Single 2-Input Exclusive OR Gate

MC74VHC1G86, MC74VHC1GT86

The MC74VHC1G86 / MC74VHC1GT86 is a 2-input Exclusive OR Gate in tiny packages. The MC74VHC1G86 has CMOS level input thresholds while the MC74VHC1GT86 has TTL level input thresholds.

The internal circuit is composed of three stages, including a buffered output which provides high noise immunity and stable output.

The input structures provide protection when voltages up to 5.5 V are applied, regardless of the supply voltage. This allows the device to be used to interface 5 V circuits to 3 V circuits. The output structures also provide protection when $V_{CC} = 0$ V and when the output voltage exceeds V_{CC} . These input and output structures help prevent device destruction caused by supply voltage – input/output voltage mismatch, battery backup, hot insertion, etc.

Features

- Designed for 2.0 V to 5.5 V V_{CC} Operation
- 3.5 ns t_{PD} at 5 V (typ)
- Inputs/Outputs Over-Voltage Tolerant up to 5.5 V
- I_{OFF} Supports Partial Power Down Protection
- Source/Sink 8 mA at 3.0 V
- Available in SC-88A, SC-74A, TSOP-5, SOT-553, SOT-953 and UDFN6 Packages
- Chip Complexity < 100 FETs
- NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

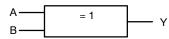
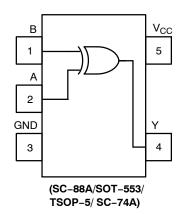
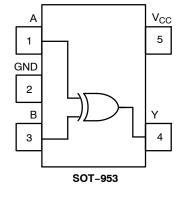


Figure 1. Logic Symbol


ON Semiconductor®


www.onsemi.com

		MARKING DIAGRAMS
	SC-88A DF SUFFIX CASE 419A	
	SC-74A DBV SUFFIX CASE 318BQ	↓ ↓ ↓ ××× м• o •
5 1 TSOP-5 DT SUFFIX CASE 483	5 XX M• • • 1	5 XXXAYW• • • 1
e e e	SOT-553 XV5 SUFFIX CASE 463B	XX M=
	SOT-953 P5 SUFFIX CASE 527AE	
	UDFN6 1.45 x 1.0 CASE 517AQ	● XM
Ŷ	UDFN6 1.2 x 1.0 CASE 517AA	× M
Ŷ	UDFN6 1.0 x 1.0 CASE 517BX	1 °
XX M	= Specific Device = Date Code* = Pb-Free Packa	
(Note: Micro	odot may be in eithe	er location)

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 7 of this data sheet.

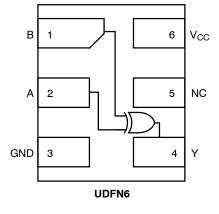


Figure 2. Pinout (Top View)

PIN ASSIGNMENT

(SC-88A/SOT-553/ TSOP-5/SC-74A)

Pin	Function
1	В
2	A
3	GND
4	Y
5	V _{CC}

PIN ASSIGNMENT (SOT-953)

Pin	Function
1	А
2	GND
3	В
4	Y
5	V _{CC}

PIN ASSIGNMENT (UDFN)

Pin	Function
1	В
2	A
3	GND
4	Y
5	NC
6	V _{CC}

FUNCTION TABLE

Inp	Output	
А	В	Y
L	L	L
L	Н	Н
Н	L	Н
Н	Н	L

MAXIMUM RATINGS

Symbol	Characteristics	Value	Unit	
V_{CC}	DC Supply Voltage SC-74A, SC-88A, UD	TSOP-5, SC-88A (NLV) FN6, SOT-553, SOT-953	−0.5 to +7.0 −0.5 to +6.5	V
V _{IN}	DC Input Voltage SC-74A, SC-88A, UD	TSOP-5, SC-88A (NLV) FN6, SOT-553, SOT-953	-0.5 to +7.0 -0.5 to +6.5	V
V _{OUT}	TSOP-5, SC-88A (NLV)	Mode (High or Low State) Tri-State Mode (Note 1) -Down Mode (V _{CC} = 0 V)	-0.5 to V _{CC} + 0.5 -0.5 to +7.0 -0.5 to +7.0	V
	SC-74A, SC-88A, UDFN6, SOT-553, SOT-953	Mode (High or Low State) Tri–State Mode (Note 1) –Down Mode (V _{CC} = 0 V)	$\begin{array}{c} -0.5 \text{ to } V_{CC} + 0.5 \\ -0.5 \text{ to } +6.5 \\ -0.5 \text{ to } +6.5 \end{array}$	V
I _{IK}	DC Input Diode Current	V _{IN} < GND	-20	mA
I _{OK}	DC Output Diode Current	V _{OUT} < GND	-20	mA
I _{OUT}	DC Output Source/Sink Current		±25	mA
I _{CC} or I _{GND}	DC Supply Current per Supply Pin or Ground Pin		±50	mA
T _{STG}	Storage Temperature Range		-65 to +150	°C
ΤL	Lead Temperature, 1 mm from Case for 10 secs		260	°C
TJ	Junction Temperature Under Bias		+150	°C
θ_{JA}	Thermal Resistance (Note 2)	SC-88A SC-74A SOT-553 SOT-953 UDFN6	377 320 324 254 154	°C/W
P _D	Power Dissipation in Still Air	SC-88A SC-74A SOT-553 SOT-953 UDFN6	332 390 386 491 812	mW
MSL	Moisture Sensitivity		Level 1	_
F _R	Flammability Rating	Oxygen Index: 28 to 34	UL 94 V-0 @ 0.125 in	_
V _{ESD}	ESD Withstand Voltage (Note 3)	Human Body Model Charged Device Model	2000 1000	V
I _{Latchup}	Latchup Performance (Note 4)		±100	mA

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

Applicable to devices with outputs that may be tri-stated.
 Measured with minimum pad spacing on an FR4 board, using 10mm-by-1inch, 2 ounce copper trace no air flow per JESD51-7.
 HBM tested to ANSI/ESDA/JEDEC JS-001-2017. CDM tested to EIA/JESD22-C101-F. JEDEC recommends that ESD qualification to EIA/JESD22-A115-A (Machine Model) be discontinued per JEDEC/JEP172A.

4. Tested to EIA/JESD78 Class II.

RECOMMENDED OPERATING CONDITIONS

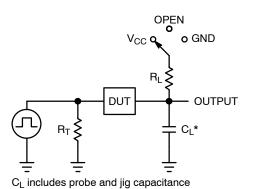
Symbol		Characteristics	Min	Max	Unit
V _{CC}	Positive DC Supply Voltage		2.0	5.5	V
V _{IN}	DC Input Voltage		0	5.5	V
V _{OUT}	DC Output Voltage	TSOP-5, SC-88A (NLV)	0	V _{CC}	V
	DC Output Voltage	SC-74A, SC-88A, UDFN6, SOT-553, SOT-953 Active-Mode (High or Low State) Tri-State Mode (Note 1) Power-Down Mode (V _{CC} = 0 V)	0 0 0	V _{CC} 5.5 5.5	
T _A	Operating Temperature Ran	ge	-55	+125	°C
t _r , t _f	Input Rise and Fall Time	TSOP–5, SC–88A (NLV) V _{CC} = 3.0 V to 3.6 V V _{CC} = 4.5 V to 5.5 V	0 0	100 20	ns/V
	Input Rise and Fall Time	SC-74A, SC-88A, UDFN6, SOT-553, SOT-953 $V_{CC} = 2.0 V$ $V_{CC} = 2.3 V to 2.7 V$ $V_{CC} = 3.0 V to 3.6 V$ $V_{CC} = 4.5 V to 5.5 V$	0 0 0 0	20 20 10 5	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTRICAL CHARACTERISTICS (MC74VHC1G86)

	l	Test	Vcc	1	Γ _A = 25°	С	-40°C ≤ -	T _A ≤ 85°C	-55°C ≤ T	A ≤ 125°C	
Symbol Paramete	Parameter	Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
VIH	High-Level Input		2.0	1.5	-	-	1.5	-	1.5	-	V
	Voltage		3.0	2.1	-	-	2.1	-	2.1	-	
			4.5	3.15	-	-	3.15	-	3.15	-	
			5.5	3.85	-	-	3.85	-	3.85	-	
V _{IL}	Low-Level Input		2.0	-	-	0.5	-	0.5	-	0.5	V
	Voltage		3.0	-	-	0.9	-	0.9	-	0.9	
			4.5	-	-	1.35	-	1.35	-	1.35	
			5.5	-	-	1.65	-	1.65	-	1.65	
V _{OH}	High-Level Output Voltage	$\begin{array}{l} V_{IN} = V_{IH} \text{ or } V_{IL} \\ I_{OH} = -50 \ \mu\text{A} \\ I_{OH} = -50 \ \mu\text{A} \\ I_{OH} = -50 \ \mu\text{A} \\ I_{OH} = -4 \ m\text{A} \\ I_{OH} = -8 \ m\text{A} \end{array}$	2.0 3.0 4.5 3.0 4.5	1.9 2.9 4.4 2.58 3.94	2.0 3.0 4.5 –	- - - -	1.9 2.9 4.4 2.48 3.80	- - - -	1.9 2.9 4.4 2.34 3.66	- - - -	V
V _{OL}	Low-Level Output Voltage	$ \begin{array}{l} V_{IN} = V_{IH} \text{ or } V_{IL} \\ I_{OL} = 50 \ \mu A \\ I_{OL} = 50 \ \mu A \\ I_{OL} = 50 \ \mu A \\ I_{OL} = 4 \ m A \\ I_{OL} = 8 \ m A \end{array} $	2.0 3.0 4.5 3.0 4.5	- - - -	0.0 0.0 0.0 - -	0.1 0.1 0.36 0.36	- - - -	0.1 0.1 0.44 0.44	- - - - -	0.1 0.1 0.52 0.52	V
I _{IN}	Input Leakage Current	V _{IN} = 5.5 V or GND	2.0 to 5.5	-	-	±0.1	-	±1.0	_	±1.0	μΑ
I _{OFF}	Power Off Leakage Current	V_{IN} = 5.5 V or V_{OUT} = 5.5 V	0	-	-	1.0	-	10	_	10	μΑ
Icc	Quiescent Supply Current	V _{IN} = V _{CC} or GND	5.5	-	-	1.0	-	20	_	40	μA

DC ELECTRICAL CHARACTERISTICS (MC74VHC1GT86)

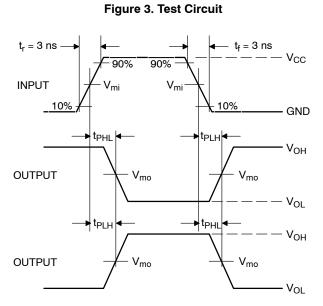

		Test	v _{cc}	T _A = 25°C			-40°C ≤ 1	Γ _A ≤ 85°C	$-55^\circ C \le T_A \le 125^\circ C$		
Symbol	Parameter	Conditions	(V)	Min	Тур	Max	Min	Max	Min	Max	Unit
V _{IH}	High-Level Input		2.0	1.0	-	-	1.0	-	1.0	-	V
	Voltage		3.0	1.4	-	-	1.4	-	1.4	-	
			4.5	2.0	-	-	2.0	-	2.0	-	
			5.5	2.0	I	-	2.0	-	2.0	-	
VIL	Low-Level Input		2.0	-	1	0.28	-	0.28	-	0.28	V
	Voltage		3.0	-	1	0.45	-	0.45	-	0.45	
			4.5	-	-	0.8	-	0.8	-	0.8	
			5.5	-	-	0.8	-	0.8	-	0.8	
V _{OH}	High-Level Output Voltage	$\begin{array}{l} V_{IN} = V_{IH} \text{ or } V_{IL} \\ I_{OH} = -50 \ \mu\text{A} \\ I_{OH} = -50 \ \mu\text{A} \\ I_{OH} = -50 \ \mu\text{A} \\ I_{OH} = -4 \ m\text{A} \\ I_{OH} = -8 \ m\text{A} \end{array}$	2.0 3.0 4.5 3.0 4.5	1.9 2.9 4.4 2.58 3.94	2.0 3.0 4.5 –	- - - -	1.9 2.9 4.4 2.48 3.80	- - - -	1.9 2.9 4.4 2.34 3.66	- - - -	V
V _{OL}	Low-Level Output Voltage	$ \begin{array}{l} V_{IN} = V_{IH} \text{ or } V_{IL} \\ I_{OL} = 50 \ \mu A \\ I_{OL} = 50 \ \mu A \\ I_{OL} = 50 \ \mu A \\ I_{OL} = 4 \ m A \\ I_{OL} = 8 \ m A \end{array} $	2.0 3.0 4.5 3.0 4.5	- - - -	0.0 0.0 0.0 -	0.1 0.1 0.36 0.36	- - - -	0.1 0.1 0.44 0.44	- - - -	0.1 0.1 0.52 0.52	V
I _{IN}	Input Leakage Cur- rent	V _{IN} = 5.5 V or GND	2.0 to 5.5	-	-	±0.1	-	±1.0	-	±1.0	μΑ
I _{OFF}	Power Off Leakage Current	V _{IN} = 5.5 V or V _{OUT} = 5.5 V	0	-	-	1.0	-	10	-	10	μΑ
I _{CC}	Quiescent Supply Current	V _{IN} = V _{CC} or GND	5.5	_	I	1.0	-	20	-	40	μΑ
I _{CCT}	Increase in Quies- cent Supply Current per Input Pin	One Input: V _{IN} = 3.4 V; Other Input at V _{CC} or GND	5.5	-	-	1.35	-	1.5	-	1.65	mA

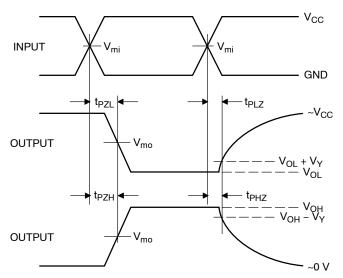
AC ELECTRICAL CHARACTERISTICS

			Ţ	A = 25°	C	–40°C ≤ 1	Γ _A ≤ 85°C	–55°C ≤ T	A ≤ 125°C	
Parameter	Conditions	V _{CC} (V)	Min	Тур	Max	Min	Max	Min	Мах	Unit
Propagation Delay,	C _L = 15 pF	3.0 to 3.6	-	4.4	11.0	-	13.0	-	15.5	ns
(A or B) to Y (Figures 3 and 4)	C _L = 50 pF		-	5.7	14.5	_	16.5	-	19.5	1
, , , , , , , , , , , , , , , , , , ,	C _L = 15 pF	4.5 to 5.5	-	3.5	6.8	-	8.0	_	10.0	1
	C _L = 50 pF		-	4.2	8.8	-	10.0	-	12.0	1
Input Capacitance			-	4.0	10	-	10	_	10	pF
Output Capacitance	Output in High Impedance State		-	6.0	-	_	-	-	-	pF
	Propagation Delay, (A or B) to Y (Figures 3 and 4) Input Capacitance	$\begin{array}{c} \mbox{Propagation Delay,} \\ (A \mbox{ or } B) \mbox{ to } Y \\ (Figures 3 \mbox{ and } 4) \end{array} & \begin{array}{c} \mbox{C_L = 15 $ pF$} \\ \mbox{$C_L$ = 50 $ pF$} \\ \mbox{$C_L$ = 15 $ pF$} \\ \mbox{$C_L$ = 50 $ pF$} \\ \mbox{$C_L$ = 50 $ pF$} \\ \mbox{Input Capacitance} \\ \mbox{Output Capacitance} \\ \mbox{Output in} \\ \mbox{High} \\ \mbox{Impedance} \end{array}$	$\begin{array}{c} \mbox{Propagation Delay,} \\ (A \mbox{ or } B) \mbox{ to } Y \\ (Figures 3 \mbox{ and } 4) \end{array} \qquad \begin{array}{c} C_L = 15 \mbox{ pF} \\ \hline C_L = 50 \mbox{ pF} \\ \hline C_L = 15 \mbox{ pF} \\ \hline C_L = 15 \mbox{ pF} \\ \hline C_L = 50 \mbox{ pF} \\ \hline \end{array} \qquad \begin{array}{c} 4.5 \mbox{ to } 5.5 \\ \hline C_L = 50 \mbox{ pF} \\ \hline \end{array} \qquad \begin{array}{c} \mbox{ output Capacitance} \\ \mbox{ Output Capacitance} \\ \hline \end{array} \qquad \begin{array}{c} \mbox{ Output in} \\ \mbox{ High} \\ \mbox{ Impedance} \\ \end{array} \qquad \begin{array}{c} \mbox{ Output and } \end{array} \qquad \begin{array}{c} \mbox{ output in} \\ \mbox{ High} \\ \mbox{ Impedance} \\ \end{array} $	ParameterConditions V_{CC} (V)MinPropagation Delay, (A or B) to Y (Figures 3 and 4) $C_L = 15 \text{ pF}$ $3.0 \text{ to } 3.6$ $C_L = 50 \text{ pF}$ $ C_L = 15 \text{ pF}$ $4.5 \text{ to } 5.5$ $ C_L = 15 \text{ pF}$ $4.5 \text{ to } 5.5$ $ C_L = 50 \text{ pF}$ $ -$ Input Capacitance $ -$ Output CapacitanceOutput in High Impedance $-$	ParameterConditions V_{CC} (V)MinTypPropagation Delay, (A or B) to Y (Figures 3 and 4) $C_L = 15 \text{ pF}$ $3.0 \text{ to } 3.6$ $ 4.4$ $C_L = 50 \text{ pF}$ $C_L = 50 \text{ pF}$ $C_L = 15 \text{ pF}$ $ 3.5$ $C_L = 15 \text{ pF}$ $C_L = 50 \text{ pF}$ $ 4.2$ Input Capacitance $C_L = 50 \text{ pF}$ $ 4.2$ Output CapacitanceOutput in High Impedance $ 6.0$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Parameter Conditions V_{CC} (V) Min Typ Max Min Max Propagation Delay, (A or B) to Y (Figures 3 and 4) $C_L = 15 \text{ pF}$ $3.0 \text{ to } 3.6$ - 4.4 11.0 - 13.0 $C_L = 50 \text{ pF}$ $C_L = 50 \text{ pF}$ $ 5.7$ 14.5 - 16.5 $C_L = 15 \text{ pF}$ $4.5 \text{ to } 5.5$ - 3.5 6.8 - 8.0 $C_L = 50 \text{ pF}$ $4.5 \text{ to } 5.5$ - 3.5 6.8 - 8.0 Input Capacitance $C_L = 50 \text{ pF}$ $ 4.0$ 10 - 10.0 Output Capacitance Output in High Impedance $ 6.0$ $ -$	$ \begin{array}{ c c c c c c } \hline Parameter & Conditions & V_{CC}(V) & Min & Typ & Max & Min & Max & Min \\ \hline Propagation Delay, (A or B) to Y (Figures 3 and 4) & C_L = 15 pF & 3.0 to 3.6 & - & 4.4 & 11.0 & - & 13.0 & - & & & & & & & & & & & & & & & & & $	$ \begin{array}{ c c c c c c c } \hline Parameter & Conditions & V_{CC}(V) & Min & Typ & Max & Min & Max & Min & Max \\ \hline Propagation Delay, (A or B) to Y (Figures 3 and 4) & C_L = 15 pF & 3.0 to 3.6 & - & 4.4 & 11.0 & - & 13.0 & - & 15.5 \\ \hline C_L = 50 pF & - & - & 5.7 & 14.5 & - & 16.5 & - & 19.5 \\ \hline C_L = 50 pF & 4.5 to 5.5 & - & 3.5 & 6.8 & - & 8.0 & - & 10.0 \\ \hline C_L = 50 pF & - & - & 4.2 & 8.8 & - & 10.0 & - & 12.0 \\ \hline Input Capacitance & Cutput in High Impedance & - & 4.0 & 10 & - & 10 & - & 10 \\ \hline Output Capacitance & Output in High Impedance & - & 6.0 & - & - & - & - & - \\ \hline Input Capacitance & Output in High Impedance & - & 0.0 & - & 0.0 & - & 0.0 \\ \hline Input Capacitance & Output in High Impedance & - & 0.0 & - & 0.0 & - & 0.0 \\ \hline Input Capacitance & Output in High Impedance & - & 0.0 & - & 0.0 & - & 0.0 \\ \hline Input Capacitance & Output in High Impedance & - & 0.0 & - & 0.0 & - & 0.0 \\ \hline Input Capacitance & Output in High Impedance & - & 0.0 & - & 0.0 & - & 0.0 \\ \hline Input Capacitance & Output in High Impedance & - & 0.0 & 0.0 & - & 0.0 & - & 0.0 \\ \hline Input Capacitance & Output in High Impedance & - & 0.0 & - & 0.0 & - & 0.0 & - & 0.0 \\ \hline Input Capacitance & Output in High Impedance & - & 0.0 & 0.0 & - & 0.0 & - & 0.0 & 0.0 & - & 0.0 \\ \hline Input Capacitance & Output in High Impedance & - & 0.0 & 0.0 & - & 0.0 & $

CPD Power Dissipation Capacitance (Note 5) 8.0 pF			Typical @ 25°C, V _{CC} = 5.0 V	
	C _{PD}	Power Dissipation Capacitance (Note 5)	8.0	pF

5. C_{PD} is defined as the value of the internal equivalent capacitance which is calculated from the operating current consumption without load. Average operating current can be obtained by the equation: $I_{CC(OPR)} = C_{PD} \bullet V_{CC} \bullet f_{in} + I_{CC}$. C_{PD} is used to determine the no–load dynamic power consumption; $P_D = C_{PD} \bullet V_{CC}^2 \bullet f_{in} + I_{CC} \bullet V_{CC}$.




 R_T is Z_{OUT} of pulse generator (typically 50 Ω)

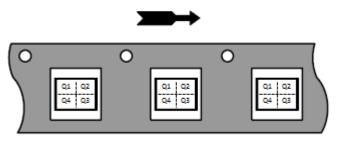
f = 1 MHz

Test	Switch Position	C _L , pF	R_L, Ω
t _{PLH} / t _{PHL}	Open	See AC Characteristics Table	Х
t _{PLZ} / t _{PZL}	V _{CC}		1 k
t _{PHZ} / t _{PZH}	GND		1 k

X = Don't Care

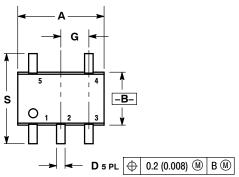
Figure 4. Switching Waveforms

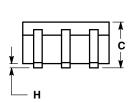
		V _{mo} , V		
V _{CC} , V	V _{mi} , V	t _{PLH} , t _{PHL}	t _{PZL} , t _{PLZ} , t _{PZH} , t _{PHZ}	V _Y , V
3.0 to 3.6	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.3
4.5 to 5.5	V _{CC} /2	V _{CC} /2	V _{CC} /2	0.3

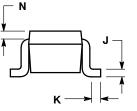

ORDERING INFORMATION

Device	Packages	Specific Device Code	Pin 1 Orientation (See below)	Shipping [†]
MC74VHC1G86DFT1G	SC-88A	V8	Q2	3000 / Tape & Reel
MC74VHC1G86DFT2G	SC-88A	V8	Q4	3000 / Tape & Reel
NLVVHC1G86DFT1G*	SC-88A	V8	Q2	3000 / Tape & Reel
NLVVHC1G86DFT2G*	SC-88A	V8	Q4	3000 / Tape & Reel
M74VHC1GT86DFT1G	SC-88A	VM	Q2	3000 / Tape & Reel
M74VHC1GT86DFT2G	SC-88A	VM	Q4	3000 / Tape & Reel
NLVVHC1GT86DFT1G*	SC-88A	VM	Q2	3000 / Tape & Reel
NLVVHC1GT86DFT2G	SC-88A	VM	Q4	3000 / Tape & Ree
MC74VHC1G86DBVT1G	SC-74A	V8	Q4	3000 / Tape & Reel
MC74VHC1GT86DBVT1G (In Development)	SC-74A	TBD	Q4	3000 / Tape & Reel
MC74VHC1G86DTT1G	TSOP-5	V8	Q4	3000 / Tape & Reel
NLVVHC1G86DTT1G*	TSOP-5	V8	Q4	3000 / Tape & Reel
NLV74VHC1GT86DTT1G*	TSOP-5	VM	Q4	3000 / Tape & Reel
M74VHC1GT86DTT1G	TSOP-5	VM	Q4	3000 / Tape & Reel
MC74VHC1G86XV5T2G (In Development)	SOT-553	TBD	Q4	4000 / Tape & Reel
MC74VHC1GT86XV5T2G (In Development)	SOT-553	TBD	Q4	4000 / Tape & Reel
MC74VHC1G86P5T5G (In Development)	SOT-953	TBD	Q2	8000 / Tape & Reel
MC74VHC1GT85P5T5G (In Development)	SOT-953	TBD	Q2	8000 / Tape & Reel
MC74VHC1G86MU1TCG (In Development)	UDFN6, 1.45 x 1.0, 0.5P	R (Rotated 270° CW)	Q4	3000 / Tape & Reel
MC74VHC1GT86MU1TCG (In Development)	UDFN6, 1.45 x 1.0, 0.5P	TBD	Q4	3000 / Tape & Reel
MC74VHC1G86MU2TCG (In Development)	UDFN6, 1.2 x 1.0, 0.4P	4	Q4	3000 / Tape & Reel
MC74VHC1GT86MU2TCG (In Development)	UDFN6, 1.2 x 1.0, 0.4P	6	Q4	3000 / Tape & Reel
MC74VHC1G86MU3TCG (In Development)	UDFN6, 1.0 x 1.0, 0.35P	Y (Rotated 180° CW)	Q4	3000 / Tape & Reel
MC74VHC1GT86MU3TCG (In Development)	UDFN6, 1.0 x 1.0, 0.35P	TBD	Q4	3000 / Tape & Reel

†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.
 *NLV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements; AEC–Q100 Qualified and PPAP Capable.

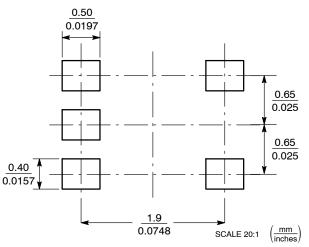

Pin 1 Orientation in Tape and Reel


Direction of Feed



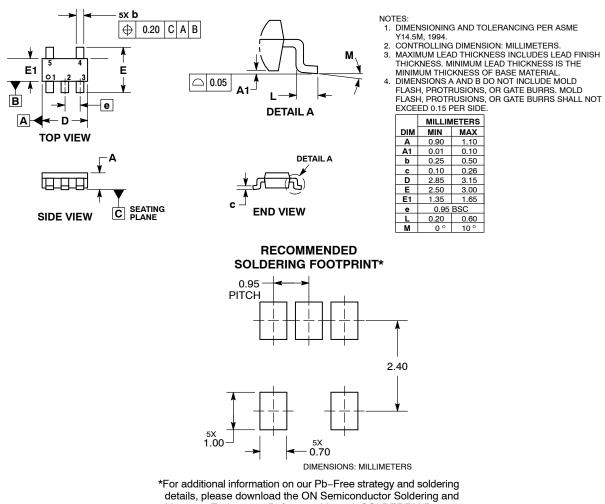
PACKAGE DIMENSIONS

SC-88A (SC-70-5/SOT-353) CASE 419A-02 ISSUE L



NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. 419A-01 OBSOLETE. NEW STANDARD 419A-02. 4. DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

	INCHES		MILLIMETERS		
DIM	MIN	MAX	MIN	MAX	
Α	0.071	0.087	1.80	2.20	
В	0.045	0.053	1.15	1.35	
С	0.031	0.043	0.80	1.10	
D	0.004	0.012	0.10	0.30	
G	0.026 BSC		0.65 BSC		
Н		0.004		0.10	
J	0.004	0.010	0.10	0.25	
К	0.004	0.012	0.10	0.30	
Ν	0.008 REF		0.20	REF	
S	0.079	0.087	2.00	2.20	

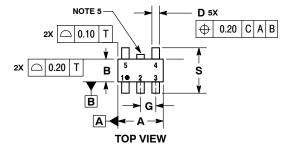

SOLDER FOOTPRINT*

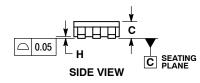
*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

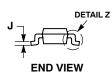
PACKAGE DIMENSIONS

SC-74A CASE 318BQ ISSUE B

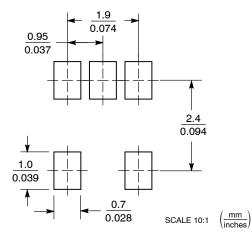
Mounting Techniques Reference Manual, SOLDERRM/D.

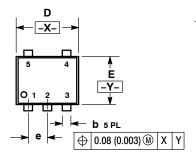

PACKAGE DIMENSIONS

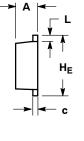

NOTES:


- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS.
- 2.
- CONTROLLING DIMENSION: MILLIMETERS.
 MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL.
 DIMENSIONS A AND B DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.15 PER SIDE. DIMENSION A.
 OPTIONAL CONSTRUCTION: AN ADDITIONAL TRIMMED LEAD IS ALLOWED IN THIS LOCATION. TRIMMED LEAD NOT TO EXTEND MORE THAN 0.2 FROM BODY.

	MILLIMETERS		
DIM	MIN	MAX	
Α	2.85	3.15	
В	1.35	1.65	
С	0.90	1.10	
D	0.25	0.50	
G	0.95 BSC		
Н	0.01	0.10	
J	0.10	0.26	
К	0.20	0.60	
М	0 °	10 °	
S	2.50 3.00		



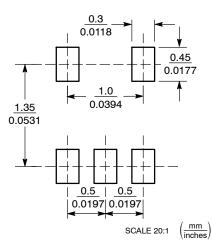

SOLDERING FOOTPRINT*



*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

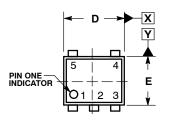
PACKAGE DIMENSIONS

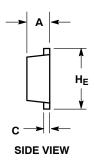
SOT-553, 5 LEAD CASE 463B ISSUE C

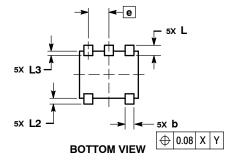


NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH THICKNESS. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF BASE MATERIAL. INCHES

	MILLIMETERS			INCHES		
DIM	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.50	0.55	0.60	0.020	0.022	0.024
b	0.17	0.22	0.27	0.007	0.009	0.011
с	0.08	0.13	0.18	0.003	0.005	0.007
D	1.55	1.60	1.65	0.061	0.063	0.065
E	1.15	1.20	1.25	0.045	0.047	0.049
е		0.50 BSC			0.020 BSC	~
L	0.10	0.20	0.30	0.004	0.008	0.012
HE	1.55	1.60	1.65	0.061	0.063	0.065

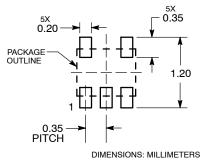

SOLDERING FOOTPRINT*


*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

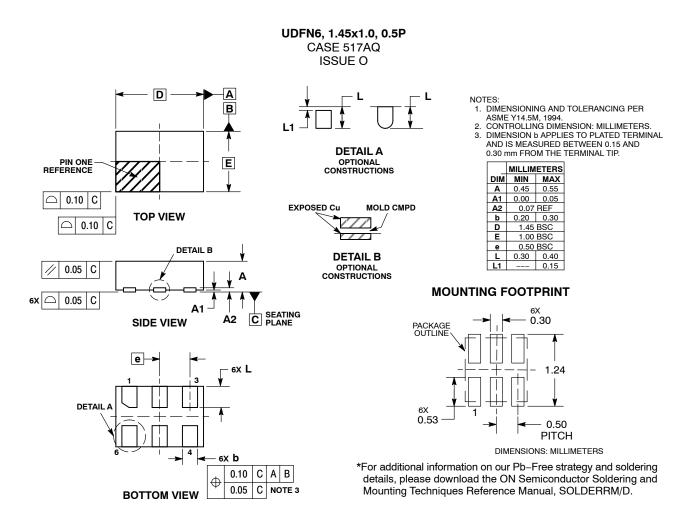

PACKAGE DIMENSIONS

SOT-953 CASE 527AE **ISSUE E**

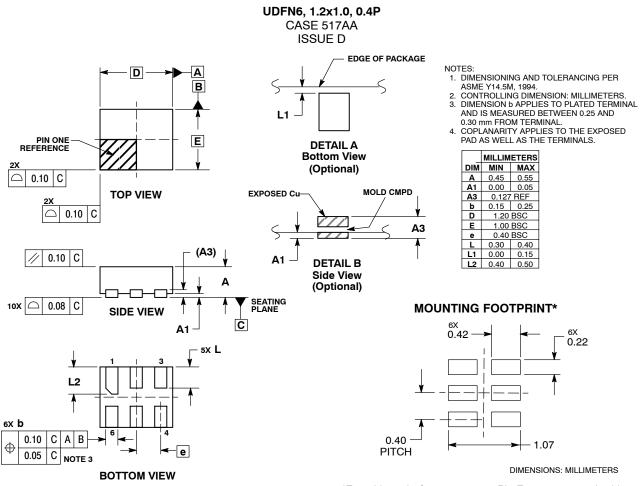
TOP VIEW



- NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS 3. MAXIMUM LEAD THICKNESS INCLUDES LEAD FINISH. MINIMUM LEAD THICKNESS IS THE MINIMUM THICKNESS OF THE BASE MATERIAL. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS.

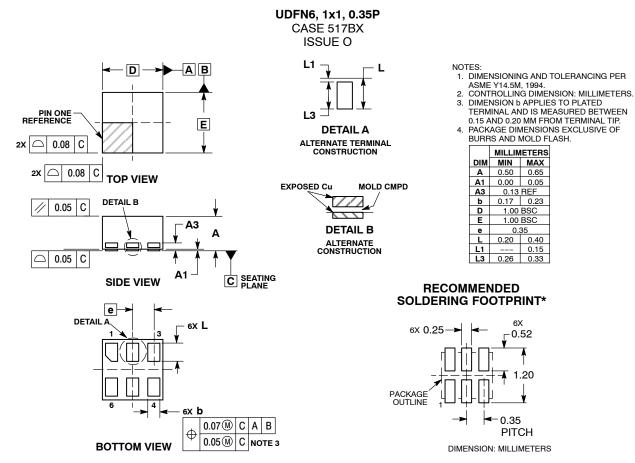

	MILLIMETERS				
DIM	MIN	NOM	MAX		
Α	0.34	0.37	0.40		
b	0.10	0.15	0.20		
С	0.07	0.12	0.17		
D	0.95	1.00	1.05		
Е	0.75	0.80	0.85		
e	0.35 BSC				
HE	0.95	1.00	1.05		
L	0.175 REF				
L2	0.05	0.10	0.15		
L3			0.15		

SOLDERING FOOTPRINT*



*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS



PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

PACKAGE DIMENSIONS

*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights or the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor hardus, cass, admages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associ

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT: Email Requests to: orderlit@onsemi.com

TECHNICAL SUPPORT

ON Semiconductor Website: www.onsemi.com

North American Technical Support: Voice Mail: 1 800–282–9855 Toll Free USA/Canada Phone: 011 421 33 790 2910 Europe, Middle East and Africa Technical Support: Phone: 00421 33 790 2910 For additional information, please contact your local Sales Representative

٥