Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +6V
DC Input Voltage (V _{IN})	-0.5V to +6V
DC Output Voltage (V _{OUT})	-0.5V to +6V
DC Input Diode Current (IIK)	
@ V _{IN} < -0.5V	–50 mA
@ V _{IN} > 6V	+20 mA
DC Output Diode Current (I _{OK})	
@ V _{OUT} < -0.5V	–50 mA
@ $V_{OUT} > 6V$, $V_{CC} = GND$	+20 mA
DC Output Current (I _{OUT})	\pm 50 mA
DC V _{CC} /GND Current (I _{CC} /I _{GND})	± 50 mA
Storage Temperature (T _{STG})	$-65^{\circ}C$ to $+150^{\circ}C$
Junction Temperature under Bias (T_J)	150°C
Junction Lead Temperature (TL);	
(Soldering, 10 seconds)	260°C
Power Dissipation (P _D) @ +85°C	
SOT23-5	200 mW
SC70-5	150 mW

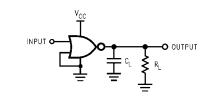
Conditions (Note 2)	_
Supply Voltage Operating (V_{CC})	1.65V to 5.5V
Supply Voltage Data Retention (V_{CC})	1.5V to 5.5V
Input Voltage (V _{IN})	0V to 5.5V
Output Voltage (V _{OUT})	0V to V_{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Input Rise and Fall Time (t _r , t _f)	
V _{CC} @ 1.8V, 2.5V ±0.2V	0 ns/V to 20 ns/V
$V_{CC} @ 3.3V \pm 0.3V$	0 ns/V to 10 ns/V
$V_{CC} @ 5.0V \pm 0.5V$	0 ns to 5 ns/V
Thermal Resistance (θ_{JA})	
SOT23-5	300°C/W
SC70-5	425°C/W

Recommended Operating

Note 1: Absolute maximum ratings are DC values beyond which the device may be damaged or have its useful life impaired. The datasheet specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation outside datasheet specifications.

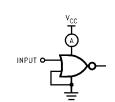
Note 2: Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

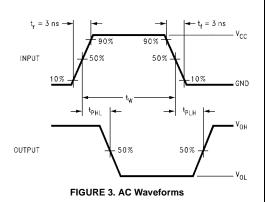

Symbol	Parameter	V_{CC} $T_A = +25^{\circ}C$			$\textbf{T}_{\textbf{A}}=-40^{\circ}\textbf{C} \text{ to }+85^{\circ}\textbf{C}$		Units	Conditions		
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	
V _{IH}	HIGH Level Input Voltage	1.65 to 1.95	0.75 V _{CC}			0.75 V _{CC}		V		
		2.3 to 5.5	0.7 V _{CC}			0.7 V _{CC}		v		
V _{IL}	LOW Level Input Voltage	1.65 to 1.95			0.25 V _{CC}		0.25 V _{CC}	V		
		2.3 to 5.5			0.3 V _{CC}		0.3 V _{CC}	v		
V _{он}	HIGH Level Output Voltage	1.65	1.55	1.65		1.55				
		1.8	1.7	1.8		1.7				
		2.3	2.2	2.3		2.2		V	$V_{IN}=V_{IL}$	I _{OH} = -100 μ/
		3.0	2.9	3.0		2.9				
		4.5	4.4	4.5		4.4				
		1.65	1.29	1.52		1.29				$I_{OH}=-4 \text{ mA}$
		2.3	1.9	2.15		1.9				I _{OH} = -8 mA
		3.0	2.4	2.80		2.4		V		$I_{OH} = -16 \text{ mA}$
		3.0	2.3	2.68		2.3				I _{OH} = -24 mA
		4.5	3.8	4.20		3.8				$I_{OH} = -32 \text{ mA}$
V _{OL}	LOW Level Output Voltage	1.65		0.0	0.1		0.1			
		1.8		0.0	0.1		0.1			
		2.3		0.0	0.1		0.1	V	$V_{IN} = V_{IH}$	$I_{OL} = 100 \ \mu A$
		3.0		0.0	0.1		0.1			
		4.5		0.0	0.1		0.1			
		1.65		0.08	0.24		0.08			I _{OL} = 4 mA
		2.3		0.10	0.3		0.3			I _{OL} = 8 mA
		3.0		0.15	0.4		0.4	V		I _{OL} = 16 mA
		3.0		0.22	0.55		0.55			I _{OL} = 24 mA
		4.5		0.22	0.55		0.55			I_{OL} = 32 mA
IN	Input Leakage Current	0 to 5.5			±1		±10	μΑ	$V_{IN} = 5.5V$, GND
OFF	Power Off Leakage Current	0.0			1		10	μΑ	V _{IN} or V _{OL}	_{JT} = 5.5V
cc	Quiescent Supply Current	1.65 to 5.5			2.0		20	μΑ	$V_{IN} = 5.5V$, GND

www.fairchildsemi.com

Symbol	Parameter	V _{CC}	T _A = +25°C		$T_A = -40^{\circ}C$ to $+85^{\circ}C$		Units	Conditions	Fig. No.	
		(V)	Min	Тур	Max	Min	Max	Units	Conditions	FIG. NO.
t _{PLH} ,	Propagation Delay	1.65	2.0	5.3	11.5	2.0	12.0			
t _{PHL}		1.8	2.0	4.4	9.5	2.0	10	1		
		2.5±0.2 0.8 2.9 6.5 0.8 7.0 ns C	C _L = 15 pF,	Figures 1, 3						
		3.3 ± 0.3	0.5	2.3	4.5	0.5	4.7	Ì	$R_L = 1 M\Omega$	1, 0
		5.0 ± 0.5	0.5	1.9	3.9	0.5	4.1	Ì		
t _{PLH,}	Propagation Delay	3.3 ± 0.3	1.5	2.9	5.0	1.5	5.2		C _L = 50 pF,	Figures
t _{PHL}		5.0 ± 0.5	0.8	2.4	4.3	0.8	4.5	ns	$R_L=500\Omega$	1, 3
CIN	Input Capacitance	0		4				pF		
C _{PD}	Power Dissipation	3.3		23				~ 5	(Nata 2)	Ciaura 2
	Capacitance	5.0		30				pF	(Note 3)	Figure 2


Note 3: C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. (See Figure 2.) C_{PD} is related to I_{CCD} dynamic operating current by the expression: $I_{CCD} = (C_{PD})(V_{CC})(f_{IN}) + (I_{CC} static).$

AC Loading and Waveforms

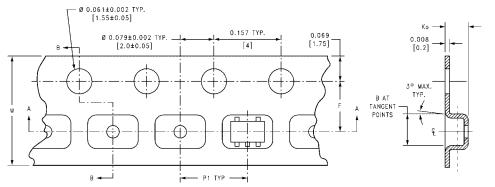


 C_L includes load and stray capacitance Input PRR = 1.0 MHz; t_w = 500 ns

FIGURE 1. AC Test Circuit

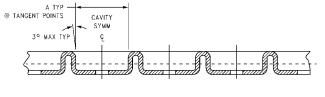
Input = AC Waveform; $t_r = t_f = 1.8$ ns; PRR = 10 MHz; Duty Cycle = 50% FIGURE 2. I_{CCD} Test Circuit

Downloaded from Arrow.com.



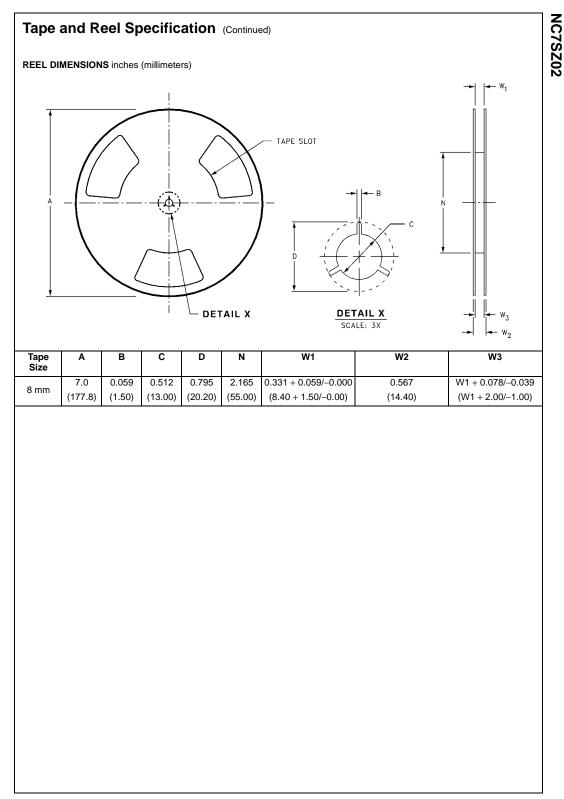
Tape and Reel Specification

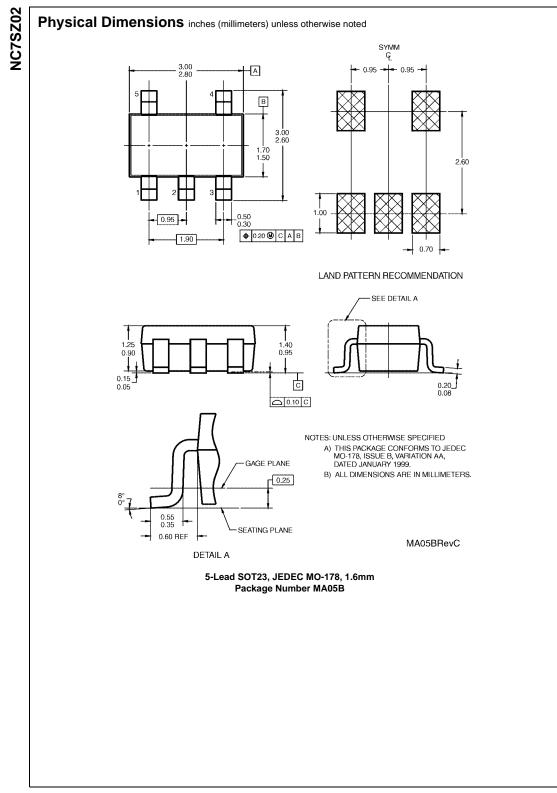
TAPE FORMAT	
Package	
Designator	

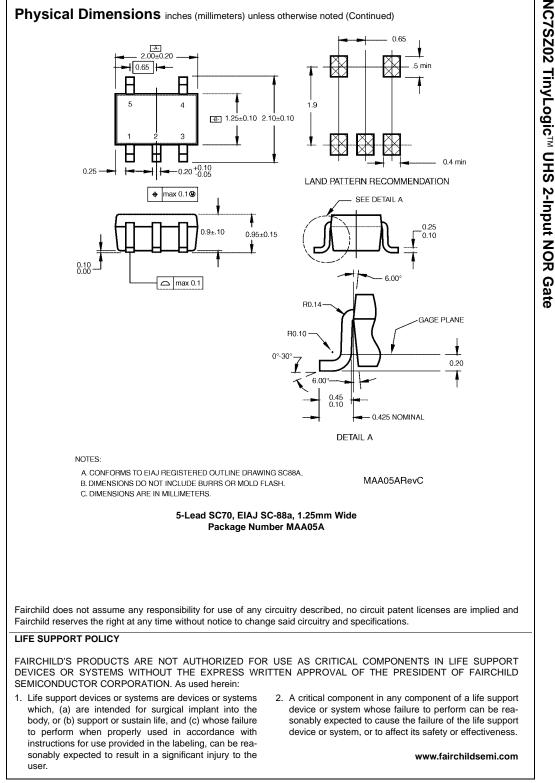

Package	Таре	Number	Cavity	Cover Tape	
Designator Section		Cavities	Status	Status	
	Leader (Start End)	125 (typ)	Empty	Sealed	
M5, P5	Carrier	250	Filled	Sealed	
	Trailer (Hub End)	75 (typ)	Empty	Sealed	
	Leader (Start End)	125 (typ)	Empty	Sealed	
M5X, P5X	Carrier	3000	Filled	Sealed	
	Trailer (Hub End)	75 (typ)	Empty	Sealed	

TAPE DIMENSIONS inches (millimeters)

DIRECTION OF FEED -


SECTION A-A


R 1.181 MIN. [30]


BEND RADIUS NOT TO SCALE

Package	Tape Size	DIM A	DIM B	DIM F	DIM K _o	DIM P1	DIM W
SC70-5	8 mm	0.093	0.096	0.138 ± 0.004	0.053 ± 0.004	0.157	0.315 ± 0.004
		(2.35)	(2.45)	(3.5 ± 0.10)	(1.35 ± 0.10)	(4)	(8 ± 0.1)
SOT23-5	8 mm	0.130	0.130	0.138 ± 0.002	0.055 ± 0.004	0.157	0.315 ± 0.012
		(3.3)	(3.3)	(3.5 ± 0.05)	(1.4 ± 0.11)	(4)	(8 ± 0.3)

www.fairchildsemi.com

7

www.fairchildsemi.com