Regulator Family, 400 mA, 2% and 4% Voltage

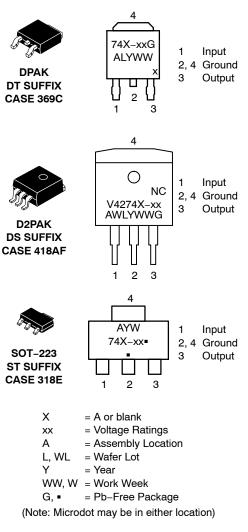
Description

The NCV4274 and NCV4274A is a precision micro-power voltage regulator with an output current capability of 400 mA available in the DPAK, D2PAK and SOT-223 packages.

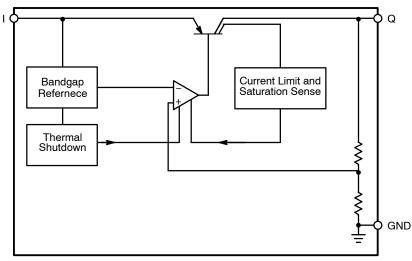
The output voltage is accurate within $\pm 2.0\%$ or $\pm 4.0\%$ depending on the version with a maximum dropout voltage of 0.5 V with an input up to 40 V. Low quiescent current is a feature drawing only 150 μ A with a 1 mA load. This part is ideal for automotive and all battery operated microprocessor equipment.

The regulator is protected against reverse battery, short circuit, and thermal overload conditions. The device can withstand load dump transients making it suitable for use in automotive environments.

Features


- 2.5, 3.3 V, 5.0 V, 8.5 V, ±2.0% Output Options
- 2.5, 3.3 V, 5.0 V, ±4.0% Output Options
- Low 150 µA Quiescent Current at 1 mA load current
- 400 mA Output Current Capability
- Fault Protection
- +60 V Peak Transient Voltage with Respect to GND
 - -42 V Reverse Voltage
 - Short Circuit
 - Thermal Overload
- Very Low Dropout Voltage
- NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These are Pb–Free Devices

ON Semiconductor®


www.onsemi.com

MARKING DIAGRAMS

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 15 of this data sheet.

Pin Definitions and Functions

Pin No.	Symbol	Function			
1	I	Input; Bypass directly at the IC a ceramic capacitor to GND.			
2,4	GND	Ground			
3	Q	Output; Bypass with a capacitor to GND.			

1. DPAK 3LD package code 6025

2. D2PAK 3LD package code 6083

ABSOLUTE MAXIMUM RATINGS

Pin Symbol, Parameter		Symbol	Condition	Min	Max	Unit
I, Input-to-Regulator	Voltage	VI		-42	45	V
	Current	Ι _Ι		Internally Limited	Internally Limited	
I, Input peak Transient Voltage to Regulator w to GND	VI			60	V	
Q , Regulated Output	Voltage	V _Q	$V_Q = V_I$	-1.0	40	V
	Current	Ι _Q		Internally Limited	Internally Limited	
GND, Ground Current	•	I _{GND}		-	100	mA
Junction Temperature Storage Temperature		T _J T _{Stg}		_ _50	150 150	°C ℃
ESD Capability, Human Body Model		ESD _{HB}		4		kV
ESD Capability, Machine Model		ESD _{MM}		200		V
ESD Capability, Charged Device Model		ESD _{CDM}		1		kV

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.This device series incorporates ESD protection and is tested by the following methods:

ESD HBM tested per AEC-Q100-002 (EIA/JESD22-A114)

ESD MM tested per AEC-Q100-003 (EIA/JESD22-A115)

ESD CDM tested per EIA/JES D22/C101, Field Induced Charge Model

OPERATING RANGE

Parameter	Symbol	Condition	Min	Max	Unit
Input Voltage (8.5 V Version)	VI		9.0	40	V
Input Voltage (5.0 V Version)	VI		5.5	40	V
Input Voltage (3.3 V, and 2.5 V Version)	VI		4.5	40	V
Junction Temperature	TJ		-40	150	°C

THERMAL RESISTANCE

Parameter	Symbol	Condition	Min	Max	Unit	
Junction-to-Ambient	DPAK	R _{thja}		-	70 (Note 4)	°C/W
Junction-to-Ambient	D2PAK	R _{thja}		-	60 (Note 4)	°C/W
Junction-to-Case	DPAK	R _{thjc}		-	4	°C/W
Junction-to-Case	D2PAK	R _{thjc}		-	3	°C/W
Junction-to-Tab	SOT-223	Ψ–JLX, _{ΨLX}		-	14.5 (Note 5)	°C/W
Junction-to-Ambient	SOT-223	$R_{\theta JA}, \theta_{JA}$		-	169.7 (Note 5)	°C/W

Soldered in, minimal footprint, FR4
1 oz copper, 5 mm² copper area, FR4

LEAD FREE SOLDERING TEMPERATURE AND MSL

Parameter	Symbol	Condition	Min	Max	Unit
Lead Free Soldering, (Note 6) Reflow (SMD styles only), Pb-F	T _{sld}	60s – 150s Above 217s 40s Max at Peak	-	265 pk	°C
Moisture Sensitivity Level	MSL	DPAK and D2PAK SOT-223	1 3	-	

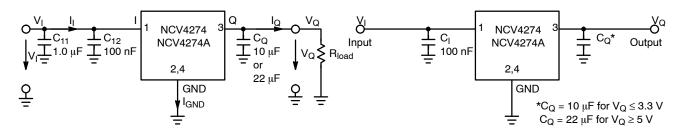
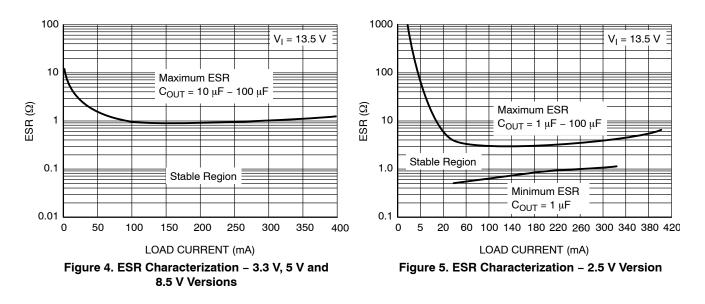
6. Per IPC/JEDEC J-STD-020C

ELECTRICAL CHARACTERISTICS

 $-40^\circ C < T_J < 150^\circ C; \, V_I$ = 13.5 V unless otherwise noted.

			Min	Тур	Max	Min	Тур	Max	
Parameter	Symbol	Test Conditions	N	CV427	'4A	1	NCV42	74	Unit
REGULATOR	-					-			
Output Voltage (8.5 V Version)	V _Q	5 mA < I _Q < 200 mA 9.5 V < V _I < 40 V	8.33	8.5	8.67	-	-	-	V
Output Voltage (8.5 V Version)	V _Q	5 mA < I _Q < 400 mA 9.5 V < V _I < 28 V	8.33	8.5	8.67	-	-	-	V
Output Voltage (5.0 V Version)	V _Q	5 mA < I _Q < 400 mA 6 V < V _I < 28 V	4.9	5.0	5.1	4.8	5.0	5.2	V
Output Voltage (5.0 V Version)	V _Q	5 mA < I _Q < 200 mA 6 V < V _I < 40 V	4.9	5.0	5.1	4.8	5.0	5.2	V
Output Voltage (3.3 V Version)	V _Q	5 mA < I _Q < 400 mA 4.5 V < V _I < 28 V	3.23	3.3	3.37	3.17	3.3	3.43	V
Output Voltage (3.3 V Version)	V _Q	5 mA < I _Q < 200 mA 4.5 V < V _I < 40 V	3.23	3.3	3.37	3.17	3.3	3.43	V
Output Voltage (2.5 V Version)	VQ	5 mA < I _Q < 400 mA 4.5 V < V _I < 28 V	2.45	2.5	2.55	2.4	2.5	2.6	V
Output Voltage (2.5 V Version)	V _Q	5 mA < I _Q < 200 mA 4.5 V < V _I < 40 V	2.45	2.5	2.55	2.4	2.5	2.6	V
Current Limit	l _Q	-	400	600	_	400	600	-	mA
Quiescent Current	Iq	$ \begin{array}{l} I_Q = 1 \mbox{ mA} \\ V_Q = 8.5 \mbox{ V} \\ V_Q = 5.0 \mbox{ V} \\ V_Q = 2.5 \mbox{ V} \\ V_Q = 2.5 \mbox{ V} \\ I_Q = 250 \mbox{ mA} \\ V_Q = 8.5 \mbox{ V} \\ V_Q = 5.0 \mbox{ V} \\ V_Q = 3.3 \mbox{ V} \\ V_Q = 400 \mbox{ mA} \\ V_Q = 8.5 \mbox{ V} \\ V_Q = 5.0 \mbox{ V} \\ V_Q = 5.0 \mbox{ V} \\ V_Q = 3.3 \mbox{ V} \\ V_Q = 2.5 \mbox{ V} \\ V_Q = 2.5 \mbox{ V} \\ \end{array} $		195 190 145 140 10 10 13 12 20 20 30 28	250 250 250 250 15 15 20 20 35 35 45 45	- - - - - - - - - - - - -	- 190 145 140 - 10 13 12 - 20 30 28	_ 250 250 250 _ 15 20 20 _ 35 45 45	μΑ μΑ μΑ mA mA mA mA mA mA mA
Dropout Voltage 8.5 V Version 5.0 V Version 3.3 V Version 2.5 V Version	V _{DR}	$I_{Q} = 250 \text{ mA},$ $V_{DR} = V_{I} - V_{Q}$ $V_{I} = 8.5 \text{ V}$ $V_{I} = 5.0 \text{ V}$ $V_{I} = 4.5 \text{ V}$ $V_{I} = 4.5 \text{ V}$		250 250 - -	500 500 1.27 2.05	- - - -	_ 250 _ _	_ 500 1.33 2.1	mV mV V V
Load Regulation	ΔVQ	I _Q = 5 mA to 400 mA	-	7	20	-	7	30	mV
Line Regulation	ΔV _Q	$\Delta V_{I} = 12 \text{ V to } 32 \text{ V}$ I _Q = 5 mA	-	10	25	-	10	25	mV
Power Supply Ripple Rejection	P _{SRR}	fr = 100 Hz, V _r = 0.5 V _{PP}	-	60	-	-	60	-	dB
Temperature output voltage drift	$\Delta V_Q / \Delta T$		-	0.5	-	-	0.5	-	mV/K
Thermal Shutdown Temperature*	T _{SD}	I _Q = 5 mA	165	-	210	165	-	210	°C

*Guaranteed by design, not tested in production

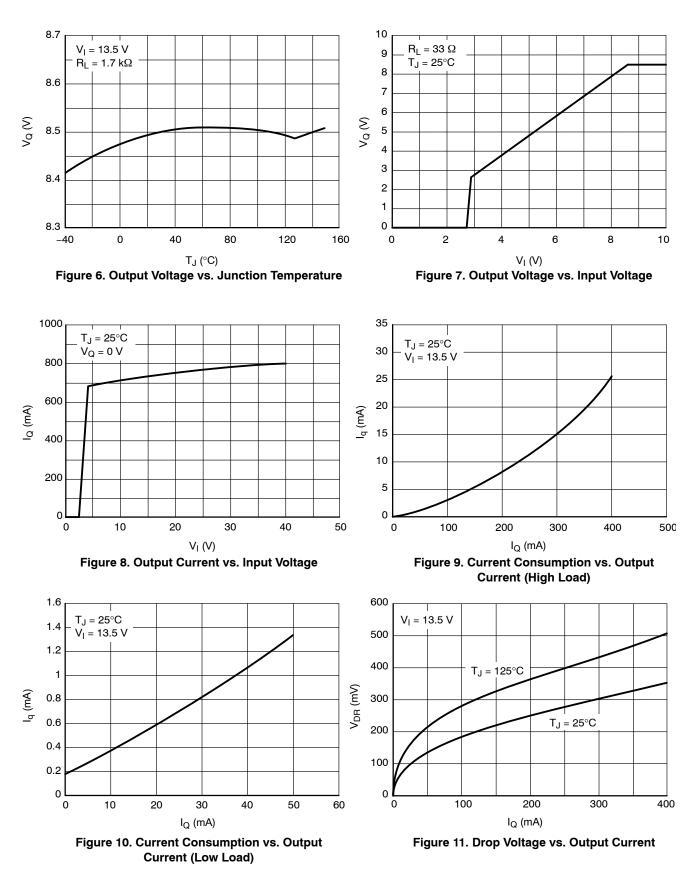

Figure 2. Measuring Circuit

Figure 3. Application Circuit

TYPICAL CHARACTERISTIC CURVES

TYPICAL CHARACTERISTIC CURVES – 8.5 V Version

TYPICAL CHARACTERISTIC CURVES – 8.5 V Version

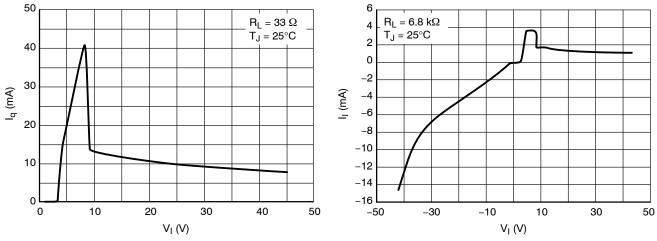
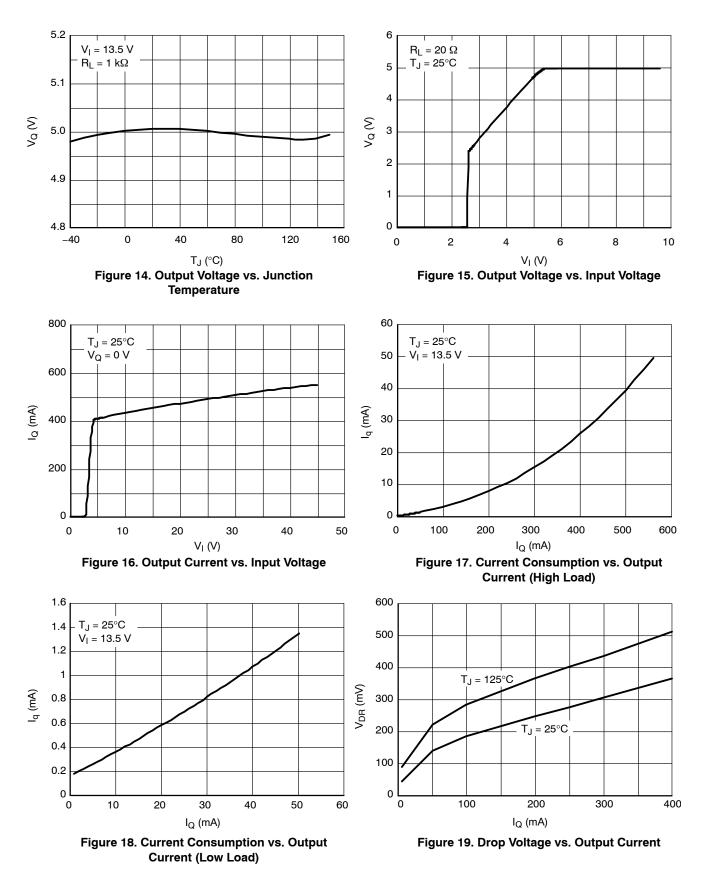



Figure 12. Current Consumption vs. Input Voltage

Figure 13. Input Current vs. Input Voltage

TYPICAL CHARACTERISTIC CURVES – 5.0 V Version

TYPICAL CHARACTERISTIC CURVES – 5.0 V Version

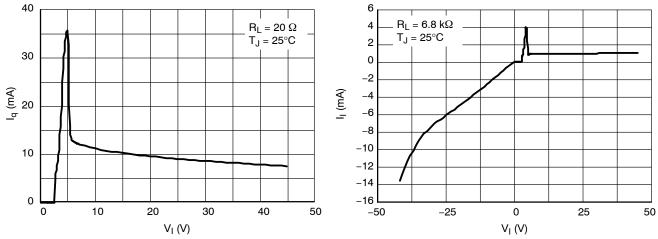
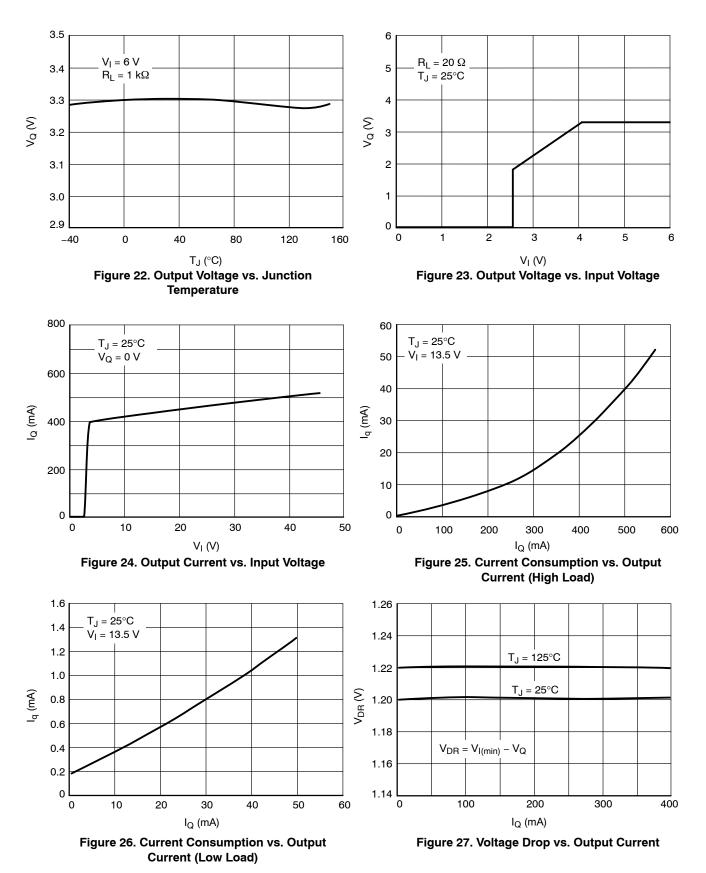



Figure 20. Current Consumption vs. Input Voltage

Figure 21. Input Current vs. Input Voltage

TYPICAL CHARACTERISTIC CURVES – 3.3 V Version

TYPICAL CHARACTERISTIC CURVES – 3.3 V Version

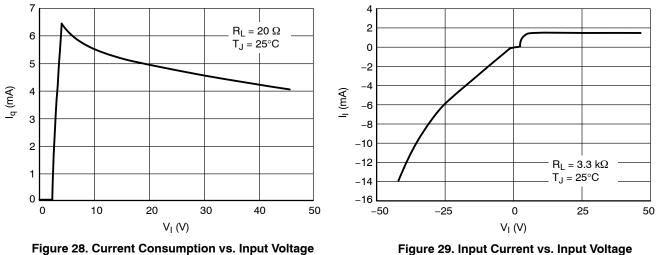
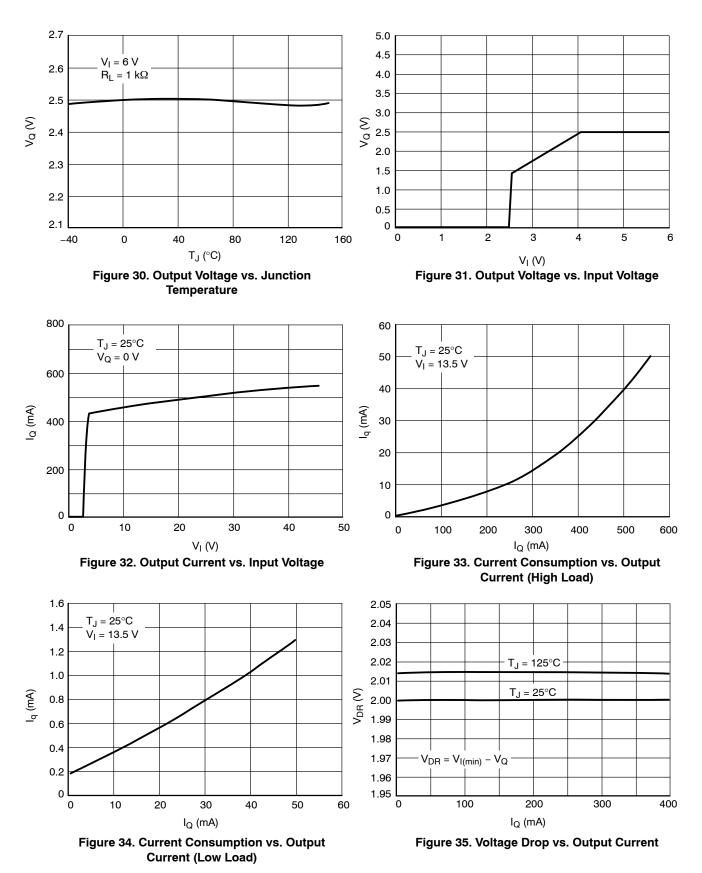



Figure 29. Input Current vs. Input Voltage

TYPICAL CHARACTERISTIC CURVES – 2.5 V Version

TYPICAL CHARACTERISTIC CURVES – 2.5 V Version

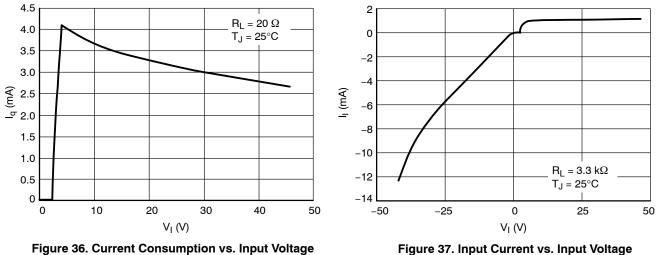


Figure 37. Input Current vs. Input Voltage

APPLICATION DESCRIPTION

Output Regulator

The output is controlled by a precision trimmed reference and error amplifier. The PNP output has saturation control for regulation while the input voltage is low, preventing over saturation. Current limit and voltage monitors complement the regulator design to give safe operating signals to the processor and control circuits.

Stability Considerations

The input capacitor C_{I1} in Figure 2 is necessary for compensating input line reactance. Possible oscillations caused by input inductance and input capacitance can be damped by using a resistor of approximately 1 Ω in series with C_{I2} .

The output or compensation capacitor helps determine three main characteristics of a linear regulator: startup delay, load transient response and loop stability.

The capacitor value and type should be based on cost, availability, size and temperature constraints. The aluminum electrolytic capacitor is the least expensive solution, but, if the circuit operates at low temperatures (-25° C to -40° C), both the value and ESR of the capacitor will vary considerably. The capacitor manufacturer's data sheet usually provides this information.

The value for the output capacitor C_Q shown in Figure 2 should work for most applications; however, it is not necessarily the optimized solution. Stability is guaranteed at values $C_Q \ge 2.2 \ \mu\text{F}$ and an ESR $\le 2.5 \ \Omega$ within the operating temperature range. Actual limits are shown in a graph in the Typical Performance Characteristics section.

Calculating Power Dissipation in a Single Output Linear Regulator

The maximum power dissipation for a single output regulator (Figure 3) is:

$$P_{D(max)} = [V_{I(max)} - V_{Q(min)}]I_{Q(max)} + V_{I(max)}I_{q}$$
 (eq. 1)

Where:

 $V_{I(max)}$ is the maximum input voltage,

V_{Q(min)} is the minimum output voltage,

 $I_{Q\left(max\right)}$ is the maximum output current for the application, and

 I_q is the quiescent current the regulator consumes at $I_{Q(max)}$.

Once the value of $P_{D(max)}$ is known, the maximum permissible value of R_{0JA} can be calculated:

$$\mathsf{P}_{\theta_{\mathsf{JA}}} = \frac{(150 \text{ C} - \mathsf{T}_{\mathsf{A}})}{\mathsf{P}_{\mathsf{D}}} \tag{eq. 2}$$

The value of $R_{\theta JA}$ can then be compared with those in the package section of the data sheet. Those packages with $R_{\theta JA}$'s less than the calculated value in Equation 2 will keep the die temperature below 150°C. In some cases, none of the packages will be sufficient to dissipate the heat generated by the IC, and an external heat sink will be required. The current flow and voltages are shown in the Measurement Circuit Diagram.

Heat Sinks

A heat sink effectively increases the surface area of the package to improve the flow of heat away from the IC and into the surrounding air.

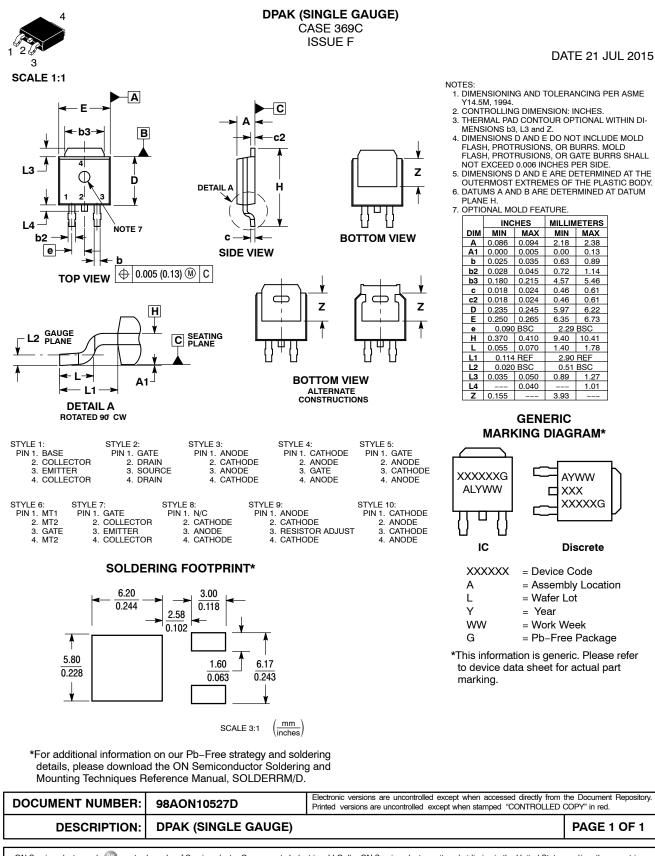
Each material in the heat flow path between the IC and the outside environment will have a thermal resistance. Like series electrical resistances, these resistances are summed to determine the value of $R_{\theta JA}$:

$$\mathbf{R}_{\theta \mathsf{JA}} = \mathbf{R}_{\theta \mathsf{JC}} + \mathbf{R}_{\theta \mathsf{CS}} + \mathbf{R}_{\theta \mathsf{SA}} \tag{eq. 3}$$

Where:

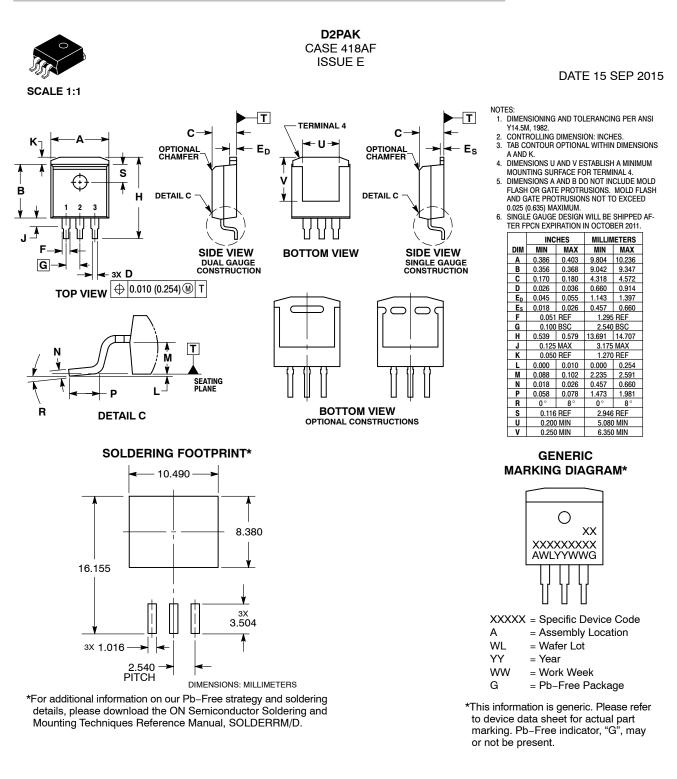
 $R_{\theta JC}$ = the junction-to-case thermal resistance, $R_{\theta CS}$ = the case-to-heat sink thermal resistance, and $R_{\theta SA}$ = the heat sink-to-ambient thermal resistance. $R_{\theta IC}$ appears in the package section of the data sheet.

Like $R_{\theta JA}$, it too is a function of package type. $R_{\theta CS}$ and $R_{\theta SA}$ are functions of the package type, heat sink and the interface between them. These values appear in data sheets of heat sink manufacturers. Thermal, mounting, and heat sinking are discussed in the ON Semiconductor application note AN1040/D, available on the ON Semiconductor Website.


ORDERING INFORMATION4

Device*	Output Voltage Accuracy	Output Voltage	Package	Shipping [†]
NCV4274ADS85R4G	2%	8.5 V	D2PAK (Pb-Free)	800 / Tape & Reel
NCV4274DS50G	4%	5.0 V	D2PAK (Pb-Free)	50 Units / Rail
NCV4274DS50R4G	4%	5.0 V	D2PAK (Pb-Free)	800 / Tape & Reel
NCV4274DT50RKG	4%	5.0 V	DPAK (Pb-Free)	2500 / Tape & Reel
NCV4274ADS50G	2%	5.0 V	D2PAK (Pb-Free)	50 Units / Rail
NCV4274ADS50R4G	2%	5.0 V	D2PAK (Pb–Free)	800 / Tape & Reel
NCV4274ADT50RKG	2%	5.0 V	DPAK (Pb–Free)	2500 / Tape & Reel
NCV4274ST33T3G	4%	3.3 V	SOT-223 (Pb-Free)	4000 / Tape & Reel
NCV4274DT33RKG	4%	3.3 V	DPAK (Pb-Free)	2500 / Tape & Reel
NCV4274AST33T3G	2%	3.3 V	SOT-223 (Pb-Free)	4000 / Tape & Reel
NCV4274ADT33RKG	2%	3.3 V	DPAK (Pb–Free)	2500 / Tape & Reel
NCV4274ADS33R4G	2%	3.3 V	D2PAK (Pb–Free)	800 / Tape & Reel
NCV4274ST25T3G	4%	2.5 V	SOT-223 (Pb-Free)	4000 / Tape & Reel
NCV4274AST25T3G	2%	2.5 V	SOT-223 (Pb-Free)	4000 / Tape & Reel

+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC-Q100 Qualified and PPAP


Capable.

ON Semiconductor and use trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the rights for the res.

DOCUMENT NUMBER:	98AON21981D	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	D2PAK		PAGE 1 OF 1			
ON Semiconductor reserves the right the suitability of its products for any pa	to make changes without further notice to an inticular purpose, nor does ON Semiconducto	stries, LLC dba ON Semiconductor or its subsidiaries in the United States y products herein. ON Semiconductor makes no warranty, representation r assume any liability arising out of the application or use of any product or cidental damages. ON Semiconductor does not convey any license under	or guarantee regarding circuit, and specifically			

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor and the support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconducts harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized claim alleges that

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910

Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥