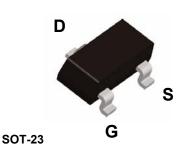
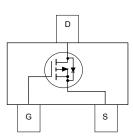


ON Semiconductor®

NDS0605 P-Channel Enhancement Mode Field Effect Transistor


General Description


These P-Channel enhancement mode field effect transistors are produced using ON Semiconductor's proprietary, high cell density, DMOS technology. This very high density process has been designed to minimize on-state resistance, provide rugged and reliable performance and fast switching. They can be used, with a minimum of effort, in most applications requiring up to 180mA DC and can deliver current up to 1A.

This product is particularly suited to low voltage applications requiring a low current high side switch.

Features

- -0.18A, -60V. $R_{DS(ON)} = 5 \Omega \textcircled{O} V_{GS} = -10 V$
- Voltage controlled p-channel small signal switch
- High density cell design for low $R_{\text{DS}(\text{ON})}$
- High saturation current

Absolute Maximum Ratings T_A=25°C unless otherwise noted

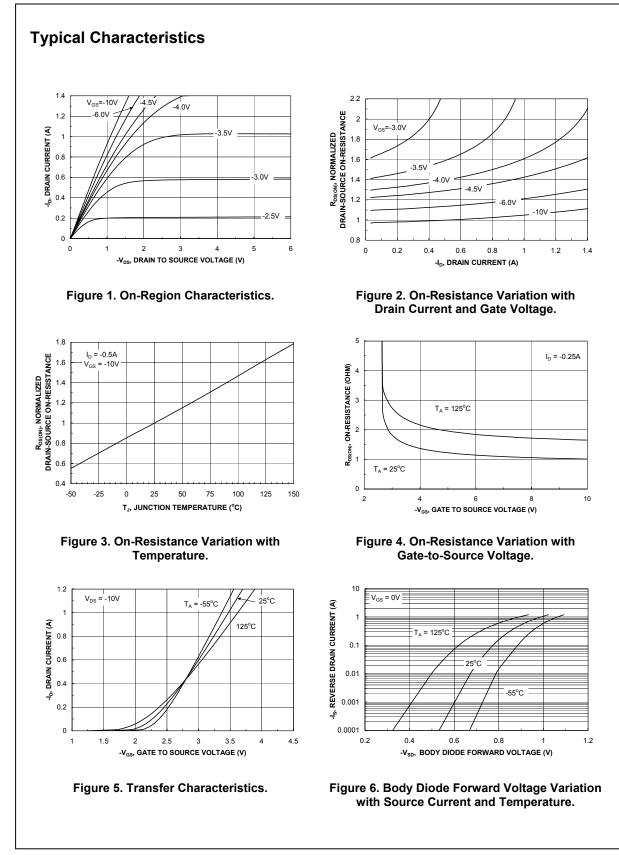
Symbol	Parameter		Ratings	Units	
V _{DSS}	Drain-Sour	rce Voltage		-60	V
V _{GSS}	Gate-Sourc	rce Voltage		±20	V
ID	Drain Current – Continuous (Note 1)		(Note 1)	-0.18	А
	– Pulsed		-1		
P _D	Maximum F	ower Dissipation	r Dissipation (Note 1) 0.36		W
	Derate Above 25°C			2.9	mW/°C
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to +150	°C	
TL	Maximum Lead Temperature for Soldering Purposes, 1/16" from Case for 10 Seconds			300	°C
Therma	l Charac	teristics			
R _{0JA} Thermal Res		sistance, Junction-to-Ambient (Note 1)		350	°C/W
		g and Orderin		Tono width	Quantity
Device Marking		Device	Reel Size	Tape width	Quantity
65D		NDS0605	7"	8mm	3000 units

©2002 Semiconductor Components Industries, LLC.

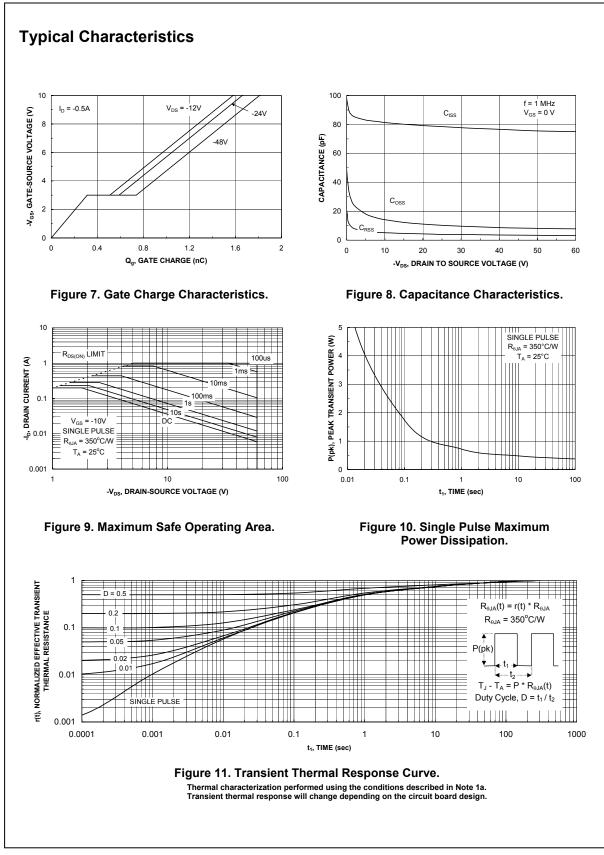
September-2017, Rev. 2

Publication Order Number: NDS0605/D

NDS0605


Symbol	Parameter	Test Conditions	Min	Тур	Max	Units
Off Char	acteristics					
BV _{DSS}	Drain-Source Breakdown Voltage	$V_{GS} = 0 V$, $I_D = -10 \mu A$	-60			V
ΔBV _{DSS} ΔTJ	Breakdown Voltage Temperature Coefficient	I_D = -10 µA,Referenced to 25°C		-53		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	$V_{DS} = -48 V$, $V_{GS} = 0 V$			-1	μA
		V _{DS} = -48 V,V _{GS} = 0 V T _J = 125°C			-500	μA
I _{GSS}	Gate–Body Leakage.	$V_{GS} = \pm 20 \text{ V}, V_{DS} = 0 \text{ V}$			±100	nA
On Char	acteristics (Note 2)					
V _{GS(th)}	Gate Threshold Voltage	$V_{DS} = V_{GS}$, $I_D = -250 \ \mu A$	-1	-1.7	-3	V
<u>ΔV_{GS(th)}</u> ΔT _J	Gate Threshold Voltage Temperature Coefficient	$I_D = -250 \ \mu$ A,Referenced to 25°C		3		mV/°C
R _{DS(on)}	Static Drain–Source On–Resistance	$ \begin{array}{l} V_{GS} = -10 \ V, I_D = -0.5 \ A \\ V_{GS} = -4.5 \ V, I_D = -0.25 \ A \\ V_{GS} = -10 \ V, I_D = -0.5 \ A, T_J = 125^\circ C \end{array} $		1.0 1.3 1.7	5.0 7.5 10	Ω
I _{D(on)}	On-State Drain Current	$V_{GS} = -10 \text{ V}, V_{DS} = -10 \text{ V}$	-0.6			А
g _{FS}	Forward Transconductance	$V_{DS} = -10V$, $I_{D} = -0.2 A$	0.07	0.43		S
Dynamic	Characteristics	•				
C _{iss}	Input Capacitance	$V_{DS} = -25 V$, $V_{GS} = 0 V$,		79		pF
C _{oss}	Output Capacitance	f = 1.0 MHz		10		pF
Crss	Reverse Transfer Capacitance	7		4		pF
R _G	Gate Resistance	V _{GS} = -15 mV, f = 1.0 MHz		10		Ω
Switchin	g Characteristics (Note 2)					
t _{d(on)}	Turn–On Delay Time	$V_{DD} = -25 V$, $I_D = -0.2 A$,	1	2.5	5	ns
t _r	Turn–On Rise Time	$V_{GS} = -10 \text{ V}, R_{GEN} = 6 \Omega$		6.3	12.6	ns
t _{d(off)}	Turn–Off Delay Time	7		10	20	ns
t _f	Turn–Off Fall Time	1		7.5	15	ns
Q _g	Total Gate Charge	$V_{DS} = -48 V$, $I_{D} = -0.5 A$,		1.8	2.5	nC
Q _{gs}	Gate-Source Charge	$V_{GS} = -10 V$		0.3		nC
Q _{gd}	Gate-Drain Charge			0.4		nC
Drain-So	ource Diode Characteristics	and Maximum Ratings				
I _S	Maximum Continuous Drain–Source Diode Forward Current				_ 0.18	А
V _{SD}	Drain–Source Diode Forward Voltage	$V_{GS} = 0 V$, $I_S = -0.5 A(Note 2)$		-0.8	-1.5	V
t _{rr}	Diode Reverse Recovery Time	$I_{F} = -0.5A$		17		nS
Q _{rr}	Diode Reverse Recovery Charge	$d_{iF}/d_t = 100 \text{ A}/\mu \text{s}$ (Note 2)		15		nC

ំ


 a) 350°C/W when mounted on a minimum pad..

Scale 1 : 1 on letter size paper

2. Pulse Test: Pulse Width \leq 300 $\mu s,$ Duty Cycle \leq 2.0%

NDS0605

NDS0605

www.onsemi.com 4

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Semiconductor Components Industries, LLC