

Peregrine Semiconductor, Asia Pacific (APAC)

Shanghai, 200040, P.R. China Tel: +86-21-5836-8276 Fax: +86-21-5836-7652

Peregrine Semiconductor, Kore

#B-2607, Kolon Tripolis, 210 Geumgok-dong, Bundang-gu, Gyeonggi-do, 463-942 South Kore

Tel: +82-31-728-39 Fax: +82-31-728

Peregrine Semiconductor K.K., Japan

Teikoku L otel Tower 10B-6 chisaiwai-cho, Chiyoda-1-1-1 L 0 100-0011 Tok Japan

Tel: 2-5211 Fax: +8 502-521

ease refer to our For a list of representatives in your area. te at:

Data Sheet Identification

Advance Information

Fax: +33-4-4239-7227

The product is in a formative ign stage The data produ sheet contains design target sp fications development. pecification any manner without notice.

Preliminary Specification

The data sheet co may be added at a later date. Peregi hе eserves the right to change specifications at any time wit out notice in order to supply the best possible pro

Product Specifical

The data sheet contains final data. In the event Peregrine he specifications, Peregrine will notify decides to change customers of the intended changes by issuing a DCN ange Notice). (Documer

The information in this data sheet is believed to be reliable. However, Peregrine assumes no liability for the use of this information. Use shall be entirely at the user's own risk.

No patent rights or licenses to any circuits described in this data sheet are implied or granted to any third party.

Peregrine's products are not designed or intended for use in devices or systems intended for surgical implant, or in other applications intended to support or sustain life, or in any application in which the failure of the Peregrine product could create a situation in which personal injury or death might occur. Peregrine assumes no liability for damages, including consequential or incidental damages, arising out of the use of its products in such applications.

The Peregrine name, logo, and UTSi are registered trademarks and UltraCMOS, HaRP and MultiSwitch are trademarks of Peregrine Semiconductor Corp.

Document No. 70-0218-07 | www.psemi.com

©2007 Peregrine Semiconductor Corp. All rights reserved.