

32-bit ARM® Cortex®-M3 FM3 Microcontroller

The MB9AA30N Series are highly integrated 32-bit microcontrollers that dedicated for embedded controllers with low-power consumption mode and competitive cost. The MB9AA30N Series are based on the ARM Cortex-M3 Processor with on-chip Flash memory and SRAM, and has peripheral functions such as LCD Controller, Motor Control Timers, ADCs, DACs and Communication Interfaces (UART, CSIO, I²C). The products which are described in this data sheet are placed into TYPE7 product categories in FM3 Family Peripheral Manual.

Features

32-bit ARM Cortex-M3 Core

Processor version: r2p1

Up to 20 MHz Operation Frequency

Integrated Nested Vectored Interrupt Controller (NVIC): 1 channel NMI (non-maskable interrupt) and 32 channels' peripheral interrupts and 8 priority levels

24-bit System timer (Sys Tick): System timer for OS task management

On-chip Memories

[Flash memory]

Up to 128 Kbytes

Read cycle: 0 wait-cycle

Security function for code protection

[SRAM]

This series contains a total of up to 16 Kbyte on-chip SRAM that is connected to System bus of Cortex-M3 core.

SRAM1: Up to 16 Kbytes

LCD controller (LCDC)

Selectable from 44 SEG × 4 COM (Max) or 40 SEG × 8 COM (Max)

Internal divide resistor is contained (selectable from $10k\Omega$ or $100k\Omega$ for the resistor value)

LCD drive power supply (bias) pin (VV4 to VV0)

Interrupt function synchronized with the LCD module frame frequency

With blinking function

Inverted display function

Multi-function Serial Interface (Max 8 channels)

Operation mode is selectable from the followings for each channel

UART

CSIO

I²C

[UART]

Full duplex double buffer

Selection with or without parity supported

Built-in dedicated baud rate generator

External clock available as a serial clock

Various error detection functions available (parity errors, framing errors, and overrun errors)

[CSIO]

Full duplex double buffer

Built-in dedicated baud rate generator

Overrun error detection function available

[I²C]

Standard-mode (Max 100 kbps) / Fast-mode (Max 400 kbps) supported

A/D Converter (Max 16 channels)

[12-bit A/D Converter]

Successive Approximation type

Conversion time: Min 1.0 µs

Priority conversion available (priority at 2 levels)

Scanning conversion mode

Built-in FIFO for conversion data storage (for SCAN conversion: 16 steps, for Priority conversion: 4 steps

D/A Converter (Max 2 channels)

R-2R type

10-bit resolution

Base Timer (Max 8channels)

Operation mode is selectable from the followings for each channel.

16-bit PWM timer

16-bit PPG timer

16-/32-bit reload timer

16-/32-bit PWC timer

General-Purpose I/O Port

This series can use its pins as general-purpose I/O ports when they are not used for peripherals. Moreover, the port relocate function is built in. It can set which I/O port the peripheral function can be allocated to.

Capable of pull-up control per pin

Capable of reading pin level directly

Built-in the port relocate function

Up to 84 high-speed general-purpose I/O Ports@100 pin Package

Some ports are 5V tolerant I/O

See "List of Pin Functions" and "I/O Circuit Type" to confirm the corresponding pins.

Multi-function Timer

The Multi-function timer is composed of the following blocks.

16-bit free-run timer \times 3 ch.

Input capture × 4 ch.

Output compare × 6 ch.

A/D activating compare x 3 ch.

Waveform generator × 3 ch.

16-bit PPG timer x 3 ch.

IGBT mode is contained.

The following function can be used to achieve the motor control.

PWM signal output function

DC chopper waveform output function

Dead time function

Input capture function

A/D convertor activate function

DTIF (Motor emergency stop) interrupt function

HDMI-CEC/Remote Control Receiver (Up to 2 channels)

HDMI- CEC receiver / Remote control receiver

- $\hfill \square$ Operating modes supporting the following standards can be selected
 - SIRCS
 - NEC/Association for Electric Home Appliances
- HDMI-CEC
- □ Capable of adjusting detection timings for start bit and data bit
- □ Equipped with noise filter

HDMI-CEC transmitter

- ☐ Header block automatic transmission by judging Signal free
- ☐ Generating status interrupt by detecting Arbitration lost
- ☐ Generating START, EOM, ACK automatically to output CEC transmission by setting 1 byte data
- ☐ Generating transmission status interrupt when transmitting 1 block (1 byte data and EOM/ACK)

Real-time clock (RTC)

The Real-time clock can count

Year/Month/Day/Hour/Minute/Second/A day of the week from 00 to 99.

The interrupt function with specifying date and time (Year/Month/Day/Hour/Minute) is available. This function is also available by specifying only Year, Month, Day, Hour or Minute

Timer interrupt function after set time or each set time.

Capable of rewriting the time with continuing the time count.

Leap year automatic count is available.

External Interrupt Controller Unit

Up to 16 external interrupt input pins

Include one non-maskable interrupt (NMI) input pin

Watchdog Timer (2 channels)

A watchdog timer can generate interrupts or a reset when a time-out value is reached.

This series consists of two different watchdogs, a Hardware watchdog and a Software watchdog.

The Hardware watchdog timer is clocked by the built-in Low-speed CR oscillator. Therefore, the Hardware watchdog is active in any low-power consumption mode except RTC, Stop, Deep Standby RTC and Deep Standby Stop modes.

Clock and Reset

[Clocks]

Selectable from five clock sources (2 external oscillators, 2 built-in CR oscillators, and Main PLL).

Main Clock: 4 MHz to 20 MHz

Sub Clock: 32.768 kHz
Built-in High-speed CR Clock: 4 MHz

Built-in Low-speed CR Clock: 100 kHz

Main PLL Clock

Resetsl

Reset requests from INITX pin

Power-on reset

Software reset

Watchdog timers reset

Low-voltage detection reset

Clock Super Visor reset

Clock Super Visor (CSV)

Clocks generated by built-in CR oscillators are used to supervise abnormality of the external clocks.

If external clock failure (clock stop) is detected, reset is asserted.

If external frequency anomaly is detected, interrupt or reset is asserted.

Low-Voltage Detector (LVD)

This Series includes 2-stage monitoring of voltage on the VCC. When the voltage falls below the voltage that has been set, Low-Voltage Detector generates an interrupt or reset.

LVD1: error reporting via interrupt

LVD2: auto-reset operation

Low-Power Consumption Mode

Six low-power consumption modes supported.

Sleep

Timer

RTC

Stop

Deep Standby RTC

Deep Standby Stop

The backup register is 16 byte

Debug

Serial Wire JTAG Debug Port (SWJ-DP)

Power Supply

Wide range voltage: VCC = 1.8 V to 5.5 V

VCC = 2.2 V to 5.5 V (when LCDC is

used)

Document Number: 002-05640 Rev *B Page 3 of 111

Table of Contents

1. Product Lineup	
2. Packages	7
3. Pin Assignment	8
4. List of Pin Functions	13
5. I/O Circuit Type	35
6. Handling Precautions	44
6.1 Precautions for Product Design	44
6.2 Precautions for Package Mounting	45
6.3 Precautions for Use Environment	47
7. Handling Devices	48
8. Block Diagram	50
9. Memory Size	51
10. Memory Map	52
11. Pin Status in Each CPU State	55
12. Electrical Characteristics	66
12.1 Absolute Maximum Ratings	66
12.2 Recommended Operating Conditions	
12.3 DC Characteristics	
12.3.1 Current Rating	
12.3.2 Pin Characteristics	
12.3.3 LCD Characteristics	
12.4 AC Characteristics	
12.4.1 Main Clock Input Characteristics	
12.4.2 Sub Clock Input Characteristics	
12.4.3 Built-in CR Oscillation Characteristics	
12.4.4 Operating Conditions of Main PLL (In the case of using main clock for input of PLL)	
12.4.5 Operating Conditions of Main PLL (In the case of using the built-in High-speed CR for the input clock	
of the Main PLL)	75
12.4.6 Reset Input Characteristics	
12.4.7 Power-on Reset Timing	
12.4.8 Base Timer Input Timing	
12.4.9 CSIO/UART Timing	
12.4.10 External Input Timing	
12.4.11 I ² C Timing	
12.4.12 JTAG Timing	
12.5 12-bit A/D Converter	
12.5.1 Electrical Characteristics for the A/D Converter	
12.6 10-bit D/A Converter	
12.7 Low-Voltage Detection Characteristics	
12.7.1 Low-Voltage Detection Characteristics	
12.7.2 Interrupt of Low-Voltage Detection	
12.7.2 Interrupt of Low-voltage Detection	
12.8.1 Write / Erase time	
12.8.2 Write cycles and data hold time	
12.9 Return Time from Low-Power Consumption Mode	
12.9.1 Return Factor: Interrupt/WKUP	
12.9.2 Return Factor: Reset	
13. Ordering Information	101

14. Package Dimensions	102
15. Major Changes	109
Document History	110
Sales. Solutions, and Legal Information	111

Page 6 of 111

1. Product Lineup

Memory size

Product name		MB9AFA31L/M/N	MB9AFA32L/M/N
On-chip Flash memory		64 Kbytes	128 Kbytes
On-chip SRAM	SRAM1	12 Kbytes	16 Kbytes

Function

	Product name MB9AFA31L MB9AFA31M MB9AFA MB9AFA32L MB9AFA32M MB9AFA							
Pin cou	ınt		64 80 100					
CPU				Cortex-M3				
CIO	Freq.			20 MHz				
Power	supply voltage ran	ge		1.8 V to 5.5 V				
			24 SEG×4 COM (Max)	37 SEG×4 COM (Max)	44 SEG×4 COM (Max)			
LCD Co	ontroller (LCDC)		or	or	or			
			20 SEGx8 COM (Max)	33 SEGx8 COM (Max)	40 SEG×8 COM (Max)			
	inction Serial Interl /CSIO/I ² C)	ace		8 ch. (Max)				
Base Ti				O ala (Mass)				
(PWC/	Reload timer/PWN	//PPG)		8 ch. (Max)				
	A/D activation compare	3 ch.						
	Input capture	4 ch.						
	Free-run timer	3 ch.						
MF-	Output			4				
Timer	compare	6 ch.						
	Waveform	3 ch.						
	generator	3 (11.						
	PPG	3 ch.						
LIDAM	(IGBT mode)							
Receive	CEC/ Remote Con	troi	2 ch. (Max)					
	me clock (RTC)			1 unit				
	dog timer			1 ch. (SW) + 1 ch. (HW)				
	al Interrupts		8 pins (Max)+ NMI × 1	11 pins (Max) + NMI × 1	16 pins (Max) + NMI x 1			
	al-purpose I/O port	S	52 pins (Max)	67 pins (Max)	84 pins (Max)			
	VD converter		9 ch. (1 unit)	12 ch. (1 unit)	16 ch. (1 unit)			
10-bit E	D/A converter			2 ch. (Max)				
	Clock Super Visor)			Yes				
LVD (Lo	LVD (Low-Voltage Detector)		2 ch.					
Built-in	CR High-sp			4 MHz				
	Low-spe	eed	100 kHz					
Debug	Function			SWJ-DP				

Note:

⁻ All signals of the peripheral function in each product cannot be allocated by limiting the pins of package. It is necessary to use the port relocate function of the I/O port according to your function use.

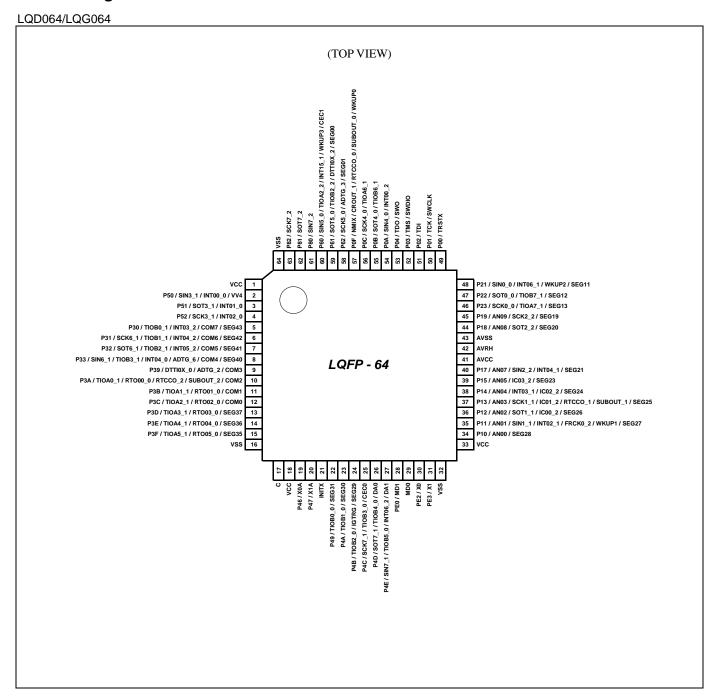
See Electrical Characteristics "12.4 AC Characteristics Built-in CR Oscillation Characteristics for accuracy of built-in CR.

2. Packages

Package	Product name	MB9AFA31L MB9AFA32L	MB9AFA31M MB9AFA32M	MB9AFA31N MB9AFA32N
LQFP:	LQD064 (0.5 mm pitch)	O	-	-
LQFP:	LQG064 (0.65 mm pitch)	O	-	-
QFN:	VNC064	O	-	-
LQFP:	LQH080 (0.5 mm pitch)	-	O	-
LQFP:	LQJ080 (0.65 mm pitch)	-	O	-
LQFP:	LQI100 (0.5 mm pitch)	-	-	0
QFP:	PQH100 (0.65 mm pitch)	-	-	O

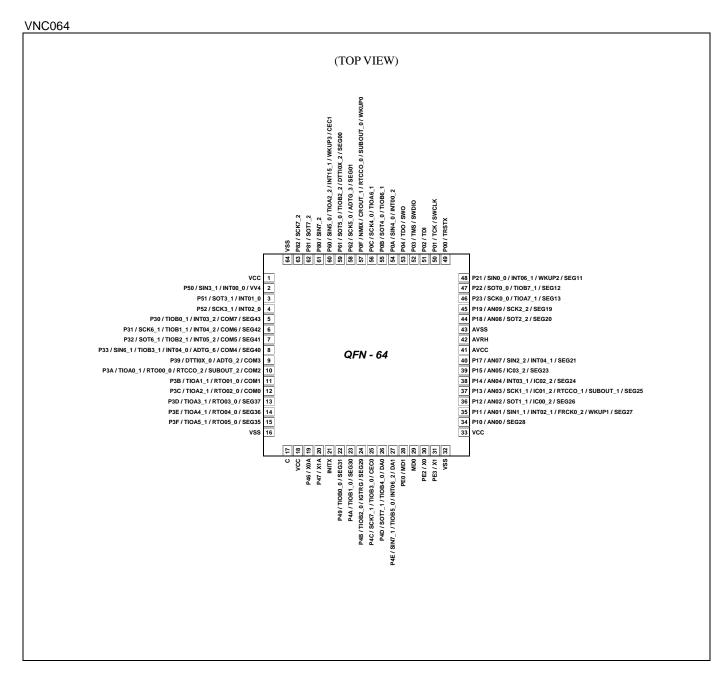
O: Supported

Note:

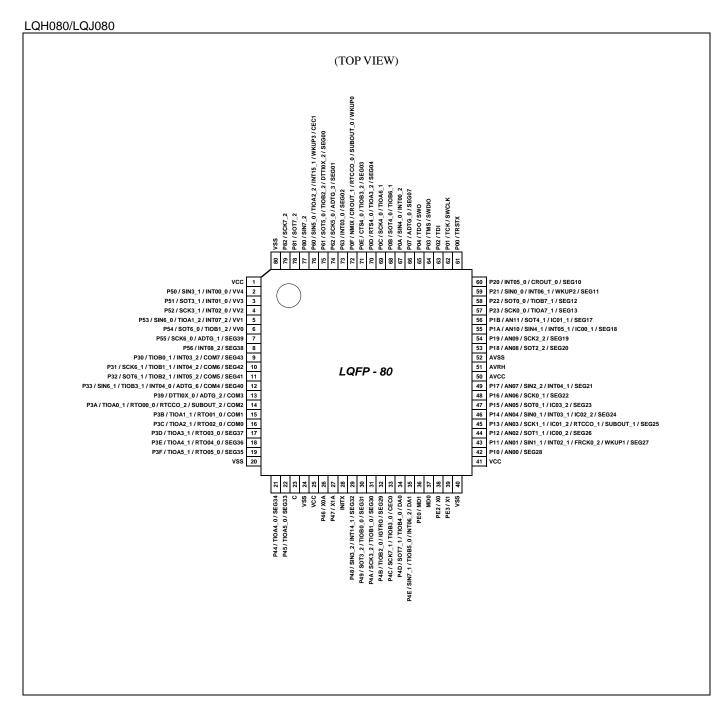

- See Package Dimensions for detailed information on each package.

Document Number: 002-05640 Rev *B Page 7 of 111

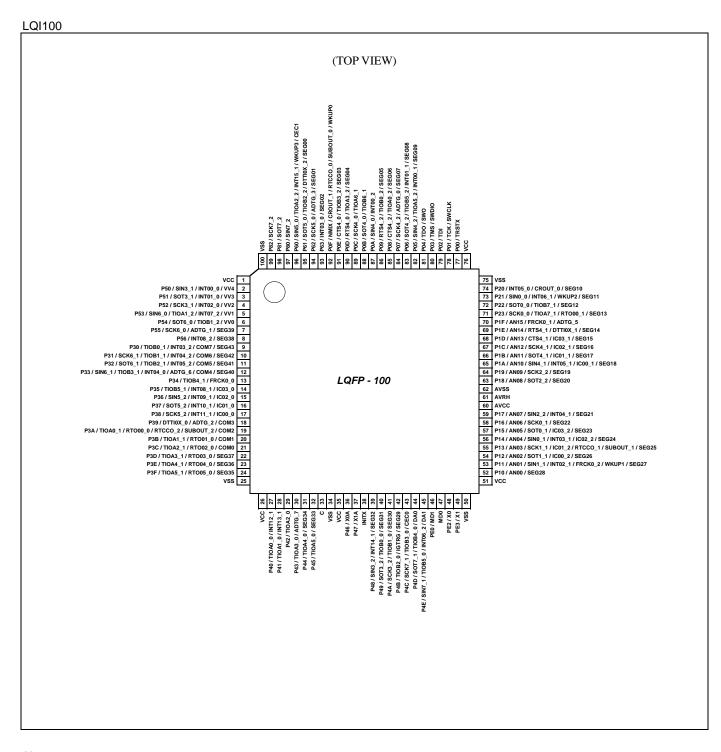
Page 8 of 111


3. Pin Assignment

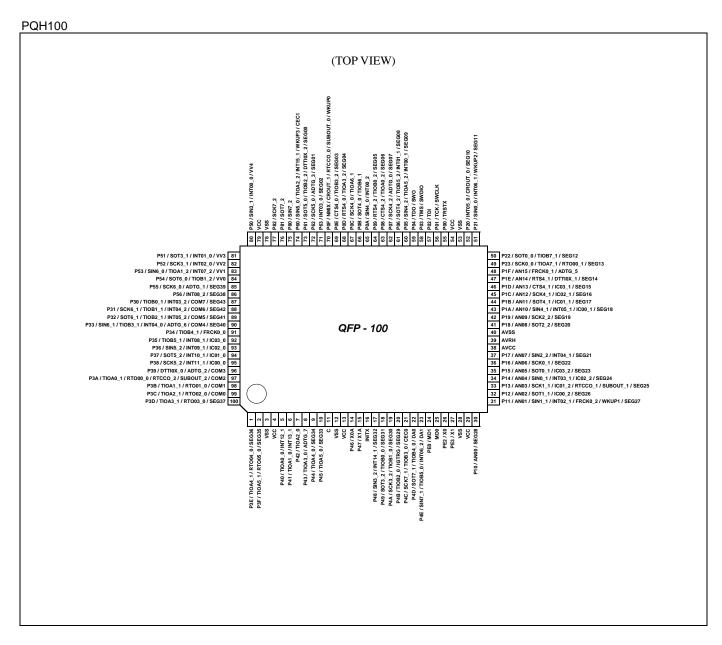
Note:


- The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these
pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR)
to select the pin.



- The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.


Document Number: 002-05640 Rev *B Page 10 of 111

- The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

- The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

Document Number: 002-05640 Rev *B Page 12 of 111

4. List of Pin Functions

List of pin numbers

The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

Pin No				I/O circuit	Din state	
LQFP-64 QFN-64	LQFP-80	LQFP-100	QFP-100	Pin name	I/O circuit type	Pin state type
1	1	1	79	VCC	-	
				P50		
2		0	00	INT00_0	R	W
2	2	2	80	SIN3_1	K	VV
				VV4		
				P51		
				INT01_0		
-	3	3	81	SOT3_1	R	W
				(SDA3_1)		
				VV3		
				P51		
3	_	_	_	INT01_0	E	F
J				SOT3_1	-	•
				(SDA3_1)		
				P52		W
		4	00	INT02_0	\dashv_{B}	
-	4	4	82	SCK3_1 (SCL3_1)	R —	
				VV2		
				P52		F
				INT02_0		
4	-	-	-	SCK3_1	⊣ E	
				(SCL3_1)		
				P53		
				SIN6_0		
-	5	5	83	TIOA1_2	R	W
				INT07_2		
				VV1		
				P54		
		_	0.4	SOT6_0		
-	6	6	84	(SDA6_0) TIOB1_2	R	V
				VV0		
				P55		
	- 7			SCK6_0	\dashv	
-		7	7 85	(SCL6_0)	J	U
				ADTG_1		
				SEG39		
				P56		
-	8	8	86	INT08_2	J	S
				SEG38		

Document Number: 002-05640 Rev *B Page 13 of 111

Pin No				UO sirovit	Pin state	
LQFP-64 QFN-64	LQFP-80	LQFP-100	QFP-100	Pin name	I/O circuit type	type
				P30		
				TIOB0_1		
5	9	9	87	INT03_2	К	s
				COM7		
				SEG43		
				P31		
				TIOB1_1		
				SCK6_1		
6	10	10	88	(SCL6_1)	K	S
				INT04_2		
				COM6		
				SEG42		
				P32		
				TIOB2_1		
7	44	44	00	SOT6_1 (SDA6_1)	14	0
7	11	l1 11	89		К	S
				INT05_2 COM5		
				SEG41		
				P33		
				INT04_0		
				TIOB3_1		
8	12	12	90	SIN6_1	K	S
O	12			ADTG_6		
				COM4		
				SEG40		
				P34		
_	_	13	91	FRCK0_0	E	Н
				TIOB4_1		
				P35		
				IC03_0	_	
-	-	14	92	TIOB5_1	E	F
				INT08_1		
				P36		
		1		IC02_0	− _	_
-	- 15	93	SIN5_2	E	F	
				INT09_1		
				P37		
				IC01_0		F
-	-	16	94	SOT5_2	E	
				(SDA5_2)		
				INT10_1		

Pin No				UO oirovit	Pin state
LQFP-80	LQFP-100	QFP-100	Pin name	type	type
			P38		
			IC00_0		
-	17	95		E	F
13	18	96		<u> </u> L	U
1.1	10	07		-	U
14	19	97			0
	20	98			U
15				L	
			TIOA1_1		
			COM1		
			P3C		
			RTO02_0		U
16	21	99	(PPG02_0)	L	
17	22	100		J	U
10	23	1			U
10	23	'			
19	24	2	(PPG04_0)	J	U
			TIOA5_1		
			SEG35		
20	25	3	VSS	-	•
	LQFP-80 - 13 14 15 16 17 18 19	LQFP-80 LQFP-100 - 17 13 18 14 19 20 21 17 22 18 23 19 24	LQFP-100 QFP-100 - 17 95 13 18 96 14 19 97 15 20 98 16 21 99 17 22 100 18 23 1 19 24 2	LQFP-80 LQFP-100 QFP-100 Pin name - 17 95 Fin name - 17 95 Fin name - 17 95 SCK5_2 (SCL5_2) (SCL5_2) (INT1_1 18 96 DTTIOX_0 ADTG_2 COM3 COM3 ADTG_2 COM3 COM3 RT000_0 (PPG00_0) FIDAD_1 RTCCO_2 SUBOUT_2 COM2 SUBOUT_2 COM2 SUBOUT_2 COM2 P3B RT001_0 (PPG00_0) TIOA1_1 COM1 COM1 P3C RT002_0 (PPG02_0) TIOA2_1 COM0 P3D RT003_0 (PPG02_0) TIOA3_1 SEG37 P3E RT004_0 (PPG04_0) TIOA4_1 SEG36 RT005_0 (PPG04_0) TIOA5_1 SEG35 19 24 2 19 24 2	Table Tabl

Pin No				I/O circuit	Din state				
LQFP-64 QFN-64	LQFP-80	LQFP-100	QFP-100	Pin name	type	Pin state type			
				P40					
-	-	27	5	TIOA0_0	E	F			
				INT12_1					
				P41					
-	-	28	6	TIOA1_0	E	F			
				INT13_1					
_	_	29	7	P42	E	Н			
	_	29	,	TIOA2_0	_	11			
				P43					
-	-	30	8	TIOA3_0	E	Н			
				ADTG_7					
				P44					
-	21	31	9	TIOA4_0	J	U			
				SEG34					
				P45		U			
-	22	32	10	TIOA5_0	J				
				SEG33					
17	23	33	11	С	-				
-	24	34	12	VSS	-				
18	25	35	13	VCC	-				
19	26 36	26	20	26	26	14	P46	D	M
19	20	30	14	X0A		IVI			
20	27	37	15	P47	D	N			
20	21	31	15	X1A					
21	28	38	16	INITX	В	С			
				P48					
_	29	39	17	INT14_1	- - J	S			
-	29	39	''	SIN3_2]	3			
				SEG32					
				P49					
22				TIOB0_0					
	30 40	40	18	SEG31	J	U			
-				SOT3_2					
				(SDA3_2)					
				P4A	J				
23				TIOB1_0		U			
	31	31 41 19	19	SEG30					
-				SCK3_2 (SCL3_2)					
	1	1	1	(5525_2)	1	Ī			

Pin No				I/O oirovit	Din state		
LQFP-64 QFN-64	LQFP-80	LQFP-100	QFP-100	Pin name	I/O circuit type	Pin state type	
				P4B			
24	32	42	20	TIOB2_0	J	U	
24	32	42	20	SEG29			
				IGTRG			
				P4C			
				TIOB3_0			
25	33	43	21	SCK7_1	G	Q	
				(SCL7_1)			
				CEC0			
				P4D			
26	34	44	22	TIOB4_0	o	Z	
20	34	44	22	SOT7_1 (SDA7_1)		_	
				DA0			
				P4E			
				TIOB5_0			
27	35	45	23	INT06_2	- 0	Y	
		45	25	SIN7_1			
				DA1			
				PE0		Р	
28	36	46	24	MD1	— с		
29	37	47	25	MD0	Н	D	
				PE2		A	
30	38	48	26	X0	— A		
0.4	00	40	0.7	PE3		5	
31	39	49	27	X1	Α	В	
32	40	50	28	VSS	-		
33	41	51	29	VCC	-		
				P10			
34	42	52	30	AN00	Q	J	
				SEG28			
				P11			
				AN01			
				SIN1_1			
35	43	53	31	INT02_1	Q	L	
				FRCK0_2			
				WKUP1			
				SEG27			
36 44				P12			
				AN02		J	
	44	54	32	SOT1_1	Q		
			32	(SDA1_1)			
				IC00_2			
					SEG26		1

Pin No				I/O circuit	Pin state	
LQFP-64 QFN-64	LQFP-80	LQFP-100	QFP-100	Pin name	type	type
				P13		
				AN03		
				SCK1_1		
37	45	55	33	(SCL1_1)	Q	
31	45	55	33	IC01_2	Q	J
				RTCCO_1		
				SUBOUT_1		
				SEG25		
				P14		
				AN04		
38	46	56	34	INT03_1	Q	K
	40	30	34	IC02_2	Q	N.
				SEG24		
-	1			SIN0_1		
				P15		
20				AN05		
39	47	57	35	IC03_2	Q	J
				SEG23		
-	1			SOT0_1		
				P16		
			36	AN06		
-	48	58		SCK0_1	Q	J
				(SCL0_1)		
				SEG22		
				P17		
				AN07		
40	49	49 59	37	SIN2_2	Q	K
				INT04_1		
				SEG21		
41	50	60	38	AVCC	-	
42	51	61	39	AVRH	-	
43	52	62	40	AVSS	-	
				P18		
				AN08		
44	53	63	41	SOT2_2	Q	J
				(SDA2_2)		
				SEG20		
				P19		
				AN09	_	
45	54	64	42	SCK2_2	Q	J
				(SCL2_2)		
			SEG19			

Pin No				I/O airevit	t Pin state	
LQFP-64 QFN-64	LQFP-80	LQFP-100	QFP-100	Pin name	I/O circuit type	type
				P1A		
				AN10		
		0.5	43	SIN4_1		K
-	55	65	43	INT05_1	Q	,
				IC00_1		
				SEG18		
				P1B		
				AN11		
-	56	66	44	SOT4_1 (SDA4_1)	Q	J
				IC01_1		
				SEG17		
				P1C		
				AN12		
-	-	67 45	45	SCK4_1 (SCL4_1)	Q	J
				IC02_1		
				SEG16		
				P1D		J
		68	46	AN13		
-	_			CTS4_1	Q	
				IC03_1		
				SEG15		
				P1E		
				AN14		J
-	-	69	47	RTS4_1	Q	
				DTTI0X_1		
				SEG14		
				P1F		
		70	48	AN15	F	X
-	-	70	40	ADTG_5	一「	^
				FRCK0_1		
				P23		
				SCK0_0		
46	57	71	49	(SCL0_0)	J	U
		' '	1-3	TIOA7_1		
				SEG13		
-	-			RTO00_1		
				P22		
		1		SOT0_0		U
47	58	72	50	(SDA0_0)	J	
				TIOB7_1	_	
			SI	SEG12		

	Pir	No No			I/O oirovit	Pin state
LQFP-64 QFN-64	LQFP-80	LQFP-100	QFP-100	Pin name	I/O circuit type	type
				P21		
				SIN0_0		
48	59	73	51	INT06_1	J	Т
				WKUP2		
				SEG11		
				P20		
_	60	74	52	INT05_0	J	S
				CROUT_0		
				SEG10		
-	-	75	53	VSS	-	
-	-	76	54	VCC	-	T
49	61	77	55	P00	<u> —</u> Е	E
				TRSTX		
=0				P01		_
50	62	78	56	TCK	E	E
				SWCLK		
51	63	79	57	P02	<u>—</u> Е	E
				TDI		
50	64	00	50	P03	- -	_
52	64	80	58	TMS	E	E
				SWDIO P04		E
53	65	81	59	TDO	— E	
55	65	01	59	SWO		
				P05		
				TIOA5_2		
_	_	82	60	SIN4_2	J	S
		02		INT00_1	 *	
				SEG09		
				P06		
				TIOB5_2		
				SOT4_2		
-	-	83	61	(SDA4_2)	J	S
				INT01_1		
				SEG08		
				P07		
	66			ADTG_0		
-		84	62	SEG07	J	U
	_			SCK4_2		
				(SCL4_2)		
				P08		U
-	-	85	63	TIOA0_2	J	
				CTS4_2		
				SEG06		

	Pin	No			I/O oirquit	Din state
LQFP-64 QFN-64	LQFP-80	LQFP-100	QFP-100	Pin name	I/O circuit type	Pin state type
				P09		
_	_	86	64	TIOB0_2	J	U
	_	00	04	RTS4_2	3	0
				SEG05		
				P0A		
54	67	87	65	SIN4_0	G	F
				INT00_2		
				P0B		
55	68	88	66	SOT4_0	G	Н
				(SDA4_0)		' '
				TIOB6_1		
				P0C		
56	69	89	67	SCK4_0	G	Н
				(SCL4_0) TIOA6_1		
				P0D		+
-	70	90	68	RTS4_0 TIOA3_2	<u> </u> Ј	U
				SEG04		
				P0E		U
				CTS4_0		
-	71	91	69	TIOB3_2	<u> </u> Ј	
				SEG03		
				P0F		
				NMIX		
				CROUT_1		
57	72	92	70	RTCCO_0	→ E	1
				SUBOUT_0		
				WKUP0		
				P63		
_	73	93	71	INT03_0	J	S
	, 0		' '	SEG02	\dashv "	
				P62		
				SCK5_0		
58	74	94	72	(SCL5_0)	J	U
				ADTG_3		
				SEG01		
				P61		
				SOT5_0		U
59	75	95	72	(SDA5_0)	J	
Ja	13	95	73	TIOB2_2		
				DTTI0X_2		
				SEG00		

	Pin	No			I/O circuit	Pin state
LQFP-64 QFN-64	LQFP-80	LQFP-100	QFP-100	Pin name	type	type
				P60		R
				SIN5_0		
70	76	96	74	TIOA2_2	G	
60	60 76	90	74	INT15_1	G	
				WKUP3		
				CEC1		
61	77	97	75	P80	G	Н
бі	17	97	75	SIN7_2	9	
60	70	98	76	P81	G	Н
62	78 98		76	SOT7_2	G	П
63	70	00	77	P82	<u></u>	ш
63	79 99		77	SCK7_2	G	Н
64	80	100	78	VSS	-	

List of pin functions
The number after the underscore ("_") in pin names such as XXX_1 and XXX_2 indicates the relocated port number. For these pins, there are multiple pins that provide the same function for the same channel. Use the extended port function register (EPFR) to select the pin.

Pin				Pin No				
function	Pin name	Function description	LQFP-64, QFN-64	LQFP-80	LQFP-100	QFP-100		
ADC	ADTG_0		-	66	84	62		
	ADTG_1		-	7	7	85		
	ADTG_2		9	13	18	96		
	ADTG_3		58	74	94	72		
	ADTG_4	A/D converter external trigger input pin	-	-	-	-		
	ADTG_5		-	-	70	48		
	ADTG_6		8	12	12	90		
	ADTG_7		-	-	30	8		
	ADTG_8		-	-	-	-		
	AN00		34	42	52	30		
	AN01		35	43	53	31		
	AN02		36	44	54	32		
	AN03		37	45	55	33		
	AN04		38	46	56	34		
	AN05		39	47	57	35		
	AN06		-	48	58	36		
	AN07	A/D converter analog input pin.	40	49	59	37		
	AN08	ANxx describes ADC ch.xx.	44	53	63	41		
	AN09		45	54	64	42		
	AN10		-	55	65	43		
	AN11		-	56	66	44		
	AN12		-	-	67	45		
	AN13		-	-	68	46		
	AN14		-	-	69	47		
	AN15	1	-	-	70	48		

Document Number: 002-05640 Rev *B Page 23 of 111

Pin		_		Pi	n No	
function	Pin name	Function description	LQFP-64, QFN-64	LQFP-80	LQFP-100	QFP-100
Base Timer	TIOA0_0		-	-	27	5
0	TIOA0_1	Base timer ch.0 TIOA pin	10	14	19	97
	TIOA0_2		-	-	85	63
	TIOB0_0		22	30	40	18
	TIOB0_1	Base timer ch.0 TIOB pin	5	9	9	87
	TIOB0_2		-	-	86	64
Base Timer	TIOA1_0		-	-	28	6
1	TIOA1_1	Base timer ch.1 TIOA pin	11	15	20	98
	TIOA1_2		-	5	5	83
	TIOB1_0		23	31	41	19
	TIOB1_1	Base timer ch.1 TIOB pin	6	10	10	88
	TIOB1_2	1	-	6	6	84
Base Timer	TIOA2_0		-	-	29	7
2	TIOA2_1	Base timer ch.2 TIOA pin	12	16	21	99
	TIOA2_2	1	60	76	96	74
	TIOB2_0		24	32	42	20
	TIOB2_1	Base timer ch.2 TIOB pin	7	11	11	89
	TIOB2_2]	59	75	95	73
Base Timer	TIOA3_0		-	-	30	8
3	TIOA3_1	Base timer ch.3 TIOA pin	13	17	22	100
	TIOA3_2	·	-	70	90	68
	TIOB3_0		25	33	43	21
	TIOB3_1	Base timer ch.3 TIOB pin	8	12	12	90
	TIOB3_2	,	-	71	91	69
Base Timer	TIOA4_0		-	21	31	9
4	TIOA4_1	Base timer ch.4 TIOA pin	14	18	23	1
·	TIOA4_2		-	-	-	-
	TIOB4_0		26	34	44	22
	TIOB4_1	Base timer ch.4 TIOB pin	-	-	13	91
	TIOB4_2	Jaco miler em r rred pin	-	l -	-	-
Base Timer	TIOA5_0		_	22	32	10
5	TIOA5_1	Base timer ch.5 TIOA pin	15	19	24	2
	TIOA5_2		-	1-	82	60
	TIOB5_0		27	35	45	23
	TIOB5_0	Base timer ch.5 TIOB pin	-	-	14	92
	TIOB5_1	2000 timor orno 1100 piii	_	-	83	61
Base Timer		B C LOTICA			İ	1
6	TIOA6_1	Base timer ch.6 TIOA pin	56	69	89	67
	TIOB6_1	Base timer ch.6 TIOB pin	55	68	88	66
Base Timer	TIOA7_0		-	-	-	-
7	TIOA7_1	Base timer ch.7 TIOA pin	46	57	71	49
	TIOA7_2		-	-	-	-
	TIOB7_0		-	-	-	-
	TIOB7_1	Base timer ch.7 TIOB pin	47	58	72	50
	TIOB7_2	<u> </u>	-	-	-	-

Pin				Pi	n No	
function	Pin name	Function description	LQFP-64, QFN-64	LQFP-80	LQFP-100	QFP-100
Debugger	SWCLK	Serial wire debug interface clock input pin	50	62	78	56
	SWDIO	Serial wire debug interface data input / output pin	52	64	80	58
	SWO	Serial wire viewer output pin	53	65	81	59
	TRSTX	JTAG reset input pin	49	61	77	55
	TCK	JTAG test clock input pin	50	62	78	56
	TDI	JTAG test data input pin	51	63	79	57
	TMS	JTAG test mode state input/output pin	52	64	80	58
	TDO	JTAG debug data output pin	53	65	81	59
External	INT00_0		2	2	2	80
Interrupt	INT00_1	External interrupt request 00 input pin	-	-	82	60
	INT00_2	1	54	67	87	65
	INT01_0	Entermal interment required 04 installation	3	3	3	81
	INT01_1	External interrupt request 01 input pin	-	-	83	61
	INT02_0	Future distance to a second sign of si	4	4	4	82
	INT02_1	External interrupt request 02 input pin	35	43	53	31
	INT03_0		-	73	93	71
	INT03_1	External interrupt request 03 input pin	38	46	56	34
	INT03_2		5	9	9	87
	INT04_0	External interrupt request 04 input pin	8	12	12	90
	INT04_1		40	49	59	37
	INT04_2		6	10	10	88
	INT05_0		-	60	74	52
	INT05_1	External interrupt request 05 input pin	-	55	65	43
	INT05_2	1	7	11	11	89
	INT06_1	Future all interment required OC insultain	48	59	73	51
	INT06_2	External interrupt request 06 input pin	27	35	45	23
	INT07_2	External interrupt request 07 input pin	-	5	5	83
	INT08_1	Future all interment request 00 insultain	-	-	14	92
	INT08_2	External interrupt request 08 input pin	-	8	8	86
	INT09_1	External interrupt request 09 input pin	-	-	15	93
	INT10_1	External interrupt request 10 input pin	-	-	16	94
	INT11_1	External interrupt request 11 input pin	-	-	17	95
	INT12_1	External interrupt request 12 input pin	-	-	27	5
	INT13_1	External interrupt request 13 input pin	-	-	28	6
	INT14_1	External interrupt request 14 input pin	-	29	39	17
	INT15_1	External interrupt request 15 input pin	60	76	96	74
	NMIX	Non-Maskable Interrupt input pin	57	72	92	70

Di-				Pi	n No	
Pin function	Pin name	Function description	LQFP-64, QFN-64	LQFP-80	LQFP-100	QFP-100
GPIO	P00		49	61	77	55
	P01	1	50	62	78	56
	P02		51	63	79	57
	P03	7	52	64	80	58
	P04	1	53	65	81	59
	P05	1	-	-	82	60
	P06	1	-	-	83	61
	P07	General-purpose I/O port 0	-	66	84	62
	P08	General-purpose I/O port o	-	-	85	63
	P09	1	-	-	86	64
	P0A		54	67	87	65
	P0B		55	68	88	66
	P0C		56	69	89	67
	P0D	1	-	70	90	68
	P0E	1	-	71	91	69
	P0F	1	57	72	92	70
	P10		34	42	52	30
	P11	7	35	43	53	31
	P12		36	44	54	32
	P13	7	37	45	55	33
	P14	7	38	46	56	34
	P15	7	39	47	57	35
	P16	7	-	48	58	36
	P17	Conord number 1/0 nort 1	40	49	59	37
	P18	General-purpose I/O port 1	44	53	63	41
	P19	7	45	54	64	42
	P1A	1	-	55	65	43
	P1B	7	-	56	66	44
	P1C	7	-	-	67	45
	P1D	1	-	-	68	46
	P1E	7	-	-	69	47
	P1F	1	-	-	70	48
	P20		-	60	74	52
	P21	Conord number 1/O nort 2	48	59	73	51
	P22	General-purpose I/O port 2	47	58	72	50
	P23	1	46	57	71	49

Pin				Pi	n No	
function	Pin name	Function description	LQFP-64, QFN-64	LQFP-80	LQFP-100	QFP-100
GPIO	P30		5	9	9	87
	P31		6	10	10	88
	P32		7	11	11	89
	P33		8	12	12	90
	P34		-	-	13	91
	P35		-	-	14	92
	P36		-	-	15	93
	P37	General-purpose I/O port 3	-	-	16	94
	P38	General-purpose 1/O port 3	-	-	17	95
	P39		9	13	18	96
	P3A		10	14	19	97
	P3B		11	15	20	98
	P3C		12	16	21	99
	P3D		13	17	22	100
	P3E		14	18	23	1
	P3F	1	15	19	24	2
	P40		-	-	27	5
	P41		-	-	28	6
	P42		-	-	29	7
	P43		-	-	30	8
	P44		-	21	31	9
	P45	1	-	22	32	10
	P46	7	19	26	36	14
	P47	General-purpose I/O port 4	20	27	37	15
	P48		-	29	39	17
	P49	1	22	30	40	18
	P4A		23	31	41	19
	P4B	1	24	32	42	20
	P4C		25	33	43	21
	P4D	1	26	34	44	22
	P4E	1	27	35	45	23
	P50		2	2	2	80
	P51	1	3	3	3	81
	P52	1	4	4	4	82
	P53	General-purpose I/O port 5	-	5	5	83
	P54		-	6	6	84
	P55	1	-	7	7	85
	P56	1	-	8	8	86
	P60		60	76	96	74
	P61	1	59	75	95	73
	P62	General-purpose I/O port 6	58	74	94	72
	P63	1	-	73	93	71
	P80		61	77	97	75
	P81	General-purpose I/O port 8	62	78	98	76
	P82	J General-purpose I/O port o	63	79	99	77
	PE0		28	36	46	24
	PE2	General-purpose I/O port E	30	38	48	26
	PE3		31	39	49	27

Pin			Pin No				
function	Pin name	Function description	LQFP-64, QFN-64	LQFP-80	LQFP-100	QFP-100	
Multi-	SIN0_0	Multi-function serial interface ch.0 input	48	59	73	51	
function	SIN0_1	pin	-	46	56	34	
Serial 0	SOT0_0 (SDA0_0)	Multi-function serial interface ch.0 output pin. This pin operates as SOT0 when it is	47	58	72	50	
	SOT0_1 (SDA0_1)	used in a UART/CSIO (operation modes 0 to 2) and as SDA0 when it is used in an I ² C (operation mode 4).	-	47	57	35	
	SCK0_0 (SCL0_0)	Multi-function serial interface ch.0 clock I/O pin. This pin operates as SCK0 when it is	46	57	71	49	
	SCK0_1 (SCL0_1)	used in a UART/CSIO (operation modes 0 to 2) and as SCL0 when it is used in an I ² C (operation mode 4).	-	48	58	36	
Multi- function Serial	SIN1_1	Multi-function serial interface ch.1 input pin	35	43	53	31	
1	SOT1_1 (SDA1_1)	Multi-function serial interface ch.1 output pin. This pin operates as SOT1 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA1 when it is used in an I ² C (operation mode 4).	36	44	54	32	
	SCK1_1 (SCL1_1)	Multi-function serial interface ch.1 clock I/O pin. This pin operates as SCK1 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL1 when it is used in an I ² C (operation mode 4).	37	45	55	33	
Multi- function	SIN2_2	Multi-function serial interface ch.2 input pin	40	49	59	37	
Serial 2	SOT2_2 (SDA2_2)	Multi-function serial interface ch.2 output pin. This pin operates as SOT2 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA2 when it is used in an I ² C (operation mode 4).	44	53	63	41	
	SCK2_2 (SCL2_2)	Multi-function serial interface ch.2 clock I/O pin. This pin operates as SCK2 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL2 when it is used in an I ² C (operation mode 4).	45	54	64	42	

Pin				Piı	n No	
function	Pin name	Function description	LQFP-64, QFN-64	LQFP-80	LQFP-100	QFP-100
Multi-	SIN3_1	Multi-function serial interface ch.3 input	2	2	2	80
function Serial	SIN3_2	pin	-	29	39	17
3	SOT3_1 (SDA3_1)	Multi-function serial interface ch.3 output pin. This pin operates as SOT3 when it is	3	3	3	81
	SOT3_2 (SDA3_2)	used in a UART/CSIO (operation modes 0 to 2) and as SDA3 when it is used in an I ² C (operation mode 4).	-	30	40	18
	SCK3_1 (SCL3_1)	Multi-function serial interface ch.3 clock I/O pin. This pin operates as SCK3 when it is used in a UART/CSIO (operation modes 0 to 2) and as SCL3 when it is used in an I ² C (operation mode 4).	4	4	4	82
	SCK3_2 (SCL3_2)		-	31	41	19
Multi-	SIN4_0	Naulti formation and all interference of Alicant	54	67	87	65
function	SIN4_1	Multi-function serial interface ch.4 input	-	55	65	43
Serial 4	SIN4_2	piri	-	-	82	60
4	SOT4_0 (SDA4_0)	pin. This pin operates as SOT4 when it is used in a UART/CSIO (operation modes 0 to 2) and as SDA4 when it is used in	55	68	88	66
	SOT4_1 (SDA4_1)		-	56	66	44
	SOT4_2 (SDA4_2)		-	-	83	61
	SCK4_0 (SCL4_0)	Multi-function serial interface ch.4 clock I/O pin.	56	69	89	67
	SCK4_1 (SCL4_1)	This pin operates as SCK4 when it is used in a UART/CSIO (operation modes	-	-	67	45
	SCK4_2 (SCL4_2)	0 to 2) and as SCL4 when it is used in an I ² C (operation mode 4).	-	-	84	62
	RTS4_0	Multi-function serial interface ch.4 RTS	-	70	90	68
	RTS4_1	output pin	-	-	69	47
	RTS4_2	σαιραί μπ	-	-	86	64
	CTS4_0	Multi-function serial interface ch.4 CTS	-	71	91	69
	CTS4_1	input pin	-	-	68	46
	CTS4_2		-	-	85	63

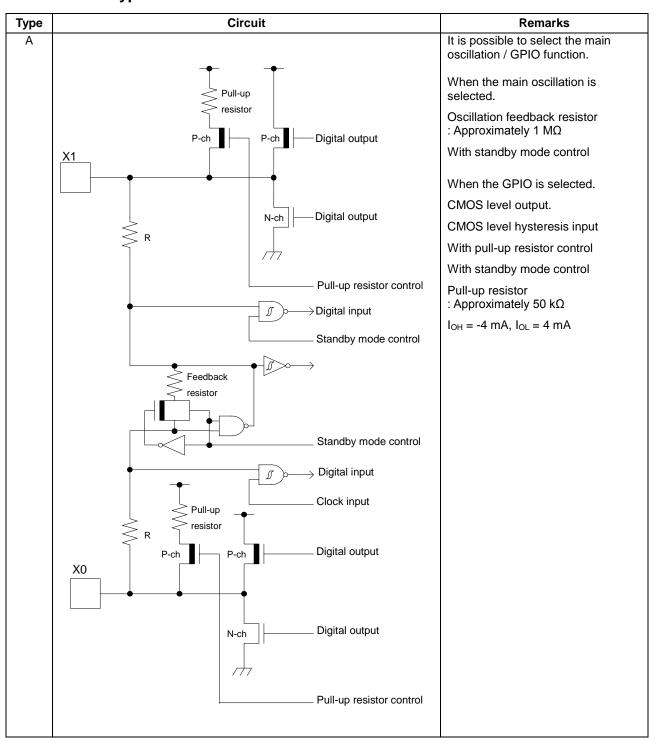
Pin		<u> </u>		Piı	n No	
function	Pin name	Function description	LQFP-64, QFN-64	LQFP-80	LQFP-100	QFP-100
Multi-	SIN5_0	Multi-function serial interface ch.5 input	60	76	96	74
function Serial	SIN5_2	pin	-	-	15	93
5	SOT5_0 (SDA5_0)	Multi-function serial interface ch.5 output pin. This pin operates as SOT5 when it is	59	75	95	73
	SOT5_2 (SDA5_2)	used in a UART/CSIO (operation modes 0 to 2) and as SDA5 when it is used in an I ² C (operation mode 4).	-	-	16	94
	SCK5_0 (SCL5_0)	Multi-function serial interface ch.5 clock I/O pin. This pin operates as SCK5 when it is	58	74	94	72
	SCK5_2 (SCL5_2)	used in a UART/CSIO (operation modes 0 to 2) and as SCL5 when it is used in an I ² C (operation mode 4).	-	-	17	95
Multi-	SIN6_0	Multi-function serial interface ch.6 input	-	5	5	83
function Serial	SIN6_1	pin	8	12	12	90
6	SOT6_0 (SDA6_0)	Multi-function serial interface ch.6 output pin. This pin operates as SOT6 when it is	-	6	6	84
	SOT6_1 (SDA6_1)	used in a UART/CSIO (operation modes 0 to 2) and as SDA6 when it is used in an I ² C (operation mode 4).	7	11	11	89
	SCK6_0 (SCL6_0)	Multi-function serial interface ch.6 clock I/O pin. This pin operates as SCK6 when it is	-	7	7	85
	SCK6_1 (SCL6_1)	used in a UART/CSIO (operation modes	6	10	10	88
Multi-	SIN7_1	Multi-function serial interface ch.7 input	27	35	45	23
function Serial	SIN7_2	pin	61	77	97	75
7	SOT7_1 (SDA7_1)	Multi-function serial interface ch.7 output pin. This pin operates as SOT7 when it is	26	34	44	22
	SOT7_2 (SDA7_2)	used in a UART/CSIO (operation modes 0 to 2) and as SDA7 when it is used in an I ² C (operation mode 4).	62	78	98	76
	SCK7_1 (SCL7_1)	Multi-function serial interface ch.7 clock I/O pin. This pin operates as SCK7 when it is	25	33	43	21
	SCK7_2 (SCL7_2)	used in a UART/CSIO (operation modes 0 to 2) and as SCL7 when it is used in an I ² C (operation mode 4).	63	79	99	77

Pin			Pin No				
function	Pin name	Function description	LQFP-64, QFN-64	LQFP-80	LQFP-100	QFP-100	
Multi-	DTTI0X_0	Input signal of waveform generator to	9	13	18	96	
function	DTTI0X_1	control outputs RTO00 to RTO05 of	-	-	69	47	
Timer	DTTI0X_2	Multi-function timer 0	59	75	95	73	
0	FRCK0_0		-	-	13	91	
	FRCK0_1	16-bit free-run timer ch.0 external clock	-	-	70	48	
	FRCK0_2	input pin	35	43	53	31	
	IC00_0		-	-	17	95	
	IC00_1		-	55	65	43	
	IC00_2		36	44	54	32	
	IC01_0		-	-	16	94	
	IC01_1	1,,,,,	-	56	66	44	
	IC01_2	16-bit input capture input pin of Multi-function timer 0. ICxx describes a channel number.	37	45	55	33	
	IC02_0		-	-	15	93	
	IC02_1		-	-	67	45	
	IC02_2		38	46	56	34	
	IC03_0		-	-	14	92	
	IC03_1		_	1_	68	46	
	IC03_2		39	47	57	35	
	RTO00_0 (PPG00_0)	Waveform generator output pin of Multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output mode.	10	14	19	97	
	RTO00_1 (PPG00_1)		-	-	71	49	
	RTO01_0 (PPG00_0)	Waveform generator output pin of Multi-function timer 0. This pin operates as PPG00 when it is used in PPG0 output mode.	11	15	20	98	
	RTO02_0 (PPG02_0)	Waveform generator output pin of Multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output mode.	12	16	21	99	
	RTO03_0 (PPG02_0)	Waveform generator output pin of Multi-function timer 0. This pin operates as PPG02 when it is used in PPG0 output mode.	13	17	22	100	
	RTO04_0 (PPG04_0)	Waveform generator output pin of Multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output mode.	14	18	23	1	
	RTO05_0 (PPG04_0)	Waveform generator output pin of Multi-function timer 0. This pin operates as PPG04 when it is used in PPG0 output mode.	15	19	24	2	
	IGTRG	PPG IGBT mode external trigger input pin	24	32	42	20	

Pin			Pin No			
function	Pin name	Function description	LQFP-64, QFN-64	LQFP-80	LQFP-100	QFP-100
LCD Controller	VV0	LCD controller power supply I/O pin	-	6	6	84
	VV1		-	5	5	83
	VV2		-	4	4	82
	VV3		-	3	3	81
	VV4		2	2	2	80
	COM0	LCD controller common output pin	12	16	21	99
	COM1		11	15	20	98
	COM2		10	14	19	97
	COM3		9	13	18	96
	COM4		8	12	12	90
	COM5		7	11	11	89
	COM6		6	10	10	88
	COM7		5	9	9	87
	SEG00	-	59	75	95	73
	SEG01		58	74	94	72
	SEG02	-	-	73 71	93	71
	SEG03	-			91	69
	SEG04	-	-	70	90	68
	SEG05 SEG06	-	-	-	86 85	64 63
		-	-		84	62
	SEG07 SEG08	LCD controller segment output pin	-	66	83	61
	SEG08		-	-	82	60
	SEG10		-		74	52
	SEG10		48	60 59	73	51
	SEG12		47	58	72	50
	SEG12		46	57	71	49
	SEG14		-	-	69	49
	SEG15		-	-	68	46
	SEG16		-	-	67	45
	SEG17		-	56	66	44
	SEG18		_	55	65	43
	SEG19		45	54	64	42
	SEG20		44	53	63	41
	SEG21		40	49	59	37
	SEG22		-	48	58	36
	SEG23		39	47	57	35
	SEG24		38	46	56	34
	SEG25		37	45	55	33
	SEG26		36	44	54	32
	SEG27		35	43	53	31
	SEG28		34	42	52	30
	SEG29		24	32	42	20
	SEG30		23	31	41	19
	SEG31		22	30	40	18
	SEG32		-	29	39	17
	SEG33		-	22	32	10
	SEG34		-	21	31	9
	SEG35		15	19	24	2

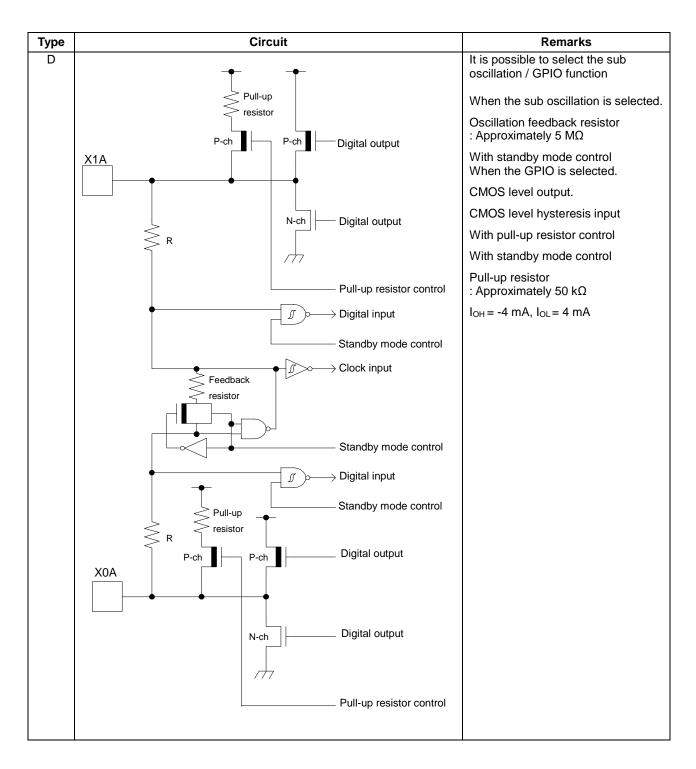
Din	Pin name	Function description	Pin No			
Pin function			LQFP-64, QFN-64	LQFP-80	LQFP-100	QFP-100
LCD Controller	SEG36	LCD controller segment output pin	14	18	23	1
	SEG37		13	17	22	100
	SEG38		-	8	8	86
	SEG39		-	7	7	85
	SEG40		8	12	12	90
	SEG41		7	11	11	89
	SEG42		6	10	10	88
	SEG43		5	9	9	87
Real-time	RTCCO_0		57	72	92	70
clock	RTCCO_1	Pulse output pin of Real-time clock	37	45	55	33
	RTCCO_2		10	14	19	97
	SUBOUT_0		57	72	92	70
	SUBOUT_1	Sub clock output pin	37	45	55	33
	SUBOUT_2		10	14	19	97
Low- Power Consumption Mode	WKUP0	Deep standby mode return signal input pin 0	57	72	92	70
	WKUP1	Deep standby mode return signal input pin 1	35	43	53	31
	WKUP2	Deep standby mode return signal input pin 2	48	59	73	51
	WKUP3	Deep standby mode return signal input pin 3	60	76	96	74
DAC	DA0	D/A converter ch.0 analog output pin	26	34	44	22
	DA1	D/A converter ch.1 analog output pin	27	35	45	23
HDMI- CEC/ Remote Control Reception	CEC0	HDMI-CEC/Remote Control Reception ch.0 input/output pin	25	33	43	21
	CEC1	HDMI-CEC/Remote Control Reception ch.1 input/output pin	60	76	96	74

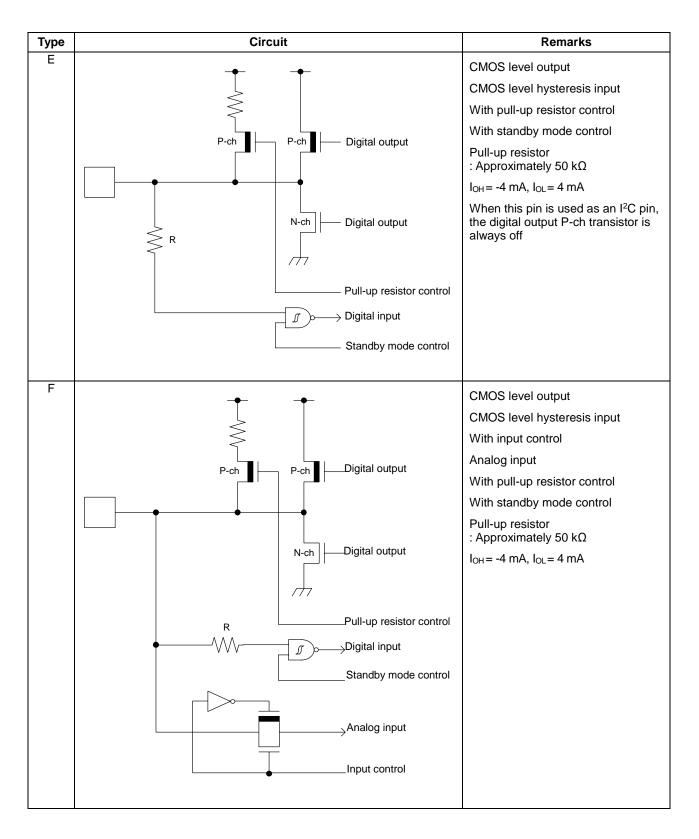
Document Number: 002-05640 Rev *B Page 33 of 111


Pin function				Piı	n No	
	Pin name	Function description	LQFP-64, QFN-64	LQFP-80	LQFP-100	QFP-100
Reset	INITX	External Reset Input Pin. A reset is valid when INITX = L.	21	28	38	16
Mode	MD0	Mode 0 pin. During normal operation, MD0 = L must be input. During serial programming to Flash memory, MD0 = H must be input.	29	37	47	25
	MD1	Mode 1 pin. During normal operation, input is not needed. During serial programming to Flash memory, MD1 = L must be input.	28	36	46	24
Power	VCC		1	1	1	79
	VCC		-	-	26	4
	VCC	Power supply pin	18	25	35	13
	VCC		33	41	51	29
	VCC		-	-	76	54
GND	VSS		16	20	25	3
	VSS	GND pin	-	24	34	12
	VSS		32	40	50	28
	VSS		-	-	75	53
	VSS		64	80	100	78
Clock	X0	Main clock (oscillation) input pin	30	38	48	26
	X0A	Sub clock (oscillation) input pin	19	26	36	14
	X1	Main clock (oscillation) I/O pin	31	39	49	27
	X1A	Sub clock (oscillation) I/O pin	20	27	37	15
	CROUT_0	Built-in High-speed CR-osc clock output	-	60	74	52
	CROUT_1	port	57	72	92	70
Analog Power	AVCC	A/D converter and D/A converter analog power supply pin	41	50	60	38
	AVRH	A/D converter analog reference voltage input pin	42	51	61	39
Analog GND	AVSS	A/D converter and D/A converter GND pin	43	52	62	40
C pin	С	Power supply stabilization capacity pin	17	23	33	11

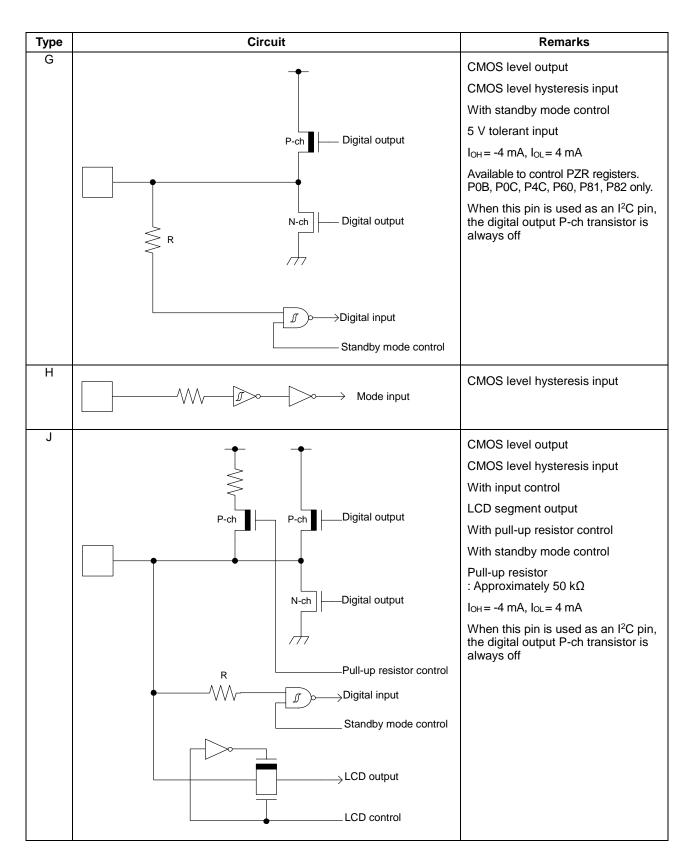
- While this device contains a Test Access Port (TAP) based on the IEEE 1149.1-2001 JTAG standard, it is not fully compliant to all requirements of that standard. This device may contain a 32-bit device ID that is the same as the 32-bit device ID in other devices with different functionality. The TAP pins may also be configurable for purposes other than access to the TAP controller.

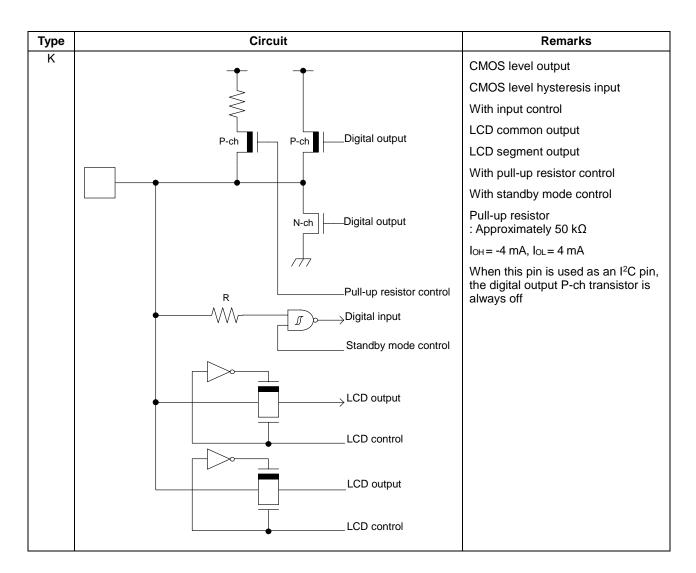
Document Number: 002-05640 Rev *B Page 34 of 111

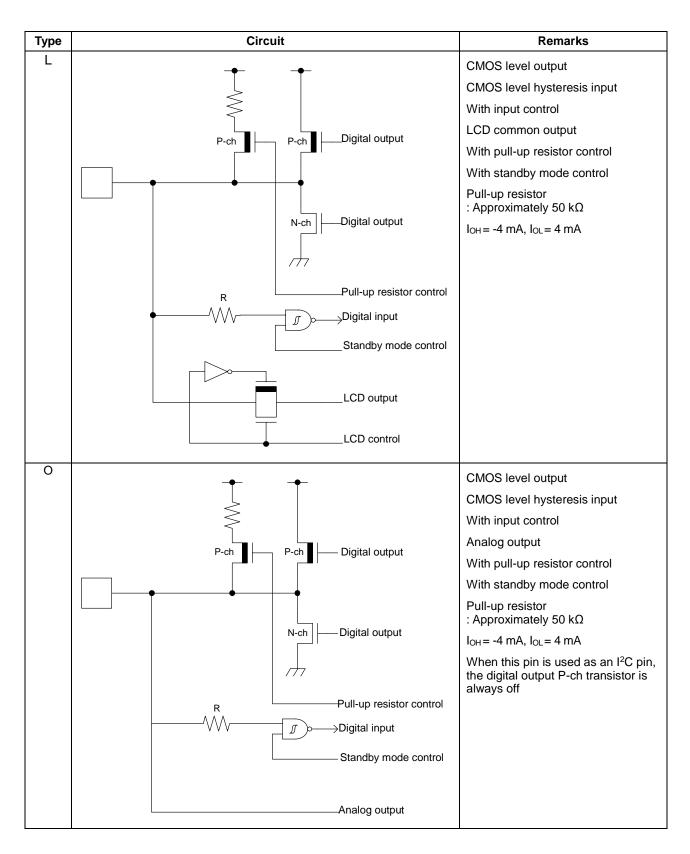

5. I/O Circuit Type

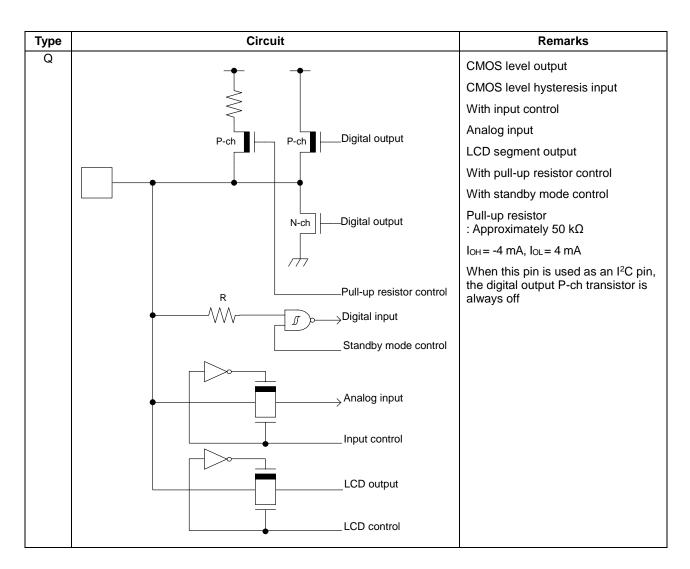


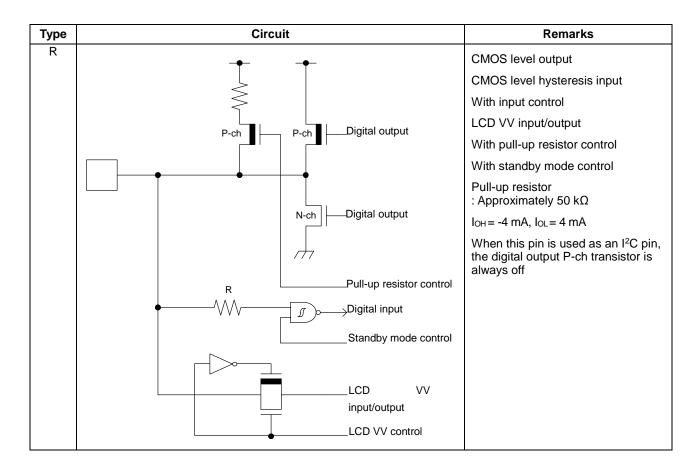
Туре	Circuit	Remarks
В	Pull-up resistor Digital input	CMOS level hysteresis input Pull-up resistor : Approximately 50 kΩ
С	Digital input N-ch Digital output	Open drain output CMOS level hysteresis input











6. Handling Precautions

Any semiconductor devices have inherently a certain rate of failure. The possibility of failure is greatly affected by the conditions in which they are used (circuit conditions, environmental conditions, etc.). This page describes precautions that must be observed to minimize the chance of failure and to obtain higher reliability from your Cypress semiconductor devices.

6.1 Precautions for Product Design

This section describes precautions when designing electronic equipment using semiconductor devices.

Absolute Maximum Ratings

Semiconductor devices can be permanently damaged by application of stress (voltage, current, temperature, etc.) in excess of certain established limits, called absolute maximum ratings. Do not exceed these ratings.

Recommended Operating Conditions

Recommended operating conditions are normal operating ranges for the semiconductor device. All the device's electrical characteristics are warranted when operated within these ranges.

Always use semiconductor devices within the recommended operating conditions. Operation outside these ranges may adversely affect reliability and could result in device failure.

No warranty is made with respect to uses, operating conditions, or combinations not represented on the data sheet. Users considering application outside the listed conditions are advised to contact their sales representative beforehand.

Processing and Protection of Pins

These precautions must be followed when handling the pins which connect semiconductor devices to power supply and input/output functions.

1. Preventing Over-Voltage and Over-Current Conditions

Exposure to voltage or current levels in excess of maximum ratings at any pin is likely to cause deterioration within the device, and in extreme cases leads to permanent damage of the device. Try to prevent such overvoltage or over-current conditions at the design stage.

2. Protection of Output Pins

Shorting of output pins to supply pins or other output pins, or connection to large capacitance can cause large current flows. Such conditions if present for extended periods of time can damage the device. Therefore, avoid this type of connection.

3. Handling of Unused Input Pins

Unconnected input pins with very high impedance levels can adversely affect stability of operation. Such pins should be connected through an appropriate resistance to a power supply pin or ground pin.

Latch-up

Semiconductor devices are constructed by the formation of P-type and N-type areas on a substrate. When subjected to abnormally high voltages, internal parasitic PNPN junctions (called thyristor structures) may be formed, causing large current levels in excess of several hundred mA to flow continuously at the power supply pin. This condition is called latch-up.

CAUTION: The occurrence of latch-up not only causes loss of reliability in the semiconductor device, but can cause injury or damage from high heat, smoke or flame. To prevent this from happening, do the following:

- 1. Be sure that voltages applied to pins do not exceed the absolute maximum ratings. This should include attention to abnormal noise, surge levels, etc.
- 2. Be sure that abnormal current flows do not occur during the power-on sequence.

Observance of Safety Regulations and Standards

Most countries in the world have established standards and regulations regarding safety, protection from electromagnetic interference, etc. Customers are requested to observe applicable regulations and standards in the design of products.

Fail-Safe Design

Any semiconductor devices have inherently a certain rate of failure. You must protect against injury, damage or loss from such failures by incorporating safety design measures into your facility and equipment such as redundancy, fire protection, and prevention of over-current levels and other abnormal operating conditions.

Precautions Related to Usage of Devices

Cypress semiconductor devices are intended for use in standard applications (computers, office automation and other office equipment, industrial, communications, and measurement equipment, personal or household devices, etc.).

CAUTION: Customers considering the use of our products in special applications where failure or abnormal operation may directly affect human lives or cause physical injury or property damage, or where extremely high levels of reliability are demanded (such as aerospace systems, atomic energy controls, sea floor repeaters, vehicle operating controls, medical devices for life support, etc.) are requested to consult with sales representatives before such use. The company will not be responsible for damages arising from such use without prior approval.

Document Number: 002-05640 Rev *B Page 44 of 111

6.2 Precautions for Package Mounting

Package mounting may be either lead insertion type or surface mount type. In either case, for heat resistance during soldering, you should only mount under Cypress' recommended conditions. For detailed information about mount conditions, contact your sales representative.

Lead Insertion Type

Mounting of lead insertion type packages onto printed circuit boards may be done by two methods: direct soldering on the board, or mounting by using a socket.

Direct mounting onto boards normally involves processes for inserting leads into through-holes on the board and using the flow soldering (wave soldering) method of applying liquid solder. In this case, the soldering process usually causes leads to be subjected to thermal stress in excess of the absolute ratings for storage temperature. Mounting processes should conform to Cypress recommended mounting conditions.

If socket mounting is used, differences in surface treatment of the socket contacts and IC lead surfaces can lead to contact deterioration after long periods. For this reason it is recommended that the surface treatment of socket contacts and IC leads be verified before mounting.

Surface Mount Type

Surface mount packaging has longer and thinner leads than lead-insertion packaging, and therefore leads are more easily deformed or bent. The use of packages with higher pin counts and narrower pin pitch results in increased susceptibility to open connections caused by deformed pins, or shorting due to solder bridges.

You must use appropriate mounting techniques. Cypress recommends the solder reflow method, and has established a ranking of mounting conditions for each product. Users are advised to mount packages in accordance with Cypress ranking of recommended conditions.

Document Number: 002-05640 Rev *B Page 45 of 111

Lead-Free Packaging

CAUTION: When ball grid array (BGA) packages with Sn-Ag-Cu balls are mounted using Sn-Pb eutectic soldering, junction strength may be reduced under some conditions of use.

Storage of Semiconductor Devices

Because plastic chip packages are formed from plastic resins, exposure to natural environmental conditions will cause absorption of moisture. During mounting, the application of heat to a package that has absorbed moisture can cause surfaces to peel, reducing moisture resistance and causing packages to crack. To prevent, do the following:

- 1. Avoid exposure to rapid temperature changes, which cause moisture to condense inside the product. Store products in locations where temperature changes are slight.
- Use dry boxes for product storage. Products should be stored below 70% relative humidity, and at temperatures between 5°C and 30°C.
 - When you open Dry Package that recommends humidity 40% to 70% relative humidity.
- 3. When necessary, Cypress packages semiconductor devices in highly moisture-resistant aluminum laminate bags, with a silica gel desiccant. Devices should be sealed in their aluminum laminate bags for storage.
- 4. Avoid storing packages where they are exposed to corrosive gases or high levels of dust.

Baking

Packages that have absorbed moisture may be de-moisturized by baking (heat drying). Follow the Cypress recommended conditions for baking.

Condition: 125°C/24 h

Static Electricity

Because semiconductor devices are particularly susceptible to damage by static electricity, you must take the following precautions:

- 1. Maintain relative humidity in the working environment between 40% and 70%. Use of an apparatus for ion generation may be needed to remove electricity.
- 2. Electrically ground all conveyors, solder vessels, soldering irons and peripheral equipment.
- Eliminate static body electricity by the use of rings or bracelets connected to ground through high resistance (on the level of 1 MΩ). Wearing of conductive clothing and shoes, use of conductive floor mats and other measures to minimize shock loads is recommended.
- 4. Ground all fixtures and instruments, or protect with anti-static measures.
- 5. Avoid the use of styrofoam or other highly static-prone materials for storage of completed board assemblies.

Document Number: 002-05640 Rev *B Page 46 of 111

6.3 Precautions for Use Environment

Reliability of semiconductor devices depends on ambient temperature and other conditions as described above.

For reliable performance, do the following:

1. Humidity

Prolonged use in high humidity can lead to leakage in devices as well as printed circuit boards. If high humidity levels are anticipated, consider anti-humidity processing.

2. Discharge of Static Electricity

When high-voltage charges exist close to semiconductor devices, discharges can cause abnormal operation. In such cases, use anti-static measures or processing to prevent discharges.

3. Corrosive Gases, Dust, or Oil

Exposure to corrosive gases or contact with dust or oil may lead to chemical reactions that will adversely affect the device. If you use devices in such conditions, consider ways to prevent such exposure or to protect the devices.

4. Radiation, Including Cosmic Radiation

Most devices are not designed for environments involving exposure to radiation or cosmic radiation. Users should provide shielding as appropriate.

5. Smoke, Flame

CAUTION: Plastic molded devices are flammable, and therefore should not be used near combustible substances. If devices begin to smoke or burn, there is danger of the release of toxic gases.

Customers considering the use of Cypress products in other special environmental conditions should consult with sales representatives.

Document Number: 002-05640 Rev *B Page 47 of 111

7. Handling Devices

Power supply pins

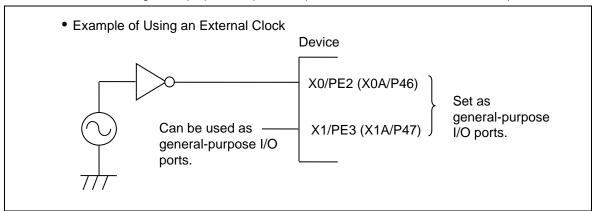
In products with multiple VCC and VSS pins, respective pins at the same potential are interconnected within the device in order to prevent malfunctions such as latch-up. However, all of these pins should be connected externally to the power supply or ground lines in order to reduce electromagnetic emission levels, to prevent abnormal operation of strobe signals caused by the rise in the ground level, and to conform to the total output current rating.

Moreover, connect the current supply source with each Power supply pins and GND pins of this device at low impedance. It is also advisable that a ceramic capacitor of approximately 0.1 µF be connected as a bypass capacitor between each Power supply pin and GND pin, between AVCC pin and AVSS pin near this device.

Stabilizing power supply voltage

A malfunction may occur when the power supply voltage fluctuates rapidly even though the fluctuation is within the recommended operating conditions of the VCC power supply voltage. As a rule, with voltage stabilization, suppress the voltage fluctuation so that the fluctuation in VCC ripple (peak-to-peak value) at the commercial frequency (50 Hz/60 Hz) does not exceed 10% of the VCC value in the recommended operating conditions, and the transient fluctuation rate does not exceed 0.1 V/µs when there is a momentary fluctuation on switching the power supply.

Crystal oscillator circuit


Noise near the X0/X1 and X0A/X1A pins may cause the device to malfunction. Design the printed circuit board so that X0/X1, X0A/X1A pins, the crystal oscillator, and the bypass capacitor to ground are located as close to the device as possible.

It is strongly recommended that the PC board artwork be designed such that the X0/X1 and X0A/X1A pins are surrounded by ground plane as this is expected to produce stable operation.

Evaluate oscillation of your using crystal oscillator by your mount board.

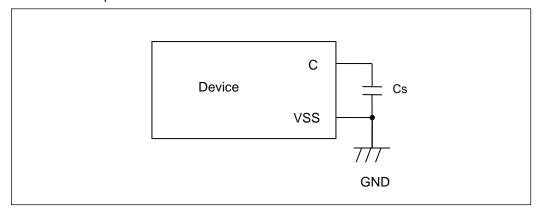
Using an external clock

To use the external clock, set general-purpose I/O ports to input the clock to X0/PE2 and X0A/P46 pin.

Handling when using Multi-function serial pin as I²C pin

If it is using the multi-function serial pin as I²C pins, P-ch transistor of digital output is always disable. However, I²C pins need to keep the electrical characteristic like other pins and not to connect to the external I²C bus system with power OFF.

Document Number: 002-05640 Rev *B Page 48 of 111



C Pin

This series contains the regulator. Be sure to connect a smoothing capacitor (Cs) for the regulator between the C pin and the GND pin. Please use a ceramic capacitor or a capacitor of equivalent frequency characteristics as a smoothing capacitor.

However, some laminated ceramic capacitors have the characteristics of capacitance variation due to thermal fluctuation (F characteristics and Y5V characteristics). Please select the capacitor that meets the specifications in the operating conditions to use by evaluating the temperature characteristics of a capacitor.

A smoothing capacitor of about 4.7 µF would be recommended for this series.

Mode pins (MD0, MD1)

Connect the MD pin (MD0, MD1) directly to VCC or VSS pins. Design the printed circuit board such that the pull-up/down resistance stays low, as well as the distance between the mode pins and VCC pins or VSS pins is as short as possible and the connection impedance is low, when the pins are pulled-up/down such as for switching the pin level and rewriting the Flash memory data. It is because of preventing the device erroneously switching to test mode due to noise.

Notes on power-on

Turn power on/off in the following order or at the same time.

If not using the A/D converter, connect AVCC = VCC and AVSS = VSS.

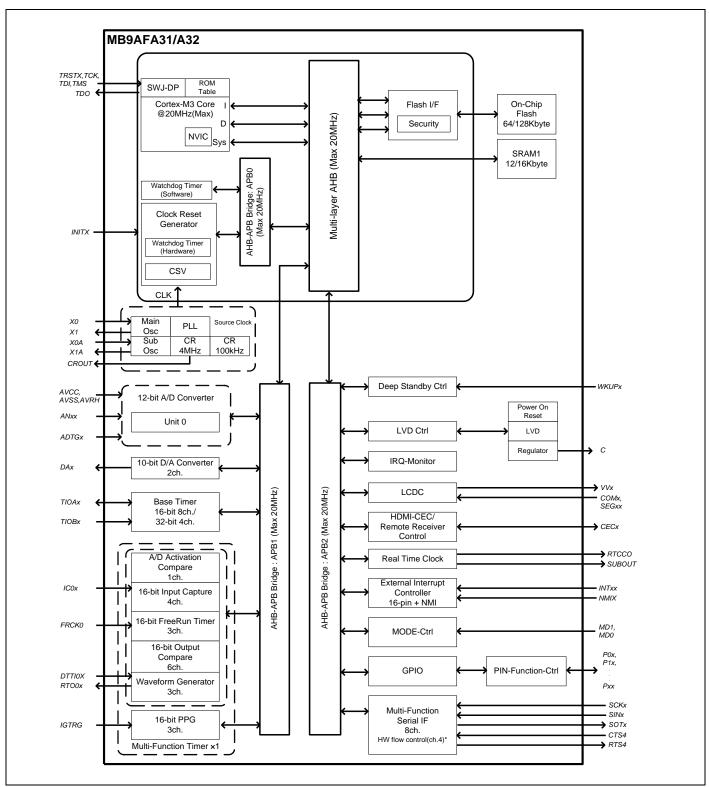
Turning on : VCC \rightarrow AVCC \rightarrow AVRH Turning off : AVRH \rightarrow AVCC \rightarrow VCC

Serial Communication

There is a possibility to receive wrong data due to the noise or other causes on the serial communication.

Therefore, design a printed circuit board so as to avoid noise.

Consider the case of receiving wrong data due to noise; perform error detection such as by applying a checksum of data at the end. If an error is detected, retransmit the data.

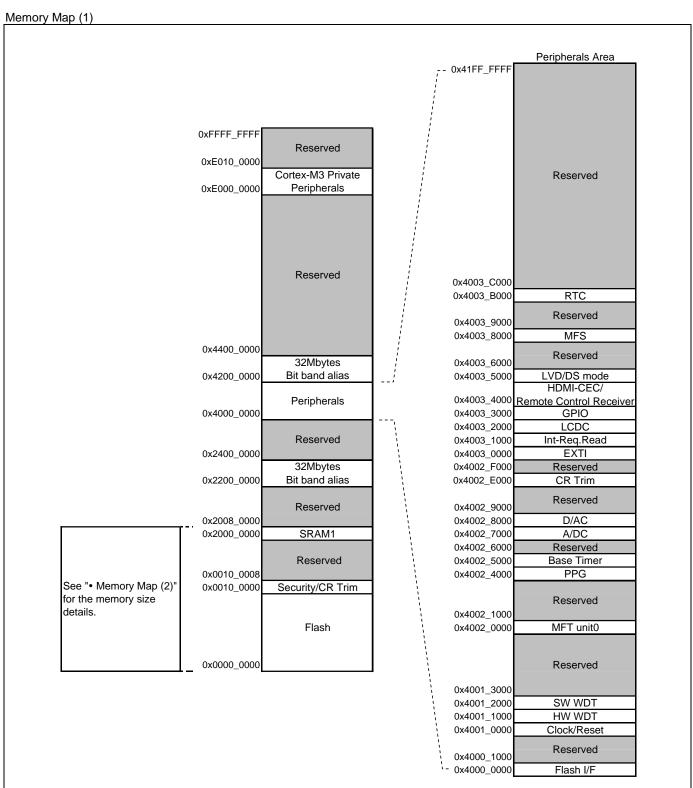

Differences in features among the products with different memory sizes and between Flash memory products and MASK products. The electric characteristics including power consumption, ESD, latch-up, noise characteristics, and oscillation characteristics among the products with different memory sizes and between Flash memory products and MASK products are different because chip layout and memory structures are different.

If you are switching to use a different product of the same series, please make sure to evaluate the electric characteristics.

Document Number: 002-05640 Rev *B Page 49 of 111

8. Block Diagram

^{*:} For the MB9AFA31L and MB9AFA32L, Multi-function Serial Interface does not support hardware flow control in these products.


9. Memory Size

See Memory size in Product Lineup to confirm the memory size.

Document Number: 002-05640 Rev *B Page 51 of 111

10. Memory Map

Memory Map (2) MB9AFA32L/M/N MB9AFA31L/M/N 0x2008_0000 0x2008_0000 Reserved Reserved 0x2000_4000 0x2000_3000 SRAM1 SRAM1 16 Kbytes 12 Kbytes 0x2000_0000 0x2000_0000 Reserved Reserved 0x0010_0008 0x0010_0008 CR trimming CR trimming 0x0010_0004 0x0010_0004 Security Security 0x0010_0000 0x0010_0000 Reserved Reserved Flash 128 Kbytes Flash 64 Kbytes 0x0002_0000 SA3 (64 KB) 0x0001_0000 SA2 (60 KB) SA2 (60 KB) SA1 (4 KB) SA1 (4 KB) 0x0000_0000 0x0000_0000

Document Number: 002-05640 Rev *B Page 53 of 111

^{*:} See MB9AAA0N/1A0N/A30N/130N/130L Series Flash Programming Manual to confirm the detail of Flash memory.

Peripheral Address Map

Start address	End address	Bus	Peripherals
0x4000_0000	0x4000_0FFF	AHB	Flash memory I/F register
0x4000_1000	0x4000_FFFF	AHB	Reserved
0x4001_0000	0x4001_0FFF		Clock/Reset Control
0x4001_1000	0x4001_1FFF		Hardware Watchdog timer
0x4001_2000	0x4001_2FFF	ADDO	Software Watchdog timer
0x4001_3000	0x4001_4FFF	APB0	Reserved
0x4001_5000	0x4001_5FFF		Reserved
0x4001_6000	0x4001_FFFF		Reserved
0x4002_0000	0x4002_0FFF		Multi-function timer unit0
0x4002_1000	0x4002_1FFF		Reserved
0x4002_2000	0x4002_3FFF		Reserved
0x4002_4000	0x4002_4FFF		PPG
0x4002_5000	0x4002_5FFF		Base Timer
0x4002_6000	0x4002_6FFF	APB1	Reserved
0x4002_7000	0x4002_7FFF		A/D Converter
0x4002_8000	0x4002_8FFF		D/A Converter
0x4002_9000	0x4002_DFFF		Reserved
0x4002_E000	0x4002_EFFF		Built-in CR trimming
0x4002_F000	0x4002_FFFF		Reserved
0x4003_0000	0x4003_0FFF		External Interrupt
0x4003_1000	0x4003_1FFF		Interrupt Source Check Register
0x4003_2000	0x4003_2FFF		LCD Controller
0x4003_3000	0x4003_3FFF		GPIO
0x4003_4000	0x4003_4FFF		HDMI-CEC/ Remote Control Receiver
0x4003_5000	0x4003_50FF		Low-Voltage Detector
0x4003_5100	0x4003_5FFF	APB2	Deep standby mode Controller
0x4003_6000	0x4003_6FFF	APBZ	Reserved
0x4003_7000	0x4003_7FFF		Reserved
0x4003_8000	0x4003_8FFF		Multi-function serial
0x4003_9000	0x4003_9FFF		Reserved
0x4003_A000	0x4003_AFFF		Reserved
0x4003_B000	0x4003_BFFF		Real-time clock
0x4003_C000	0x4003_FFFF		Reserved
0x4004_0000	0x4004_FFFF		Reserved
0x4005_0000	0x4005_FFFF		Reserved
0x4006_0000	0x4006_0FFF		Reserved
0x4006_1000	0x4006_1FFF	AHB	Reserved
0x4006_2000	0x4006_2FFF		Reserved
0x4006_3000	0x4006_3FFF		Reserved
0x4006_4000	0x41FF_FFFF		Reserved

11. Pin Status in Each CPU State

The terms used for pin status have the following meanings.

INITX = 0

This is the period when the INITX pin is the L level.

INITX = 1

This is the period when the INITX pin is the H level.

SPL = 0

This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 0.

SPL = 1

This is the status that the standby pin level setting bit (SPL) in the standby mode control register (STB_CTL) is set to 1.

Input enabled

Indicates that the input function can be used.

Internal input fixed at 0

This is the status that the input function cannot be used. Internal input is fixed at L.

Hi-Z

Indicates that the pin drive transistor is disabled and the pin is put in the Hi-Z state.

Setting disabled

Indicates that the setting is disabled.

Maintain previous state

Maintains the state that was immediately prior to entering the current mode.

If a built-in peripheral function is operating, the output follows the peripheral function.

If the pin is being used as a port, that output is maintained.

Analog input is enabled

Indicates that the analog input is enabled.

Trace output

Indicates that the trace function can be used.

GPIO selected

In Deep Standby mode, pins switch to the general-purpose I/O port.

Document Number: 002-05640 Rev *B Page 55 of 111

List of Pin Status

List of Pin Status										
Din etatue type	Function group	Power-o n reset or low-volta ge detection state	INITX input state	Device internal reset state	Run mode or Sleep mode state	RTC m	mode, ode, or ode state	mode of Standby S	ndby RTC or Deep Stop mode ate	Return from Deep Standby mode state
Din etc	group	Power supply unstable	sta	supply ble	Power supply stable	sta	supply	sta	supply ble	Power supply stable
		-	INITX = 0	INITX = 1	INITX = 1	SPL = 0	X = 1 SPL = 1	INIT	X = 1 SPL = 1	INITX = 1
	Main crystal oscillator input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled
A	External main clock input selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state / When oscillation stops*1, output maintains previous state / Internal input fixed at 0	Hi-Z / Input enabled / When oscillation stops*1, Hi-Z / Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	GPIO selected
	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Output maintains previous state / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Maintain previous state
В	' '	Hi-Z / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	previous state / When oscillation stops*1, Hi-Z output / Internal	Maintain previous state / When oscillation stops*1, Hi-Z output / Internal	previous state / When oscillation stops*1, Hi-Z output / Internal	Maintain previous state / When oscillation stops*1, Hi-Z output / Internal input fixed at 0	previous state / When oscillation stops*1, Hi-Z output /	Maintain previous state / When oscillation stops*1, Hi-Z output / Internal input fixed at 0
	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Maintain previous state
C	INITX input pin	Pull-up / Input enabled	Pull-up / Input enabled	Pull-up / Input enabled	Pull-up / Input enabled	Pull-up / Input enabled	Pull-up / Input enabled	Pull-up / Input enabled	Pull-up / Input enabled	Pull-up / Input enabled
D	Mode input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled

Pin status type	Function	Power-o n reset or low-volta ge detection state	INITX input state	Device internal reset state	Run mode or Sleep mode state	RTC m	mode, ode, or ode state	Deep Star mode of Standby S	or Deep Stop mode	Return from Deep Standby mode state
Pin sta	group	Power supply unstable	sta	supply ble	Power supply stable INITX = 1	sta	supply ble	sta	supply ble	Power supply stable INITX = 1
		-	INITX = 0	INITX = 1	INITA = I	SPL = 0	SPL = 1	INIT	SPL = 1	INITA = I
	JTAG selected	Hi-Z	Pull-up / Input enabled	Pull-up / Input enabled		01 2 2 0	Maintain previous state	Maintain previous state	Maintain previous state	
Е	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at 0	Output maintain previous state / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Maintain previous state
	External interrupt enabled selected	Setting disabled	Setting disabled	Setting disabled			Maintain previous state	GPIO selected Internal		GPIO
F	Resource other than above selected				previous	Maintain previous state	Hi-Z / Internal input fixed at 0	input fixed at 0	Hi-Z / Internal input fixed	selected
	GPIO selected	Hi-Z	Hi-Z / Input enabled	Hi-Z / Input enabled				Output maintains previous state / Internal input fixed at 0	at 0	Maintain previous state
	WKUP enabled	Setting disabled	Setting disabled	Setting disabled			Hi-Z / Internal input fixed at 0	WKUP input enabled	Hi-Z / WKUP input enabled	GPIO selected
	External interrupt enabled selected	Setting disabled	Setting disabled	Setting disabled			Maintain previous state	GPIO selected Internal		GPIO
G	Resource other than above selected				previous	Maintain previous state	Hi-Z /	input fixed at 0	Hi-Z / Internal input fixed	selected
	GPIO selected	Hi-Z	Hi-Z / Input enabled	Hi-Z / Input enabled			Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	at 0	Maintain previous state

status type	Function group	Power-o n reset or low-volta ge detection state	INITX input state	Device internal reset state	Run mode or Sleep mode state	RTC m	mode, ode, or ode state	mode of Standby S	ndby RTC or Deep Stop mode ate	Return from Deep Standby mode state
Pin st	9.04	Power supply unstable	Power sta	ble	Power supply stable	sta	supply ble	sta	supply ble	Power supply stable
		-	INITX = 0	INITX = 1	INITX = 1	INIT	X = 1 SPL = 1	SPL = 0	X = 1 SPL = 1	INITX = 1
	Resource selected			11: 7 /			Hi-Z /	GPIO selected Internal input fixed at 0	Hi-Z /	GPIO selected
Н	GPIO selected	Hi-Z	Hi-Z / Input enabled	Hi-Z / Input enabled	Maintain previous state	Maintain previous state	Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	Internal input fixed at 0	Maintain previous state
	NMIX selected	Setting disabled	Setting disabled	Setting disabled			Maintain previous state			OBIO
I	Resource other than above selected	an	i-Z Input	Hi-Z / Input	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at 0	input	Hi-Z / WKUP input enabled	GPIO selected
	GPIO selected		enabled	enabled						Maintain previous state
	Analog input selected	Hi-Z	Hi-Z / Internal input fixed at 0 / Analog input enabled	at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled	at 0 / Analog input enabled				
J	Resource other than above selected				Maintain	Maintain	Hi-Z /	GPIO selected Internal input fixed at 0	Hi-Z /	GPIO selected Internal input fixed at 0
	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Internal	Output maintains previous state / Internal input fixed at 0	Internal input fixed at 0	Output

Pin status type	Function group	Power-o n reset or low-volta ge detection state	INITX input state	Device internal reset state	Run mode or Sleep mode state	RTC m	mode, ode, or ode state	mode of Standby S	ndby RTC or Deep Stop mode ate	Return from Deep Standby mode state
Pin sta	group	Power supply unstable	sta	supply ble	Power supply stable	sta	supply ble	sta	supply ble	Power supply stable
		-	INITX = 0	INITX = 1	INITX = 1	INIT	X = 1 SPL = 1	INIT	X = 1 SPL = 1	INITX = 1
	Analog input selected	Hi-Z	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal	Hi-Z / Internal	Hi-Z / Internal	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled
К	External interrupt enabled selected Resource other than above selected	Setting disabled	Setting	Setting	Maintain previous	Maintain previous	Maintain previous state	GPIO selected Internal input fixed at 0	Hi-Z / Internal	GPIO selected Internal input fixed at 0
	GPIO selected	uisabieu	disabled	disabled	state	state	Hi-Z / Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0		maintains previous state / Internal input fixed at 0
	Analog input selected	Hi-Z	Hi-Z / Internal input fixed at 0 / Analog input enabled	at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled			
	WKUP enabled						Hi-Z / Internal input fixed at 0	WKUP input enabled	Hi-Z / WKUP input enabled	CDIO
L	above disabled			Maintain previous state		Maintain previous state	GPIO selected Internal input fixed at 0	Hi-Z /	GPIO selected Internal input fixed at 0	
	Selected GPIO selected					Hi-Z / Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	input fixed at 0	Output maintains previous state / Internal input fixed at 0	

status type	Function group	Power-o n reset or low-volta ge detection state	INITX input state	Device internal reset state	Run mode or Sleep mode state	RTC m	mode, ode, or ode state	mode of Standby S	ndby RTC or Deep Stop mode ate	Return from Deep Standby mode state
Pin st	9	Power supply unstable	Power sta	ble	Power supply stable	sta	supply ble	sta	supply ble	Power supply stable
		-	INITX = 0	INITX = 1	INITX = 1	SPL = 0	SPL = 1	SPL = 0	SPL = 1	INITX = 1
	Sub crystal oscillator input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled
М	External sub clock input selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state / When oscillation stops*2, output maintains previous state / Internal input fixed at 0	Hi-Z / Input enabled / When oscillation stops* ² , Hi-Z / Internal input fixed at 0	Maintain previous state / When oscillation stops*2, output maintains previous state / Internal input fixed at 0	Hi-Z / Input enabled / When oscillation stops* ² , Hi-Z / Internal input fixed at 0	Maintain previous state / When Return from Deep Standby STOP mode, GPIO is selected
	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Output maintains previous state / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Maintain previous state
Z	Sub crystal oscillator output pin	Hi-Z / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Maintain previous state	Maintain previous state / When oscillation stops* ² , Hi-Z / Internal input fixed at 0	Maintain previous state / When oscillation stops*2, Hi-Z / Internal input fixed at 0			
	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	Hi-Z / Internal input fixed at 0	Maintain previous state

Page 61 of 111

status type	Function	Power-o n reset or low-volta ge detection state	INITX input state	Device internal reset state	nternal reset state mode or Sleep mode state		mode, ode, or ode state	mode of Standby S	ndby RTC or Deep Stop mode ate	Return from Deep Standby mode state
Pin sta	group	Power supply unstable	sta	supply ble	Power supply stable	sta	supply ible	Power supply stable		Power supply stable
		-	INITX = 0	INITX = 1	INITX = 1		X = 1	INIT		INITX = 1
		-	-	-	-	SPL = 0	SPL = 1	SPL = 0	SPL = 1	-
	External interrupt enabled selected	Setting disabled	Setting disabled	Setting disabled	Maintain	Maintain	Maintain previous state	GPIO selected / Internal input fixed at 0	Hi-Z /	GPIO selected
0	GPIO selected	Hi-Z	Hi-Z / Input enabled	Hi-Z / Input enabled	state	previous state	Hi-Z / Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	Internal input fixed at 0	Maintain previous state
	Mode input pin	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled	Input enabled
Р	GPIO selected	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Hi-Z / Input enabled	Maintain previous state	Hi-Z / Input enabled	Maintain previous state
	CEC enabled	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state
Q	Resource other than above selected		Hi-Z /	Hi-Z /	Maintain	Maintain	Hi-Z /	GPIO selected Internal input fixed at 0	Hi-Z /	GPIO selected
	GPIO selected	Hi-Z	Input enabled	Input enabled	previous	previous state	Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	Internal input fixed at 0	Maintain previous state

Din ctatus type	Function group	Power-o n reset or low-volta ge detection state	INITX input state	Device internal reset state	Run mode or Sleep mode state	RTC m	mode, ode, or ode state	mode of Standby S	ndby RTC or Deep Stop mode ate	Return from Deep Standby mode state
Din ets	group	Power supply unstable	sta	supply ble	Power supply stable	sta	supply ble	sta	supply ble	Power supply stable
		-	INITX = 0	INITX = 1	INITX = 1	INIT	X = 1 SPL = 1	INIT	X = 1 SPL = 1	INITX = 1
	CEC enabled	Setting disabled	Setting disabled	Setting disabled	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state	Maintain previous state
	WKUP enabled	Setting	Setting	Setting			Hi-Z / Internal input fixed at 0	WKUP input enabled	Hi-Z / WKUP input enabled	
R	External interrupt enabled selected	disabled	disabled	disabled			Maintain previous state	GPIO selected Internal		GPIO selected
	Resource other than above selected		Input	Hi-Z / Input enabled	Maintain previous state	Maintain previous state	Hi-Z / Internal input fixed at 0	input fixed at 0	Hi-Z / Internal input fixed at 0	
	GPIO selected	Hi-Z						Output maintains previous state / Internal input fixed at 0		Maintain previous state
	External interrupt enabled selected	Setting disabled	Setting disabled	Setting disabled			Maintain previous state	GPIO selected Internal		GPIO selected Internal
S	Resource other than above selected		Hi-Z /	Hi-Z /	Maintain previous	Maintain previous	Hi-Z /	input fixed at 0	Hi-Z / Internal	input fixed at 0
	GPIO selected	Hi-Z	Internal	Internal	state	state	Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	input fixed at 0	Output maintains previous state / Internal input fixed at 0

Pin status type	Function group	Power-o n reset or low-volta ge detection state	INITX input state	Device internal reset state	Run mode or Sleep mode state	RTC m	mode, ode, or ode state	mode of Standby S	ndby RTC or Deep Stop mode ate	Return from Deep Standby mode state
Pin Sta	group	Power supply unstable	Power sta	ble	Power supply stable	sta	supply ble	sta	supply ble	Power supply stable
		-	INITX = 0	INITX = 1	INITX = 1	SPL = 0	X = 1 SPL = 1	SPL = 0	X = 1 SPL = 1	INITX = 1
	WKUP enabled	Setting disabled	Setting disabled	Setting disabled		0. 2 = 0	Hi-Z / Internal input fixed at 0	WKUP input enabled	Hi-Z / WKUP input enabled	GPIO selected Internal input fixed at 0
	External interrupt enabled selected	Setting disabled	Setting disabled	Setting disabled	Maintain	Maintain	Maintain previous state	GPIO selected Internal		GPIO selected Internal
Т	above selected		Hi-Z /	Hi-Z /	previous state	previous state	Hi-Z /	input fixed at 0	Hi-Z / Internal input fixed	input fixed at 0
	GPIO selected	Hi-Z	Internal input fixed at 0	Internal			at 0	Output maintains previous state / Internal input fixed at 0	at 0	maintains previous state / Internal input fixed at 0
	Resource selected		Hi-Z /	Hi-Z /	Maintain	previous	Hi-Z /	GPIO selected Internal input fixed at 0	Hi-Z /	GPIO selected Internal input fixed at 0
U	GPIO selected	Hi-Z	Internal input fixed at 0	Internal input fixed at 0	previous state		Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0
	Resource selected	Hi-Z /		Hi-Z /	Maintain	Maintain	Hi-Z /	GPIO selected Internal input fixed at 0	Hi-Z /	Hi-Z /
V	GPIO selected	Hi-Z	Internal input fixed at 0	Internal input fixed at 0	previous state	previous state	Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	Internal input fixed at 0	Internal input fixed at 0

status type	Function group	Power-o n reset or low-volta ge detection state	INITX input state	Device internal reset state	Run mode or Sleep mode state	RTC m	Timer mode, RTC mode, or Stop mode state		ndby RTC or Deep Stop mode ate	Return from Deep Standby mode state
Pin st	group	Power supply unstable	Power sta	ble	Power supply stable	sta	supply ble	sta	supply ble	Power supply stable
		-	INITX = 0	INITX = 1	INITX = 1	INIT	X = 1 SPL = 1	INIT	X = 1 SPL = 1	INITX = 1
	External interrupt enabled selected	Setting disabled	Setting disabled	Setting disabled		01 1 2 0	Maintain previous state	GPIO selected Internal	OI L = I	
W	Resource other than above selected		Hi- <i>7</i> /	Hi-Z /	Maintain previous	Maintain previous	Hi-Z /	input fixed at 0	Hi-Z / Internal	Hi-Z / Internal input fixed
	GPIO selected	Hi-Z	Internal input fixed at 0	Internal input fixed at 0		state	Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0	at 0	at 0
	Analog input selected	Hi-Z	Hi-Z / Internal input fixed at 0 / Analog input enabled	at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled	Hi-Z / Internal input fixed at 0 / Analog input enabled				
x	selected			etting Setting Maintain		Maintain	Hi-Z /	GPIO selected Internal input fixed at 0	Hi-Z /	GPIO selected
	GPIO selected		disabled disabled dis			previous state	revious Internal (Internal input fixed at 0	Maintain previous state

Pin status type	Function group	Power-o n reset or low-volta ge detection state	INITX input state	Device internal reset state	Run mode or Sleep mode state	RTC m	mode, ode, or ode state	Deep Standby RTC mode or Deep Standby Stop mode state		Return from Deep Standby mode state
Pin sta	group	Power supply unstable	sta	supply ble	Power supply stable	sta	supply ble	sta	supply ble	Power supply stable
		-	INITX = 0	INITX = 1	INITX = 1	INIT		INIT		INITX = 1
	A := = I = =:	-	-	-	-	SPL = 0	SPL = 1	SPL = 0	SPL = 1	-
	Analog output selected	Setting disabled	Setting disabled	Setting disabled		*3	*4			
	External interrupt enabled selected	Setting disabled	Setting disabled	Setting disabled			Maintain previous state	GPIO selected Internal input fixed		GPIO selected
Υ	Resource other than above selected				Maintain previous state	Maintain previous state	Hi-Z /	at 0	Hi-Z / Internal input fixed at 0	
	GPIO selected	Hi-Z	Hi-Z / Input enabled	Hi-Z / Input enabled			Internal input fixed at 0	Output maintains previous state / Internal input fixed at 0		Maintain previous state
	Analog output selected	Setting disabled	Setting disabled	Setting disabled		*3	*4	GPIO selected		GPIO
z	Resource other than above selected				Maintain		Hi-Z /	Internal input fixed at 0	Hi-Z / Internal	selected
	GPIO selected	Hi-Z	Hi-Z / Input enabled	Hi-Z / Input enabled	Ctata	Maintain previous state	ain _{Internal} Outr		input fixed at 0	Maintain previous state

^{*1:} Oscillation is stopped at Sub Run mode, Low-speed CR Run mode, Sub Sleep mode, Low-speed CR Sleep mode, Sub Timer mode, Low-speed CR Timer mode, RTC mode, Stop mode, Deep Standby RTC mode, and Deep Standby Stop mode.

^{*2:} Oscillation is stopped at Stop mode and Deep Standby Stop mode.

^{*3:} Maintain previous state at Timer mode. GPIO selected Internal input fixed at 0 at RTC mode, Stop mode.

^{*4:} Maintain previous state at Timer mode. Hi-Z/Internal input fixed at 0 at RTC mode, Stop mode.

12. Electrical Characteristics

12.1 Absolute Maximum Ratings

Parameter	Cymphol	R	ating	Unit	Remarks
Parameter	Symbol	Min	Max	Unit	Remarks
Power supply voltage*1,*2	Vcc	Vss - 0.5	Vss + 6.5	V	
Analog power supply voltage*1,*3	AVcc	Vss - 0.5	Vss + 6.5	V	
Analog reference voltage*1,*3	AVRH	Vss - 0.5	Vss + 6.5	V	
LCD input voltage*1,*3	VV4 to VV0	Vss - 0.5	Vss + 6.5	V	
Input voltage*1	Vı	Vss - 0.5	V _{CC} + 0.5 (≤ 6.5 V)	V	
		Vss - 0.5	Vss + 6.5	V	5 V tolerant
Analog pin input voltage*1	VIA	Vss - 0.5	AVcc + 0.5 (≤ 6.5 V)	V	
Output voltage*1	Vo	Vss - 0.5	V _{CC} + 0.5 (≤ 6.5 V)	V	
L level maximum output current*4	I _{OL}	-	10	mA	
L level average output current*5	Iolav	-	4	mA	
L level total maximum output current	∑lo∟	-	100	mA	
L level total average output current*6	∑lolav	-	50	mA	
H level maximum output current*4	Іон	-	-10	mA	
H level average output current*5	Iohav	-	- 4	mA	
H level total maximum output current	∑loн	-	-100	mA	
H level total average output current*6	∑lohav	-	-50	mA	
Power consumption	P _D	-	400	mW	
Storage temperature	T _{STG}	- 55	+ 150	°C	

^{*1:} These parameters are based on the condition that Vss = AVss = 0 V.

WARNING:

 Semiconductor devices may be permanently damaged by application of stress (including, without limitation, voltage, current or temperature) in excess of absolute maximum ratings.
 Do not exceed any of these ratings.

Document Number: 002-05640 Rev *B Page 66 of 111

^{*2:} VCC must not drop below Vss - 0.5 V.

^{*3:} Be careful not to exceed V_{CC} + 0.5 V, for example, when the power is turned on.

^{*4:} The maximum output current is defined as the value of the peak current flowing through any one of the corresponding pins.

^{*5:} The average output current is defined as the average current value flowing through any one of the corresponding pins for a 100 ms period.

^{*6:} The total average output current is defined as the average current value flowing through all of corresponding pins for a 100 ms.

12.2 Recommended Operating Conditions

(Vss = AVss = 0.0V)

Par	ameter	Symbol	Conditions	Val	ue	Unit	Remarks
rai	anietei	Symbol	Conditions	Min	Max	Ollit	Remarks
Dower oupply	voltogo	\/		1.8	5.5	V	*1
Power supply	vollage	Vcc	-	2.2	5.5	V	*2
LCD input volt	age	VV4	-	2.2	Vcc	V	
Analog power	supply voltage	AVcc	-	1.8	5.5	V	$AV_{CC} = V_{CC}$
Analog referer	veo voltago	AVRH		2.7	AVcc	V	AV _{CC} ≥ 2.7 V
Analog referen	Analog reference voltage		-	AVcc	AVCC	V	AV _{CC} < 2.7 V
Smoothing car	pacitor	Cs		1	10	μF	For built-in
Smoothing cap	Dacitor	US	-	'	10	μι	Regulator *3
Operating Temperature	LQD064, LQG064, VNC064, LQH080, LQJ080, LQI100, PQH100	TA	-	- 40	+ 85	°C	

^{*1:} When LCD is not used

WARNING:

 The recommended operating conditions are required in order to ensure the normal operation of the semiconductor device. All of the device's electrical characteristics are warranted when the device is operated under these conditions.
 Any use of semiconductor devices will be under their recommended operating condition.

Operation under any conditions other than these conditions may adversely affect reliability of device and could result in device failure.

No warranty is made with respect to any use, operating conditions or combinations not represented on this data sheet. If you are considering application under any conditions other than listed herein, please contact sales representatives beforehand.

Document Number: 002-05640 Rev *B Page 67 of 111

^{*2:} When LCD is used

^{*3:} See "C Pin" in Handling Devices for the smoothing capacitor.

12.3 DC Characteristics

12.3.1 Current Rating

(V_{CC} = AV_{CC} = 1.8V to 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40°C to +85°C)

Doromotor	Cumbal	Pin		Conditions	Va	lue	Unit	Remarks
Parameter	Symbol	name		Conditions	Typ*3	Max*4	Unit	Remarks
			PLL Run mode	CPU: 20 MHz, Peripheral: 20 MHz, Flash memory 0 Wait, FRWTR.RWT = 00, FSYNDN.SD = 000 CPU: 20 MHz,	19	24	mA	*1, *5
				Peripheral: clock stopped, NOP operation	9.5	12.5	mA	*1, *5
	Icc	vcc	High-speed CR Run mode	CPU/Peripheral: 4 MHz*2 Flash memory 0 Wait FRWTR.RWT = 00 FSYNDN.SD = 000	4.5	5.5	mA	*1
Power supply current			Sub Run mode	CPU/Peripheral: 32 kHz, Flash memory 0 Wait, FRWTR.RWT = 00, FSYNDN.SD = 000	0.25	0.55	mA	*1, *6
			Low-speed CR Run mode	CPU/Peripheral: 100 kHz, Flash memory 0 Wait, FRWTR.RWT = 00, FSYNDN.SD = 000	0.3	0.95	mA	*1
			PLL Sleep mode	Peripheral: 20 MHz	8	10.5	mA	*1, *5
	Iccs		High-speed CR Sleep mode	Peripheral: 4 MHz*2	2	2.5	mA	*1
	1005		Sub Sleep mode	Peripheral: 32 kHz	0.2	0.45	mA	*1, *6
***			Low-speed CR Sleep mode	Peripheral: 100 kHz	0.25	0.65	mA	*1

^{*1:} When all ports are fixed.

Document Number: 002-05640 Rev *B Page 68 of 111

^{*2:} When setting it to 4 MHz by trimming.

^{*3:} T_A=+25°C, V_{CC}=3.3 V

^{*4:} T_A=+85°C, V_{CC}=5.5 V

^{*5:} When using the crystal oscillator of 4 MHz (Including the current consumption of the oscillation circuit)

^{*6:} When using the crystal oscillator of 32 kHz (Including the current consumption of the oscillation circuit)

Parameter	Symbol	Pin		Conditions	Va	lue	Unit	Remarks
Parameter	Syllibol	name	'	Conditions	Typ*2	Max*3	Ollit	Remarks
			Main	$T_A = + 25$ °C, When LVD is off	0.9	3.3	mA	*1, *4
	Ісст		Timer mode	$T_A = + 85$ °C, When LVD is off	1.5	3.5	mA	*1, *4
	ICCI		Sub Timer mode	$T_A = + 25$ °C, When LVD is off	7.5	60	μA	*1, *5
				T _A = + 85°C, When LVD is off	16	150	μΑ	*1, *5
	Iccr		RTC mode -	$T_A = + 25$ °C, When LVD is off	1.5	6.5	μΑ	*1, *5
Power				$T_A = + 85$ °C, When LVD is off	6	89	μΑ	*1, *5
supply current	Іссн	VCC	Stop mode	$T_A = + 25$ °C, When LVD is off	0.6	5	μΑ	*1
				$T_A = + 85$ °C, When LVD is off	4.2	87	μA	*1
	ICCRD		Deep Standby RTC mode	$T_A = + 25$ °C, When LVD is off	1.3	4.5	μA	*1, *5
	ICCRD			$T_A = + 85$ °C, When LVD is off	3	32	μΑ	*1, *5
	looup		Deep Standby Stop mode	T _A = + 25°C, When LVD is off	0.4	3	μA	*1
	Іссно			$T_A = + 85$ °C, When LVD is off	1.4	30	μA	*1

^{*1:} When all ports are fixed.

^{*2:} V_{CC}=3.3 V

^{*3:} V_{CC}=5.5 V

^{*4:} When using the crystal oscillator of 4 MHz(Including the current consumption of the oscillation circuit)

^{*5:} When using the crystal oscillator of 32 kHz(Including the current consumption of the oscillation circuit)

Low Voltage Detection Current

 $(V_{CC} = AV_{CC} = 1.8 \text{ V to } 5.5 \text{ V}, V_{SS} = AV_{SS} = 0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol Pin		Conditions	Va	lue	Unit	Remarks	
Parameter	Syllibol	name	Conditions	Тур*	Typ* Max		Remarks	
Low-voltage			For occurrence of reset or for occurrence of interrupt in normal mode operation	10	20	μΑ	When not	
detection circuit (LVD) power supply current	ICCLVD VC	VCC	For occurrence of reset and for occurrence of interrupt in normal mode operation	14	30	μΑ	detected	
			For occurrence of interrupt in low-power mode operation	0.3 2		μA	When not detected	

^{*:} When Vcc=3.3 V

Flash Memory Current

 $(V_{CC} = 1.8 \text{ V to } 5.5 \text{ V}, V_{SS} = 0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin	Conditions	Va	lue	Unit	Remarks	
Farailletei	Gyillboi	name	Conditions	Тур	Max	Oiiit	Remarks	
Flash memory write/erase current	Iccflash	VCC	At Write/Erase	10.8	11.9	mA		

A/D Converter Current

 $(V_{CC} = AV_{CC} = 1.8 \text{ V to } 5.5 \text{ V}, V_{SS} = AV_{SS} = 0 \text{ V}, T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C})$

Parameter	Symbol	Pin	Conditions	Value		Unit	Remarks
raiailletei	Symbol	name	Conditions	Тур	Max	Ollic	Keiliaiks
Power supply current	I _{CCAD}	AVCC	At 1unit operation	1.4	2.5	mA	
Carrent			At stop	0.1	0.35	μA	
Reference power supply current	Iccavrh AVRH		At 1unit operation AVRH=5.5 V	0.5	1.5	mA	
			At stop	0.1	0.3	μA	

D/A Converter Current

 $(V_{CC} = AV_{CC} = 1.8 \text{ V to } 5.5 \text{ V}, V_{SS} = AV_{SS} = 0 \text{ V}, T_A = -40 ^{\circ}\text{C to } + 85 ^{\circ}\text{C})$

Parameter	Symbol	Pin	Conditions	Va	alue	Unit	Remarks	
i arameter	Syllibol	name	Conditions	Тур	Max	Ollic	Remarks	
Power supply current	loo		At D/A 1ch. operation AVcc=3.3 V	314	440	μΑ	*1, *2	
	IDDA	AVCC	At D/A 1ch. operation AVcc=5.0 V	476	670	μА	*1, *2	
	I _{DSA}		At D/A stop	-	1.0	μΑ	*1	

^{*1:} No-load

Document Number: 002-05640 Rev *B Page 70 of 111

^{*2:} Generates the max current by the CODE about 0x200

12.3.2 Pin Characteristics

(Vcc = AVcc = 1.8V to 5.5V, Vss = AVss = 0V, T_A = - 40°C to + 85°C)

			(VCC = AVCC = 1.		Value	<u> </u>		,
Parameter	Symbol	Pin name	Conditions	Min	Тур	Max	Unit	Remarks
H level input		MD0, MD1 PE0, PE2, PE3, P46, P47, P3A, P3B, P3C, P3D, P3E, P3F, INITX	-	Vcc× 0.8	-	Vcc+ 0.3	V	
voltage (hysteresis input)	V _{IHS}	P0A, P0B, P0C, P4C, P60, P80, P81, P82	-	Vcc× 0.7	-	Vss+ 5.5	V	5V tolerant
		CMOS hysteresis input pins other than the above	-	Vcc× 0.7	-	Vcc+ 0.3	V	
L level input voltage	VILS	MD0, MD1 PE0, PE2, PE3, P46, P47, INITX	-	V _{SS} - 0.3	-	V _{cc} × 0.2	V	
(hysteresis input)		CMOS hysteresis input pins other than the above	-	Vss- 0.3	-	Vcc× 0.3	V	
H level output voltage	Vон	Pxx	$V_{CC} \ge 4.5 \text{ V},$ $I_{OH} = -4 \text{ mA}$ $V_{CC} < 4.5 \text{ V},$ $I_{OH} = -1 \text{ mA}$	Vcc- 0.5	-	Vcc	V	
L level output voltage	VoL	Pxx	$V_{CC} \ge 4.5 \text{ V},$ $I_{OL} = 4 \text{ mA}$ $V_{CC} < 4.5 \text{ V},$ $I_{OL} = 2 \text{ mA}$	- Vss	-	0.4	V	
		-	-	- 5	-	+ 5		
Input leak current	lı∟	CEC0, CEC1	$V_{CC} = AV_{CC} =$ $AVRH = V_{SS}$ $= AV_{SS} = 0.0$ V	-	-	+ 1.8	μΑ	
Pull-up resistor value	D _{DU}	Dull us sis	V _{CC} ≥ 4.5 V	25	50	100	kΩ	
	R _{PU}	Pull-up pin	Vcc < 4.5 V	40	100	400	K77	
Input capacitance	Cin	Other than VCC, VSS, AVCC, AVSS, AVRH	-	-	5	15	pF	

12.3.3 LCD Characteristics

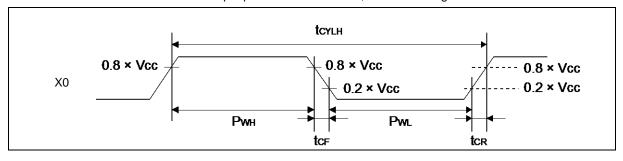
 $(V_{CC} = 2.2V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter Symbol Pin			Conditions	Value				Remarks	
rarameter	Syllibol	name	Conditions	Min	Тур	Max	Unit	Remarks	
VV0 to VV3	V _{VV0}	VV0	When using	0	-	V _{VV4} × 5%			
Output voltage	V _{VV1}	VV1	internal dividing	V _{VV4} × 1/4 -10%	-	V _{VV4} × 1/4 +10%	V		
(1/4 bias)	V _{VV2}	VV2	register	V _{VV4} × 1/2 -10%	-	V _{VV4} × 1/2 +10%			
	V_{VV3}	VV3		V _{VV4} × 3/4 -10%	-	V _{VV4} × 3/4 +10%			
VV0 to VV3	V _{VV0}	VV0	When using	0	-	V _{VV4} × 5%			
Output voltage	V _{VV1}	VV1	internal dividing	V _{VV4} × 1/3 -10%	-	V _{VV4} × 1/3 +10%	V		
(1/3 bias)	V _{VV2}	VV2	register	V _{VV4} × 2/3 -10%	-	V _{VV4} × 2/3 +10%	1		
,	V _{VV3}	VV3	J	V _{VV4} × 2/3 -10%	-	V _{VV4} × 2/3 +10%			
VV0 to VV3	V _{VV0}	VV0	When using	0	-	V _{VV4} × 5%			
Output voltage	V _{VV1}	VV1	internal dividing	V _{VV4} × 1/2 -10%	-	V _{VV4} × 1/2 +10%	V		
(1/2 bias)	V _{VV2}	VV2	register	V _{VV4} × 1/2 -10%	-	V _{VV4} × 1/2 +10%	1		
	V _{VV3}	VV3	1	V _{VV4} × 1/2 -10%	-	V _{VV4} × 1/2 +10%			
VV4 Active current	I _{R100K}	VV4	When using 100 kΩ internal dividing register	-	15	35	μА		
(1/4 bias)	I _{R10K}	VV4	When using 10 kΩ internal dividing register	-	130	250	μΑ		
VV4 Active current	I _{R100K}	VV4	When using 100 kΩ internal dividing register	-	18	45	μА		
(1/3 bias)	I _{R10K}	VV4	When using 10 kΩ internal dividing register	-	170	350	μΑ		
VV4 Active current	I _{R100K}	VV4	When using 100 kΩ internal dividing register	-	27	75	μΑ		
(1/2 bias)	I _{R10K}	VV4	When using 10 kΩ internal dividing register	-	250	500	μΑ		
VV4 Static current	loff_vv4	VV4	When LCD stops	-	-	0.5	μΑ		
VV0 Output Voltage in using external resistor	Vvvoe	VV0	I _{OL} =1mA	-	-	1.0	V		

Document Number: 002-05640 Rev *B Page 72 of 111

Page 73 of 111

12.4 AC Characteristics

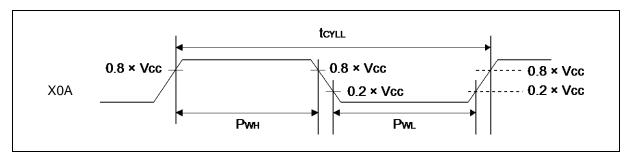

12.4.1 Main Clock Input Characteristics

 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

Parameter	Symbol	Pin	Conditions	V	alue	Unit	Remarks
Farailletei	Syllibol	name	Conditions	Min	Max	Oilit	Remarks
			V _{CC} ≥ 2.0 V	4	20	MHz	When crystal oscillator is
Input frequency	f _{CH}		V _{CC} < 2.0 V	4	4	MHz	connected
input frequency	ICH		V _{CC} ≥ 4.5 V	4	20	MHz	When using external
			Vcc < 4.5 V	4	16	MHz	clock
Input alook avalo	to	X0,	V _{CC} ≥ 4.5 V	50	250	ns	When using external
Input clock cycle	tcylh	X1	V _{CC} < 4.5 V	62.5	250	ns	clock
Input clock pulse width	-		Pwh/tcylh, Pwl/tcylh	45	55	%	When using external clock
Input clock rising time and falling time	tcf, tcr		-	-	5	ns	When using external clock
	fсм	-	-	-	20	MHz	Master clock
	fcc	-	-	-	20	MHz	Base clock (HCLK/FCLK)
	f _{CP0}	-	-	-	20	MHz	APB0 bus clock*2
	f _{CP1}	-	-	-	20	MHz	APB1 bus clock*2
	f _{CP2}	-		-	20	MHz	APB2 bus clock*2
	tcycc	-	-	50	-	ns	Base clock (HCLK/FCLK)
Internal operating clock*1 cycle time	t _{CYCP0}	-	-	50	-	ns	APB0 bus clock*2
	t _{CYCP1}	-	-	50	-	ns	APB1 bus clock*2
0,000 0000	t _{CYCP2}	-	-	50	-	ns	APB2 bus clock*2

^{*1:} For more information about each internal operating clock, see Chapter 2-1: Clock in FM3 Family Peripheral Manual.

^{*2:} For about each APB bus which each peripheral is connected to, see Block Diagram in this data sheet.



12.4.2 Sub Clock Input Characteristics

(Vcc =	1 8V to	5.5V Vee	= 0V T _^ =	- 40°C to +	85°C)

Parameter	Symbol	Pin	Conditions		Value		Unit	Remarks
rarameter	Syllibol	name	Conditions	Min	Тур	Max	Oilit	Remarks
Input fraguancy	for		-	-	32.768	-	kHz	When crystal oscillator is connected
Input frequency fcL	ICL	X0A,	-	32	-	100	kHz	When using external clock
Input clock cycle	tcyll	X1A	-	10	-	31.25	μs	When using external clock
Input clock pulse width	-		Pwh/tcyll, Pwl/tcyll	45	-	55	%	When using external clock

12.4.3 Built-in CR Oscillation Characteristics

Built-in High-speed CR

$$(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$$

Parameter	Symbol	Conditions			Value		Unit	Remarks	
Parameter	Syllibol		Conditions		Тур	Max	Onit	Remarks	
			T _A = + 25°C	3.92	4	4.08		Mhon trimmina*1	
		V _{CC} ≥ 2.2 V	$T_A = -40^{\circ}C \text{ to } + 85^{\circ}C$	3.8	4	4.2	MHz	When trimming*1	
		2.2 V	$T_A = -40^{\circ}C \text{ to } + 85^{\circ}C$	2.3	-	7.03		When not trimming	
Clock frequency	fcrh		T _A = + 25°C	3.4	4	4.6		\A/I (
		Vcc < 2.2 V	$T_A = -40^{\circ}C \text{ to } + 85^{\circ}C$	3.16	4	4.84	MHz	When trimming*1	
		Z.Z V	$T_A = -40^{\circ}C \text{ to } + 85^{\circ}C$	2.3	-	7.03		When not trimming	
Frequency stabilization time	tcrwt	-		-	-	10	μs	*2	

^{*1:} In the case of using the values in CR trimming area of Flash memory at shipment for frequency trimming.

Built-in Low-speed CR

$$(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$$

Parameter	Symbol	Conditions	Value			Unit	Remarks
	Syllibol	Conditions	Min	Тур	Max	Ollic	Remarks
Clock frequency	fcrl	-	50	100	150	kHz	

Document Number: 002-05640 Rev *B Page 74 of 111

^{*2:} This is the time to stabilize the frequency of High-speed CR clock after setting trimming value. This period is able to use High-speed CR clock as source clock.

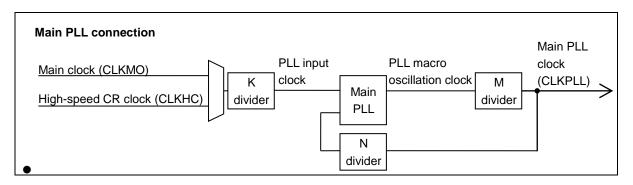
12.4.4 Operating Conditions of Main PLL (In the case of using main clock for input of PLL)

 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Symbol		Value		Unit	Remarks
Farameter	Syllibol	Min	Тур	Max	Onit	Remarks
PLL oscillation stabilization wait time*1 (LOCK UP time)	tLOCK	200	-	-	μs	
PLL input clock frequency	f _{PLLI}	4	-	20	MHz	
PLL multiplication rate	-	1	-	5	multiplier	
PLL macro oscillation clock frequency	f _{PLLO}	10	-	20	MHz	
Main PLL clock frequency*2	fclkpll	-	-	20	MHz	

^{*1:} Time from when the PLL starts operating until the oscillation stabilizes.

12.4.5 Operating Conditions of Main PLL (In the case of using the built-in High-speed CR for the input clock of the Main PLL)


$$(V_{CC} = 2.2V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$$

Parameter	Symbol		Value		Unit	Remarks
Farameter	Symbol	Min	Тур	Max	Onit	Remarks
PLL oscillation stabilization wait time*1 (LOCK UP time)	tLOCK	200	-	-	μs	
PLL input clock frequency	f _{PLLI}	3.8	4	4.2	MHz	
PLL multiplication rate	-	3	-	4	multiplier	
PLL macro oscillation clock frequency	f _{PLLO}	11.4	-	16.8	MHz	
Main PLL clock frequency*2	fclkpll	-	-	16.8	MHz	

^{*1:} Time from when the PLL starts operating until the oscillation stabilizes.

Note:

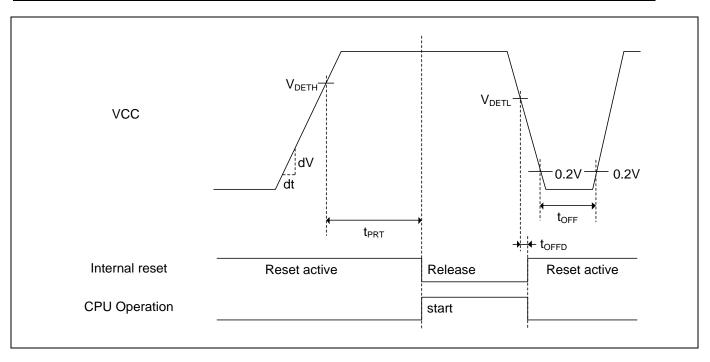
Make sure to input to the Main PLL source clock, the High-speed CR clock (CLKHC) that the frequency has been trimmed.
 When setting PLL multiple rate, please take the accuracy of the built-in High-speed CR clock into account and prevent the master clock from exceeding the maximum frequency.

Document Number: 002-05640 Rev *B Page 75 of 111

^{*2:} For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM3 Family Peripheral Manual.

^{*2:} For more information about Main PLL clock (CLKPLL), see Chapter 2-1: Clock in FM3 Family Peripheral Manual.

12.4.6 Reset Input Characteristics


 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

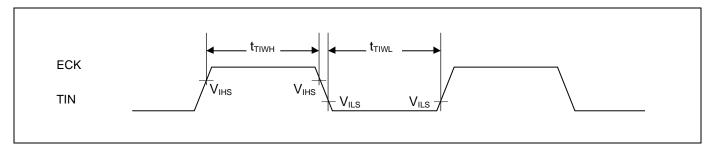
Parameter	Symbol	Symbol Pin		Val	ue	Unit	Remarks
T didillotoi	Cy	name	Conditions	Min	Max	0	Komarko
Reset input time t _{INITX}			500	-	ns		
	t _{INITX} INI	INITX	-	1.5	-	ms	When RTC mode or Stop mode
				1.5	-	ms	When Deep Standby mode

12.4.7 Power-on Reset Timing

$$(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$$

Parameter	Symbol	Pin		Value		Unit	Remarks
raiailletei	Symbol	name	Min	Тур	Max	Offic	Remarks
Power supply rising time	dV/dt		0.1	-	-	V/ms	
Power supply shut down time	toff		1	-	-	ms	
Reset release voltage	VDETH	.,,,,,	1.44	1.60	1.76	V	When voltage rises
Reset detection voltage	V _{DETL}	VCC	1.39	1.55	1.71	٧	When voltage drops
Time until releasing Power-on reset	t _{PRT}		0.46	-	11.4	ms	dV/dt ≥ 0.1 mV/μs
Reset detection delay time	t _{OFFD}		-	-	0.4	ms	dV/dt ≥ -0.04 mV/μs

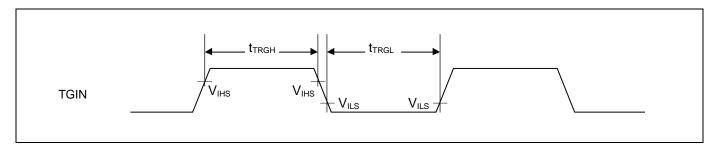
Document Number: 002-05640 Rev *B Page 76 of 111



12.4.8 Base Timer Input Timing

Timer input timing

$$(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$$


Parameter	Symbol Pin name		Conditions	Val	ue	Unit	Remarks	
Parameter	Syllibol	r III IIailie	Conditions	Min	Max	Oilit	Kelliaiks	
Input pulse width	tтіwн, tтіwL	TIOAn/TIOBn (when using as ECK, TIN)	-	2tcycp	1	ns		

Trigger input timing

$$(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$$

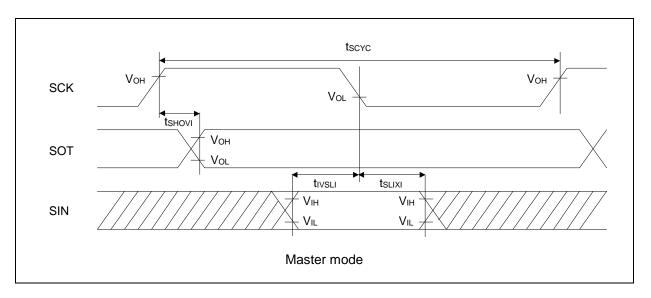
Parameter	Symbol	Pin name	Conditions	Val	ue	Unit	Remarks	
Parameter	Syllibol	riii iiaiiie	Conditions	Min	Max	Ullit	Remarks	
Input pulse width	t _{TRGH} ,	TIOAn/TIOBn (when using as TGIN)	-	2tcycp	-	ns		

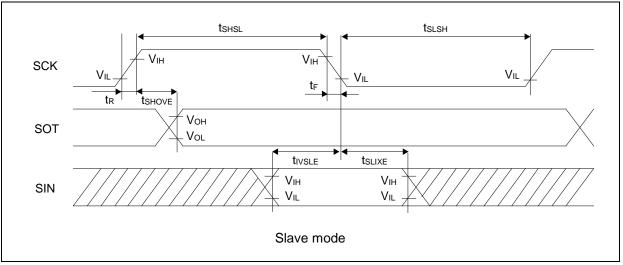
Note:

tcycp indicates the APB bus clock cycle time.
 About the APB bus number which the Base Timer is connected to, see Block Diagram in this data sheet.

Document Number: 002-05640 Rev *B Page 77 of 111

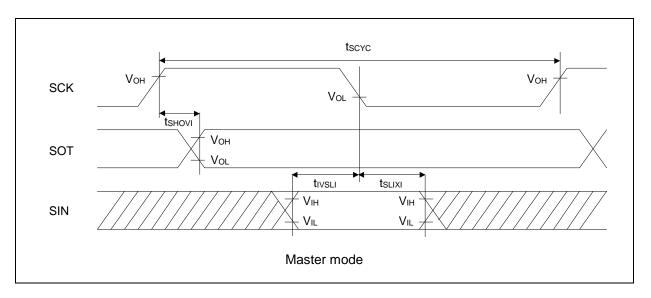
12.4.9 CSIO/UART Timing

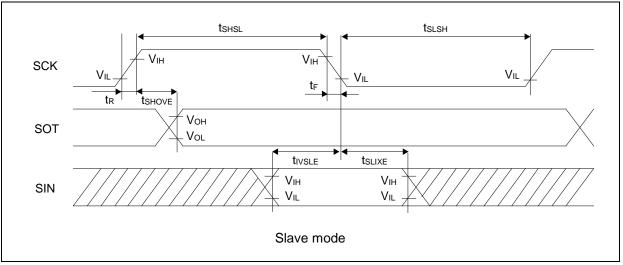

CSIO (SPI = 0, SCINV = 0)


 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Symbol	Pin	Conditions	V _{CC} < 2	2.7 V	2.7 V _{CC} <	V ≦ 4.5 V	V _{cc} ≥	4.5 V	Unit
	_	name		Min	Max	Min	Max	Min	Max	
Baud rate	-	-	-	-	5	-	5	-	5	Mbps
Serial clock cycle time	tscyc	SCKx	Master	4tcycp	-	4tcycp	-	4tcycp	-	ns
$\begin{array}{c} SCK \downarrow \to SOT \\ delay\ time \end{array}$	t _{SLOVI}	SCKx , SOTx		-40	+40	-30	+30	-20	+20	ns
SIN → SCK ↑ setup time	t _{IVSHI}	SCKx , SINx	mode	75	-	50	-	30	-	ns
$\begin{array}{c} SCK \uparrow \to SIN \\ hold\ time \end{array}$	tsнıxı	SCKx , SINx		0	-	0	-	0	-	ns
Serial clock L pulse width	tslsh	SCKx		2tcycp -	-	2tcycp -	-	2tcycp -	-	ns
Serial clock H pulse width	tshsl	SCKx		tcycp + 10	-	tcycp + 10	-	tcycp + 10	-	ns
SCK ↓ → SOT delay time	tslove	SCKx , SOTx		-	75	-	50	-	30	ns
SIN → SCK ↑ setup time	tivshe	SCKx , SINx	Slave mode	10	-	10	-	10	-	ns
$\begin{array}{c} SCK \uparrow \to SIN \\ hold\ time \end{array}$	tshixe	SCKx , SINx		20	-	20	-	20	-	ns
SCK falling time	t _F	SCKx		-	5	-	5	-	5	ns
SCK rising time	t_R	SCKx		-	5	-	5	-	5	ns

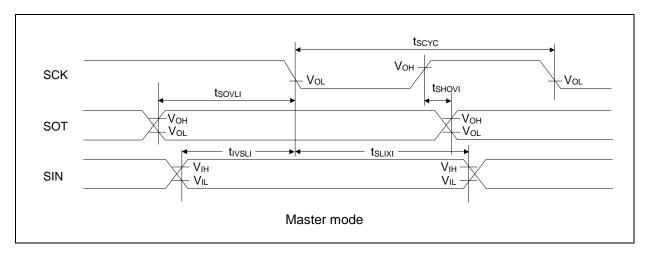
- The above characteristics apply to clock synchronous mode.
- tcycp indicates the APB bus clock cycle time.
 About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet.
- These characteristics only guarantee the same relocate port number.
 For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance $C_L = 50 \text{ pF}$.

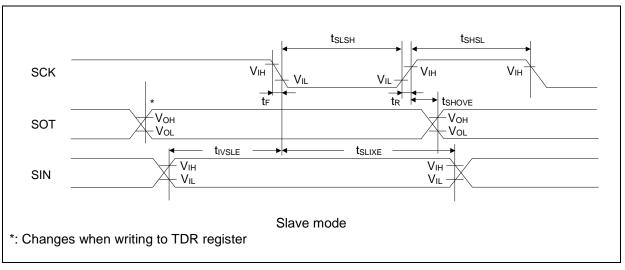

CSIO (SPI = 0, SCINV = 1)


 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

Parameter	Symbo	Pin	Conditions	V _{CC} < 2	2.7 V	2.7 V V _{CC} < 4	/ ≦ 4.5 V	V _{cc} ≥ 4	1.5 V	Unit
	ı	name		Min	Max	Min	Max	Min	Max	
Baud rate	-	-	-	-	5	-	5	-	5	Mbps
Serial clock cycle time	tscyc	SCKx		4tcycp	-	4tcycp	-	4tcycp	-	ns
SCK ↑ → SOT		SCKx								
delay time	t _{SHOVI}	, SOTx	Master	-40	+40	-30	+30	-20	+20	ns
SIN → SCK ↓		SCKx	mode							
setup time	t _{IVSLI}	, SINx	mode	75	-	50	-	30	-	ns
$SCK \downarrow \rightarrow SIN$		SCKx		_		_		_		
hold time	tslixi	, SINx		0	-	0	-	0	-	ns
Serial clock L pulse width	tslsh	SCKx		2tcycp - 10	-	2tcycp - 10	-	2tcycp - 10	-	ns
Serial clock H pulse width	tshsl	SCKx		tcycp + 10	-	tcycp + 10	-	tcycp +	-	ns
SCK ↑ → SOT		SCKx								
delay time	tshove	, SOTx		-	75	-	50	-	30	ns
$SIN \rightarrow SCK \downarrow$		SCKx	Slave mode							
setup time	tivsle	, CINIV		10	-	10	-	10	-	ns
		SINx SCKx	-							
SCK ↓ → SIN	tslixe	SCKX		20	_	20	_	20	l _	ns
hold time	*OLIAL	, SINx						-0		
SCK falling time	tF	SCKx	1	-	5	-	5	-	5	ns
SCK rising time	t _R	SCKx		-	5	-	5	-	5	ns

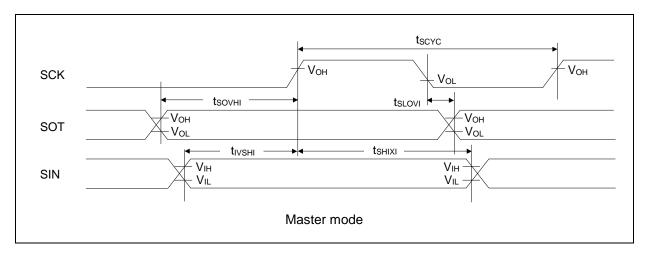
- The above characteristics apply to clock synchronous mode.
- tcycp indicates the APB bus clock cycle time.
 About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet.
- These characteristics only guarantee the same relocate port number.
 For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance $C_L = 50 \text{ pF}$.

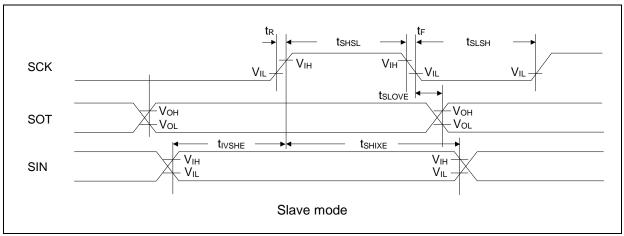

CSIO (SPI = 1, SCINV = 0)


 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

Parameter	Symbol	Pin	Conditions	V _{CC} < 2	2.7 V	2.7 V _{CC} <		V _{cc} ≥	4.5 V	Unit		
	J	name		Min	Max	Min	Max	Min	Max			
Baud rate	-	-	-	-	5	-	5	-	5	Mbps		
Serial clock cycle time	tscyc	SCKx		4tcycp	-	4tcycp	-	4tcycp	-	ns		
SCK ↑ → SOT delay time	t _{SHOVI}	SCKx , SOTx		-40	+40	-30	+30	-20	+20	ns		
$\begin{array}{c} SIN \to SCK \downarrow \\ setup\ time \end{array}$	t _{IVSLI}	SCKx , SINx	Master mode	75	-	50	-	30	-	ns		
$\begin{array}{c} SCK \downarrow \to SIN \\ hold\ time \end{array}$	tslixi	SCKx , SINx				0	-	0	-	0	-	ns
$\begin{array}{c} SOT \to SCK \downarrow \\ delay\ time \end{array}$	tsovLi	SCKx , SOTx		2tcycp - 30	-	2tcycp - 30	-	2t _{CYCP} - 30	-	ns		
Serial clock L pulse width	tslsh	SCKx		2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	ns		
Serial clock H pulse width	tshsl	SCKx		tcycp + 10	-	tcycp + 10	-	tcycp +	-	ns		
SCK ↑ → SOT delay time	tshove	SCKx , SOTx	Slave mode	-	75	-	50	-	30	ns		
$\begin{array}{c} SIN \to SCK \downarrow \\ setup\ time \end{array}$	tivsle	SCKx , SINx		10	-	10	-	10	-	ns		
$\begin{array}{c} SCK \downarrow \to SIN \\ hold\ time \end{array}$	tslixe	SCKx , SINx		20	-	20	-	20	-	ns		
SCK falling time	t _F	SCKx		-	5	-	5	-	5	ns		
SCK rising time	t _R	SCKx		-	5	-	5	-	5	ns		

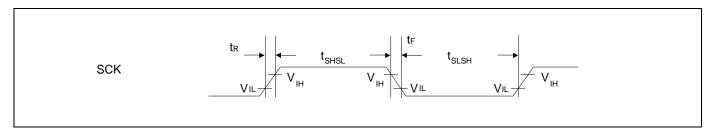
- The above characteristics apply to clock synchronous mode.
- t_{CYCP} indicates the APB bus clock cycle time.
 About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet.
- These characteristics only guarantee the same relocate port number.
 For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance $C_L = 50 pF$.


CSIO (SPI = 1, SCINV = 1)


 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

Parameter	Symbol	Pin	Conditions	V _{CC} < 2	2.7 V	2.7 V V _{CC} < 4		V _{cc} ≥	4.5 V	Unit
		name		Min	Max	Min	Max	Min	Max	
Baud rate	-	-	-	-	5	-	5	-	5	Mbps
Serial clock cycle time	tscyc	SCKx		4tcycp	-	4tcycp	-	4tcycp	-	ns
SCK ↓ → SOT delay time	t _{SLOVI}	SCKx , SOTx		-40	+40	-30	+30	-20	+20	ns
SIN → SCK ↑ setup time	tıvsнı	SCKx , SINx	Master mode	75	-	50	-	30	-	ns
$\begin{array}{c} SCK \uparrow \to SIN \\ hold\ time \end{array}$	tsнıхı	SCKx , SINx		0	-	0	-	0	-	ns
SOT → SCK ↑ delay time	tsovні	SCKx , SOTx		2t _{CYCP} - 30	-	2t _{CYCP} - 30	-	2t _{CYCP} - 30	-	ns
Serial clock L pulse width	tslsh	SCKx		2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	2t _{CYCP} - 10	-	ns
Serial clock H pulse width	tshsl	SCKx		tcycp + 10	-	tcycp + 10	-	tcycp +	-	ns
SCK ↓ → SOT delay time	tslove	SCKx , SOTx		-	75	-	50	-	30	ns
SIN → SCK ↑ setup time	t _{IVSHE}	SCKx , SINx	Slave mode	10	-	10	-	10	-	ns
$\begin{array}{c} SCK \uparrow \to SIN \\ hold\ time \end{array}$	t _{SHIXE}	SCKx , SINx		20	-	20	-	20	-	ns
SCK falling time	t _F	SCKx		-	5	-	5	-	5	ns
SCK rising time	t _R	SCKx		-	5	-	5	-	5	ns

- The above characteristics apply to clock synchronous mode.
- tcycp indicates the APB bus clock cycle time.
 About the APB bus number which Multi-function serial is connected to, see Block Diagram in this data sheet.
- These characteristics only guarantee the same relocate port number.
 For example, the combination of SCKx_0 and SOTx_1 is not guaranteed.
- When the external load capacitance $C_L = 50 \text{ pF}$.

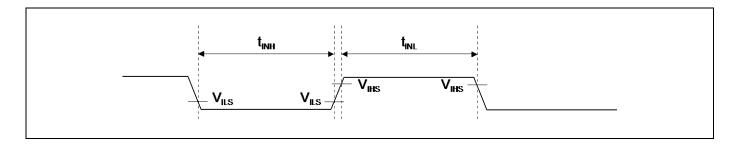


UART external clock input (EXT = 1)

 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Symbol	Conditions	Va	Unit	Remarks		
Farameter	Symbol	Conditions	Min	Max	Ollit	Nemarks	
Serial clock L pulse width	tslsh		tcycp + 10	-	ns		
Serial clock H pulse width	tshsl	C _L = 50 pF	tcycp + 10	-	ns		
SCK falling time	t⊧	CL = 50 pr	-	5	ns		
SCK rising time	t _R		-	5	ns		

12.4.10 External Input Timing


 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

	Symbo		Condition	Value		Uni															
Parameter	I	Pin name	S	Min	Ma x	t	Remarks														
		ADTG					A/D converter trigger input														
	tinh, tinl	FRCKx - 2tcycp*1	2tcycp*1	-	ns	Free-run timer input clock															
			ICxx				Input capture														
Input pulse width													l . '	1	1	DTTIxX	-	2tcycp*1	-	ns	Waveform generator
mpat paloo watii															IGTRG	-	2tcycp*1	-	ns	PPG IGBT mode	
																				INTxx, NMIX	*2
		INIVIIA	*3	500	-	ns	NMI														
		WKUPx	*4	500	-	ns	Deep standby wake up														

^{*1:} tcycp indicates the APB bus clock cycle time.

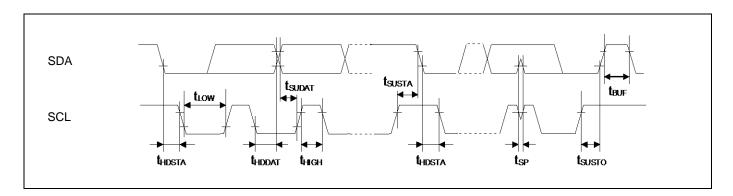
About the APB bus number which the A/D converter, Multi-function Timer, PPG, External interrupt, Deep Standby mode Controller are connected to, see Block Diagram in this data sheet.

- *2: When in Run mode, in Sleep mode.
- *3: When in Timer mode, in RTC mode, in Stop mode.
- *4: When in Deep Standby RTC mode, in Deep Standby Stop mode.

Document Number: 002-05640 Rev *B Page 86 of 111

12.4.11 PC Timing

 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$


Parameter	Symb	Condition	Standard	-mode	Fast-m	node	Un	Remarks
Farameter	ol	S	Min	Max	Min	Max	it	Remarks
SCL clock frequency	f _{SCL}		0	100	0	400	kH z	
(Repeated) START condition hold time SDA $\downarrow \rightarrow$ SCL \downarrow	t _{HDSTA}		4.0	-	0.6	-	μs	
SCL clock L width	tLOW		4.7	-	1.3	-	μs	
SCL clock H width	thigh		4.0	-	0.6	-	μs	
(Repeated) START condition setup time SCL↑→ SDA↓	tsusta	C _L = 50 pF, R =	4.7	-	0.6	-	μs	
Data hold time $SCL \downarrow \rightarrow SDA \downarrow \uparrow$	t _{HDDAT}	(V _P /I _{OL})* ¹	0	3.45*	0	0.9* 3	μs	
Data setup time SDA $\downarrow \uparrow \rightarrow$ SCL \uparrow	tsudat		250	-	100	-	ns	
STOP condition setup time $SCL \uparrow \rightarrow SDA \uparrow$	tsusto		4.0	-	0.6	-	μs	
Bus free time between STOP condition and START condition	t _{BUF}		4.7	-	1.3	-	μs	
Noise filter	tsp	-	2 tcycp*4	-	2 t _{CYCP} *4	-	ns	

^{*1:} R and C_L represent the pull-up resistor and load capacitance of the SCL and SDA lines, respectively. V_P indicates the power supply voltage of the pull-up resistor and I_{OL} indicates V_{OL} guaranteed current.

About the APB bus number which I²C is connected to, see Block Diagram in this data sheet.

To use Standard-mode, set the APB bus clock at 2 MHz or more.

To use Fast-mode, set the APB bus clock at 8 MHz or more.

^{*2:} The maximum thddat must satisfy that it does not extend at least L period (tLow) of device's SCL signal.

^{*3:} A Fast-mode I²C bus device can be used on a Standard-mode I²C bus system as long as the device satisfies the requirement of t_{SUDAT} ≥ 250 ns.

^{*4:} tcycp is the APB bus clock cycle time.

12.4.12 JTAG Timing

 $(V_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Symbol	Pin name	Conditions	Va	lue	Unit	Remarks
raiailletei	Syllibol	Fili lialile	Conditions	Min	Max	Ollic	i\ciliai k5
TMS,TDI setup	t	TCK,	V _{CC} ≥ 4.5 V	15		ns	
time	t _{JTAGS}	TMS, TDI	Vcc < 4.5 V	15	_	115	
TMS,TDI hold	t _{JTAGH}	TCK,	V _{CC} ≥ 4.5 V	15	_	ns	
time	JIAGH	TMS, TDI	Vcc < 4.5 V	13		113	
		TCK	V _{CC} ≥ 4.5 V	-	30		
TDO delay time t _{JTAGD}	TCK, TDO	2.7 V ≤ V _{CC} < 4.5 V	-	45	ns		
			Vcc < 2.7 V	-	60		

Note:

- When the external load capacitance $C_L = 50 \text{ pF}$.

12.5 12-bit A/D Converter

12.5.1 Electrical Characteristics for the A/D Converter

 $(V_{CC} = AV_{CC} = 1.8V \text{ to } 5.5V, V_{SS} = AV_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter	Symbol	Pin		Value		Unit	Remarks
	Cyllibol	name	Min	Тур	Max		Kemarks
Resolution	-	-	-	-	12	bit	
Integral Nonlinearity	INL	_	-	± 2.5	± 3.0	LSB	AV _{CC} ≥ 2.7 V
integral recrimitedity	1142		-	± 3.5	± 4.0	LSB	AVcc < 2.7 V
Differential Nonlinearity	DNL	_	-	± 1.8	± 1.9	LSB	AV _{CC} ≥ 2.7 V
·			-	± 2.7	± 2.9	LSB	AVcc < 2.7 V
Zero transition voltage	V_{ZT}	ANxx	-	±9	± 20	mV	
Full-scale transition voltage	V _{FST}	ANxx	-	AVRH ± 9	AVRH ± 20	mV	
Conversion time*1			1.0				AV _{CC} ≥ 2.7 V
Conversion time	-	-	4.0	_	_	μs	AVcc < 2.7 V
Sampling time*2	t s	_	0.3		10	110	AV _{CC} ≥ 2.7 V
Sampling time	เร	-	1.2	_	10	μs	$AV_{CC} < 2.7 V$
Common alask avala*3			50		4000		AV _{CC} ≥ 2.7 V
Compare clock cycle*3	tcck	-	200	-	1000	ns	AVcc < 2.7 V
Period of operation enable state transitions	t stt	-	-	-	1	μs	
Analog input capacity	Cain	-	-	-	15	pF	
					0.9		AV _{CC} ≥ 4.5 V
Analog input resistor	R _{AIN}	-	-	-	1.6	kΩ	2.7 V ≤ AV _{CC} < 4.5 V
					4.0		AVcc < 2.7 V
Interchannel disparity	-	•	-	-	4	LSB	
Analog port input leak current	-	ANxx	-	-	0.3	μΑ	
Analog input voltage	-	ANxx	AVss	-	AVRH	V	
Reference voltage		AVRH	2.7		AVcc	V	AV _{CC} ≥ 2.7 V
*A. The accuration time is the	_	AVKII	AVcc	-	AVCC	V	AVcc < 2.7 V

^{*1:} The conversion time is the value of sampling time (ts) + compare time (tc).

The condition of the minimum conversion time is the following.

AV_{CC} \geq 2.7 V, HCLK=20 MHz sampling time: 0.3 μ s, compare time: 0.7 μ s sampling time: 1.2 μ s, compare time: 2.8 μ s

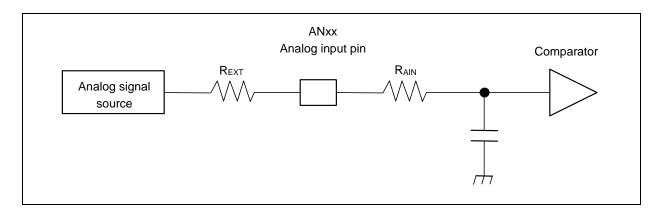
Ensure that it satisfies the value of the sampling time (ts) and compare clock cycle (tcck).

For setting*4 of the sampling time and compare clock cycle, see Chapter 1-1: A/D Converter in FM3 Family Peripheral Manual Analog Macro Part.

The register settings of the A/D Converter are reflected in the operation according to the APB bus clock timing.

For the number of the APB bus to which the A/D Converter is connected, see Block Diagram.

The Base clock (HCLK) is used to generate the sampling time and the compare clock cycle.


*2: A necessary sampling time changes by external impedance.

Ensure to set the sampling time to satisfy (Equation 1).

*3: The compare time (t_C) is the value of (Equation 2).

CAIN

(Equation 1) $t_S \ge (R_{AIN} + R_{EXT}) \times C_{AIN} \times 9$

ts: Sampling time

R_{AIN}: Input resistor of A/D = $0.9 \text{ k}\Omega$ at $4.5 \text{ V} \le \text{AV}_{CC} \le 5.5 \text{ V}$

Input resistor of A/D = 1.6 k Ω at 2.7 V \leq AV_{CC} < 4.5 V Input resistor of A/D = 4.0 k Ω at 1.8 V \leq AV_{CC} < 2.7 V

C_{AIN}: Input capacity of A/D = 15 pF at 1.8 V \leq AV_{CC} \leq 5.5 V

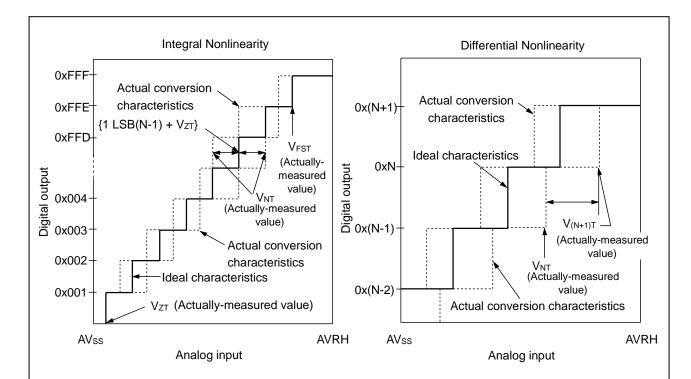
REXT: Output impedance of external circuit

(Equation 2) $t_C = t_{CCK} \times 14$

t_C: Compare time

tcck: Compare clock cycle

Definition of 12-bit A/D Converter Terms


Resolution: Analog variation that is recognized by an A/D converter.

and the full-scale transition point (0b111111111110←→0b1111111111) from the actual conversion

characteristics.

Differential Nonlinearity: Deviation from the ideal value of the input voltage that is required to change the output code by 1

LSB.

Integral Nonlinearity of digital output N =
$$\frac{V_{NT} - \{1LSB \times (N-1) + V_{ZT}\}}{1LSB}$$
 [LSB]

Differential Nonlinearity of digital output N =
$$\frac{V_{(N+1)T} - V_{NT}}{1LSB}$$
 - 1 [LSB]

$$1LSB = \frac{V_{FST} - V_{ZT}}{4094}$$

N: A/D converter digital output value.

 V_{ZT} : Voltage at which the digital output changes from 0x000 to 0x001. V_{FST}: Voltage at which the digital output changes from 0xFFE to 0xFFF. V_{NT}: Voltage at which the digital output changes from 0x(N - 1) to 0xN.

12.6 10-bit D/A Converter

Electrical Characteristics for the D/A Converter

(Vcc = AVcc = 1.8V to 5.5V, Vss = AVss = 0V, T_A = - 40°C to + 85°C)

Parameter	Cymhol	Din name		Value		Unit	Remarks
Parameter	Symbol	Pin name	Min	Тур	Max	Unit	Remarks
Resolution	-		-	-	10	bit	
Conversion time	t _{C20}		0.37	0.53	0.69	μs	Load 20 pF
Conversion time	tc100		1.87	2.67	3.47	μs	Load 100 pF
Integral Nonlinearity	INL		-4.0	-	+4.0	LSB	*
Differential Nonlinearity	DNL		-0.9	-	+0.9	LSB	*
Output Valtage offset	Voff	DAx	-	-	10.0	mV	Code is 0x000
Output Voltage offset	VOFF		-50.0	-	+5.5	mV	Code is 0x3FF
Analog output	D-		2.45	3.50	4.55	kΩ	D/A operation
impedance	Ro		5.0	9.0	-	ΜΩ	D/A stop
Output undefined period	t _R		-	-	250	ns	

^{*:} No-load

Document Number: 002-05640 Rev *B Page 92 of 111

12.7 Low-Voltage Detection Characteristics

12.7.1 Low-Voltage Detection Reset

 $(T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

Parameter	Symbo	Conditions		Value		Unit	Remarks
Farameter	Ī	Conditions	Min	Тур	Max	5	Remarks
Detected voltage	V_{DLR}	SVHR = 0001	1.43	1.53	1.63	٧	When voltage drops
Released voltage	V_{DHR}	3VHK = 0001	1.53	1.63	1.73	٧	When voltage rises
Detected voltage	V_{DLR}	SVHR = 0100	1.80	1.93	2.06	٧	When voltage drops
Released voltage	V_{DHR}	3VIIK = 0100	1.90	2.03	2.16	٧	When voltage rises
LVD stabilization wait time	t _{LVDRW}	-	-	-	633 x tcycp *	μs	
Detection delay time	tlvdrd	dV/dt ≥ -4 mV/μs	-	-	60	μs	

^{*:} tcycp indicates the APB2 bus clock cycle time.

Document Number: 002-05640 Rev *B Page 93 of 111

12.7.2 Interrupt of Low-Voltage Detection

Normal mode

 $(T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

Parameter	Symbol	Conditions	ions Value		Unit	Remarks	
	•	Conditions	Min	Тур	Max		
Detected voltage	V _{DLI}	SVHI = 0000	1.87	2.00	2.13	V	When voltage drops
Released voltage	V _{DHI}	3	1.97	2.10	2.23	V	When voltage rises
Detected voltage	V _{DLI}	SVHI = 0001	1.96	2.10	2.24	V	When voltage drops
Released voltage	V_{DHI}		2.06	2.20	2.34	V	When voltage rises
Detected voltage	V _{DLI}	SVHI = 0010	2.05	2.20	2.35	V	When voltage drops
Released voltage	V _{DHI}	OVIII = 0010	2.15	2.30	2.45	V	When voltage rises
Detected voltage	V_{DLI}	SVHI = 0011	2.15	2.30	2.45	V	When voltage drops
Released voltage	V _{DHI}	OVIII = 0011	2.25	2.40	2.55	V	When voltage rises
Detected voltage	V _{DLI}	SVHI = 0100	2.24	2.40	2.56	V	When voltage drops
Released voltage	V_{DHI}	34111 = 0100	2.34	2.50	2.66	V	When voltage rises
Detected voltage	V _{DLI}	C)/LII 0404	2.33	2.50	2.67	V	When voltage drops
Released voltage	V _{DHI}	SVHI = 0101	2.43	2.60	2.77	V	When voltage rises
Detected voltage	V_{DLI}	C)/III 0440	2.43	2.60	2.77	V	When voltage drops
Released voltage	V _{DHI}	SVHI = 0110	2.53	2.70	2.87	V	When voltage rises
Detected voltage	V _{DLI}	0)/111 0444	2.61	2.80	2.99	V	When voltage drops
Released voltage	V_{DHI}	SVHI = 0111	2.71	2.90	3.09	V	When voltage rises
Detected voltage	V _{DLI}	0) // // 4000	2.80	3.00	3.20	V	When voltage drops
Released voltage	V_{DHI}	SVHI = 1000	2.90	3.10	3.30	V	When voltage rises
Detected voltage	V _{DLI}	SVHI = 1001	2.99	3.20	3.41	V	When voltage drops
Released voltage	V _{DHI}	SVHI = 1001	3.09	3.30	3.51	V	When voltage rises
Detected voltage	V _{DLI}	C)/LII 1010	3.36	3.60	3.84	V	When voltage drops
Released voltage	V_{DHI}	SVHI = 1010	3.46	3.70	3.94	V	When voltage rises
Detected voltage	V _{DLI}	SVHI = 1011	3.45	3.70	3.95	V	When voltage drops
Released voltage	V_{DHI}	34111 = 1011	3.55	3.80	4.05	V	When voltage rises
Detected voltage	V _{DLI}	C)/LII 4400	3.73	4.00	4.27	V	When voltage drops
Released voltage	V _{DHI}	SVHI = 1100	3.83	4.10	4.37	V	When voltage rises
Detected voltage	V _{DLI}	SVHI = 1101	3.83	4.10	4.37	V	When voltage drops
Released voltage	V_{DHI}	SVHI = 1101	3.93	4.20	4.47	V	When voltage rises
Detected voltage	V _{DLI}	C)/III 4440	3.92	4.20	4.48	V	When voltage drops
Released voltage	V_{DHI}	SVHI = 1110	4.02	4.30	4.58	V	When voltage rises
LVD stabilization wait time	tlvdiw	-	-	-	633 × t _{CYCP} *	μs	
Detection delay time	tlvdid	dV/dt ≥ - 4 mV/μs	-	-	60	μs	

^{*:} tcycp indicates the APB2 bus clock cycle time.

Document Number: 002-05640 Rev *B Page 94 of 111

Low-power mode

 $(T_A = -40^{\circ}C \text{ to } + 85^{\circ}C)$

Parameter	Symbol	Conditions		Value		Unit	Remarks
		Conditions	Min	Тур	Max		
Detected voltage	V _{DLIL}	SVHI = 0000	1.80	2.00	2.20	V	When voltage drops
Released voltage	V _{DHIL}		1.90	2.10	2.30	V	When voltage rises
Detected voltage	V _{DLIL}	SVHI = 0001	1.89	2.10	2.31	V	When voltage drops
Released voltage	V_{DHIL}		1.99	2.20	2.41	V	When voltage rises
Detected voltage	V _{DLIL}	SVHI = 0010	1.98	2.20	2.42	V	When voltage drops
Released voltage	V _{DHIL}	3 VI II = 33 I 3	2.08	2.30	2.52	V	When voltage rises
Detected voltage	V_{DLIL}	SVHI = 0011	2.07	2.30	2.53	V	When voltage drops
Released voltage	V _{DHIL}	OVIII = 0011	2.17	2.40	2.63	V	When voltage rises
Detected voltage	V _{DLIL}	SVHI = 0100	2.16	2.40	2.64	V	When voltage drops
Released voltage	V_{DHIL}	34111 = 0100	2.26	2.50	2.74	V	When voltage rises
Detected voltage	V _{DLIL}	SVHI = 0101	2.25	2.50	2.75	٧	When voltage drops
Released voltage	V _{DHIL}	3VHI = 0101	2.35	2.60	2.85	V	When voltage rises
Detected voltage	V_{DLIL}	SVHI = 0110	2.34	2.60	2.86	V	When voltage drops
Released voltage	V _{DHIL}	SVHI = 0110	2.44	2.70	2.96	V	When voltage rises
Detected voltage	V _{DLIL}	C)/III 0444	2.52	2.80	3.08	٧	When voltage drops
Released voltage	V _{DHIL}	SVHI = 0111	2.62	2.90	3.18	V	When voltage rises
Detected voltage	V _{DLIL}	0)/111 4000	2.70	3.00	3.30	٧	When voltage drops
Released voltage	V _{DHIL}	SVHI = 1000	2.80	3.10	3.40	V	When voltage rises
Detected voltage	V_{DLIL}	C)/III 4004	2.88	3.20	3.52	V	When voltage drops
Released voltage	V _{DHIL}	SVHI = 1001	2.98	3.30	3.62	V	When voltage rises
Detected voltage	V _{DLIL}	SVHI = 1010	3.24	3.60	3.96	٧	When voltage drops
Released voltage	V_{DHIL}	SVHI = 1010	3.34	3.70	4.06	V	When voltage rises
Detected voltage	V _{DLIL}	SVHI = 1011	3.33	3.70	4.07	V	When voltage drops
Released voltage	V_{DHIL}	SVHI = 1011	3.43	3.80	4.17	V	When voltage rises
Detected voltage	V _{DLIL}	0)/111 4400	3.60	4.00	4.40	٧	When voltage drops
Released voltage	V _{DHIL}	SVHI = 1100	3.70	4.10	4.50	V	When voltage rises
Detected voltage	V _{DLIL}	0)/111 4404	3.69	4.10	4.51	V	When voltage drops
Released voltage	V_{DHIL}	SVHI = 1101	3.79	4.20	4.61	V	When voltage rises
Detected voltage	V _{DLIL}	0) (1.11 4440	3.78	4.20	4.62	٧	When voltage drops
Released voltage	V _{DHIL}	SVHI = 1110	3.88	4.30	4.72	V	When voltage rises
LVD stabilization wait time	tlvdilw	-	-	-	8039 × t _{CYCP} *	μs	J
Detection delay time	tuvdild	dV/dt ≥ - 0.4 mV/μs	-	-	800	μs	

^{*:} tcycp indicates the APB2 bus clock cycle time.

Document Number: 002-05640 Rev *B Page 95 of 111

12.8 Flash Memory Write/Erase Characteristics

12.8.1 Write / Erase time

 $(V_{CC} = 2.0V \text{ to } 5.5V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$

Parameter		Value		Unit	Remarks	
		Typ*	Max*	Ollic	i/eiliai k2	
Sector erase	Large Sector	1.6	7.5		Includes write time prior to internal grace	
time	me Small Sector 0.4 2.1		Includes write time prior to internal erase			
Half word (16-l write time	oit)	25	400	μs	Not including system-level overhead time.	
Chip erase tim	e	4	19.2	s	Includes write time prior to internal erase	

^{*:} The typical value is immediately after shipment, the maximum value is guarantee value under 100,000 cycle of erase/write.

12.8.2 Write cycles and data hold time

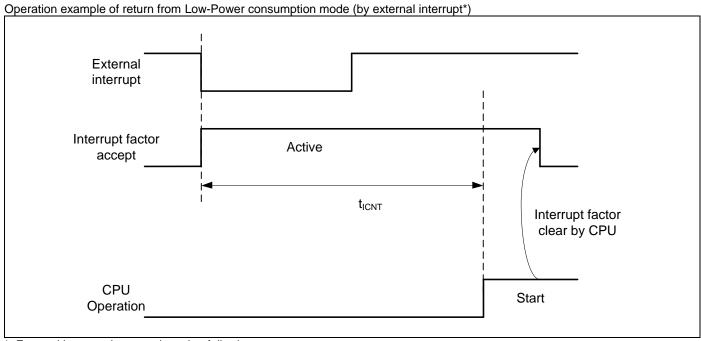
Erase/write cycles (cycle)	Data hold time (year)	Remarks
1,000	20 *	
10,000	10 *	
100,000	5*	

^{*:} At average + 85°C

Document Number: 002-05640 Rev *B Page 96 of 111

12.9 Return Time from Low-Power Consumption Mode

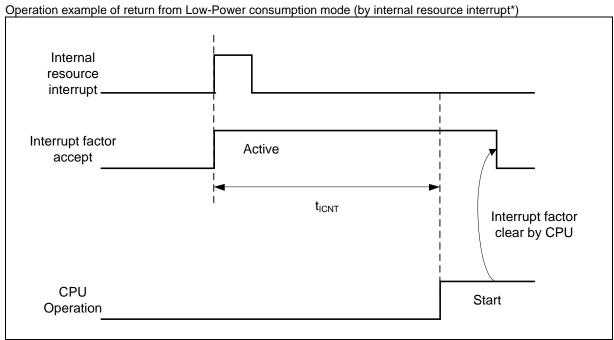
12.9.1 Return Factor: Interrupt/WKUP


The return time from Low-Power consumption mode is indicated as follows. It is from receiving the return factor to starting the program operation.

Return Count Time

$$(V_{CC} = 1.65V \text{ to } 3.6V, V_{SS} = 0V, T_A = -40^{\circ}\text{C to } + 85^{\circ}\text{C})$$

Parameter	Symbol	Value		Unit	Remarks
Parameter	Symbol	Тур	Max*	Unit	Remarks
Sleep mode		t _{CYCC}		μs	
High-speed CR Timer mode, Main Timer mode, PLL Timer mode		40	80	μs	
Low-speed CR Timer mode	t _{ICNT}	630	1260	μs	
Sub Timer mode	TICNI	630	1260	μs	
RTC mode, Stop mode		1083	2100	μs	
Deep Standby RTC mode Deep Standby Stop mode		1099	2127	μs	


^{*:} The maximum value depends on the accuracy of built-in CR.

^{*:} External interrupt is set to detecting fall edge.

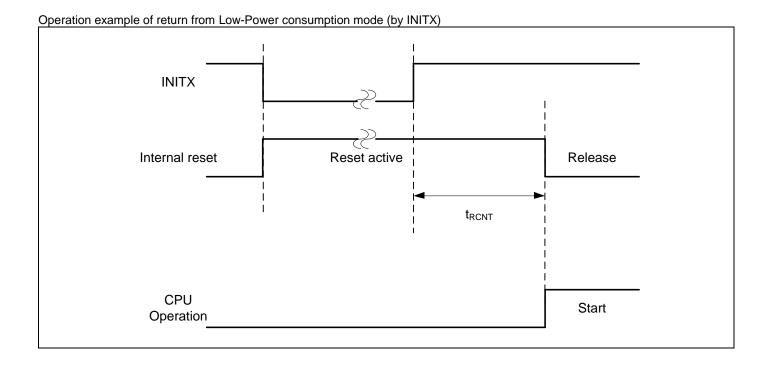
Document Number: 002-05640 Rev *B Page 97 of 111

^{*:} Internal resource interrupt is not included in return factor by the kind of Low-Power consumption mode.

- **Notes:** The return factor is different in each Low-Power consumption modes. See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in FM3 Family Peripheral Manual.
 - When interrupt recoveries, the operation mode that CPU recoveries depend on the state before the Low-Power consumption mode transition. See Chapter 6: Low Power Consumption Mode in FM3 Family Peripheral Manual.

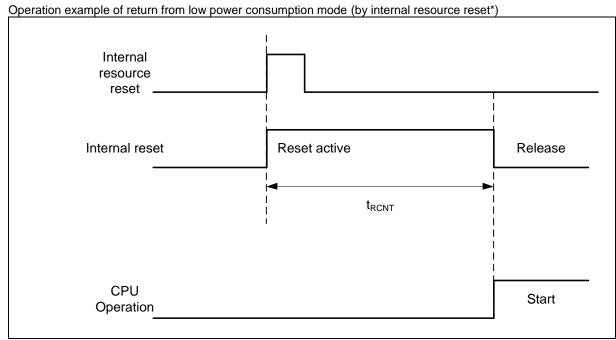
Document Number: 002-05640 Rev *B Page 98 of 111

12.9.2 Return Factor: Reset


The return time from Low-Power consumption mode is indicated as follows. It is from releasing reset to starting the program operation.

Return Count Time

$$(V_{CC} = 1.65V \text{ to } 3.6V, V_{SS} = 0V, T_A = -40^{\circ}C \text{ to } +85^{\circ}C)$$


Parameter	Symbol	Va	lue	Unit	Remarks
Farameter	Symbol	Тур	Max*	Ullit	Remarks
Sleep mode		359	647	μs	
High-speed CR Timer mode, Main Timer mode, PLL Timer mode		359	647	μs	
Low-speed CR Timer mode	tront	929	1787	μs	
Sub Timer mode	IRCIVI	929	1787	μs	
RTC/Stop mode		1099	2127	μs	
Deep Standby RTC mode Deep Standby Stop mode		1099	2127	μs	

^{*:} The maximum value depends on the accuracy of built-in CR.

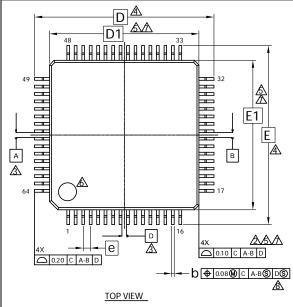
Document Number: 002-05640 Rev *B Page 99 of 111

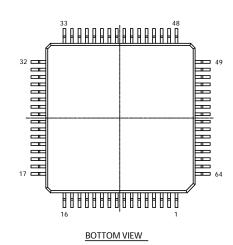
^{*:} Internal resource reset is not included in return factor by the kind of Low-Power consumption mode.

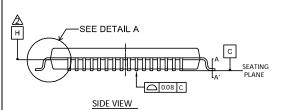
- **Notes:** The return factor is different in each Low-Power consumption modes. See Chapter 6: Low Power Consumption Mode and Operations of Standby Modes in FM3 Family Peripheral Manual.
 - When interrupt recoveries, the operation mode that CPU recoveries depend on the state before the Low-Power consumption mode transition. See Chapter 6: Low Power Consumption Mode in FM3 Family Peripheral Manual.
 - The time during the power-on reset/low-voltage detection reset is excluded. See Power-on Reset Timing in AC Characteristics in Electrical Characteristics for the detail on the time during the power-on reset/low-voltage detection reset.
 - When in recovery from reset, CPU changes to the High-speed CR Run mode. When using the main clock or the PLL clock, it is necessary to add the main clock oscillation stabilization wait time or the Main PLL clock stabilization wait time.
 - The internal resource reset means the watchdog reset and the CSV reset.

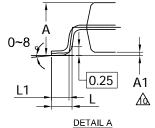
Document Number: 002-05640 Rev *B Page 100 of 111

13. Ordering Information


Part number	On-chip Flash memory	On-chip SRAM	Package	Packing
MB9AFA31LPMC1-G-SNE2	64 Kbyte	12 Kbyte	Plastic • LQFP	
MB9AFA32LPMC1-G-SNE2	128 Kbyte	16 Kbyte	(0.5mm pitch), 64-pin (LQD064)	
MB9AFA31LPMC-G-SNE2	64 Kbyte	12 Kbyte	Plastic • LQFP	
MB9AFA32LPMC-G-SNE2	128 Kbyte	16 Kbyte	(0.65mm pitch), 64-pin (LQG064)	
MB9AFA31LQN-G-AVE2	64 Kbyte	12 Kbyte	Plastic • QFN	
MB9AFA32LQN-G-AVE2	128 Kbyte	16 Kbyte	(0.5mm pitch), 64-pin (VNC064)	
MB9AFA31MPMC-G-SNE2	64 Kbyte	12 Kbyte	Plastic • LQFP]_
MB9AFA32MPMC-G-SNE2	128 Kbyte	16 Kbyte	(0.5mm pitch), 80-pin (LQH080)	Tray
MB9AFA31MPMC1-G-SNE2	64 Kbyte	12 Kbyte	Plastic • LQFP	
MB9AFA32MPMC1-G-SNE2	128 Kbyte	16 Kbyte	(0.65mm pitch), 80-pin (LQJ080)	
MB9AFA31NPMC-G-SNE2	64 Kbyte	12 Kbyte	Plastic • LQFP	
MB9AFA32NPMC-G-SNE2	128 Kbyte	16 Kbyte	(0.5mm pitch), 100-pin (LQI100)	
MB9AFA31NPF-G-SNE1	64 Kbyte	12 Kbyte	Plastic • QFP	
MB9AFA32NPF-G-SNE1	128 Kbyte	16 Kbyte	(0.65mm pitch), 100-pin (PQH100)	


Document Number: 002-05640 Rev *B Page 101 of 111

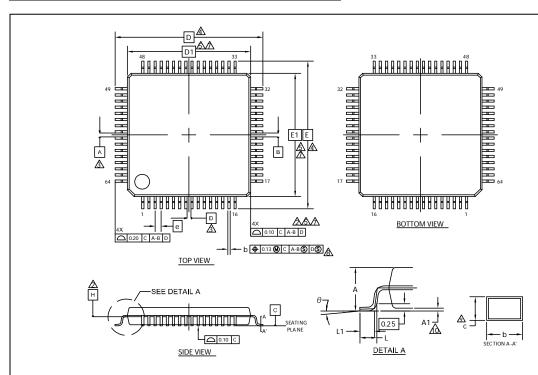



14. Package Dimensions

Package Type	Package Code
LQFP 64 (0.5mm pitch)	LQD064

SYMBOL	DIN	/IENSIOI	NS
STIVIBOL	MIN.	NOM.	MAX.
Α	_		1.70
A1	0.00	_	0.20
b	0.15	_	0.2 7
С	0.09	_	0.20
D	12.00 BSC.		; ;
D1	10.00 BSC.		
е	0.50 BSC		
E	12.00 BSC.		
E1	10.00 BSC.		` .
L	0.45	0.60	0.75
L1	0.30	0.50	0.70

NOTES

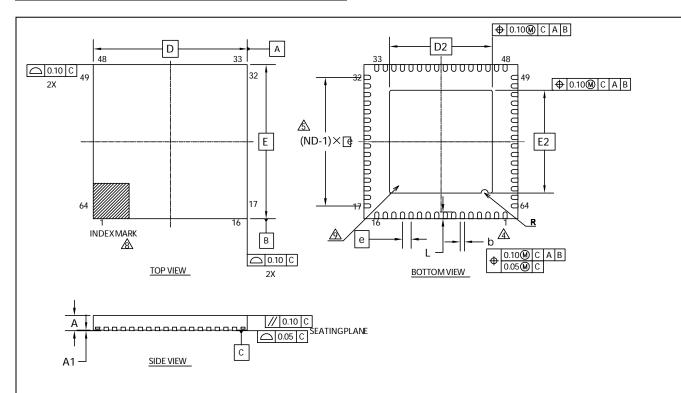

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- ⚠ DATUM PLANE HIS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- ⚠DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
- TO BE DETERMINED AT SEATING PLANE C.
- ⚠DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
 ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.
 DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED
 AT DATUM PLANE H.
- ⚠DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS, DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ⚠ DIMENSION b DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION. (\$) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- ⚠THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- 1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

PACKAGE OUTLINE, 64 LEAD LQFP 10.0X10.0X1.7 MM LQD064 Rev**

002-11499 **

Package Type	Package Code	
LQFP 64 (0.65mm pitch)	LQG064	

SYMBOL	DII	MENSIO	N
STIVIBOL	MIN.	NOM.	MAX.
А	_		1.70
A1	0.00		0.20
b	0.27	0.32	0.37
С	0.09		0.20
D	14.00 BSC		
D1	12.00 BSC		
е	C	.65 BSC	
E	14.00 BSC		
E1	12.00 BSC		;
L	0.45	0.60	0.75
L1	0.30	0.50	0.70
θ	0°		8°


NOTES

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- A DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- ⚠ DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
- ⚠ TO BE DETERMINED AT SEATING PLANE C.
- ⚠ DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
 ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE,
 DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED
 AT DATUM PLANE H.
- ⚠ DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ⚠ DIMENSION b DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION (\$) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- ⚠ THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- 1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

PACKAGE OUTLINE, 64 LEAD LOFP 12.0X12.0X1.7 MM LQG064 REV** 002-13881 **

Package Type	Package Code
QFN 64	VNC064

SYMBOL	DIMENSIONS		
STIVIBOL	MIN.	NOM.	MAX.
Α	_	_	0.90
A1	0.00		0.05
D	9.00 BSC		
E	9.00 BSC		
b	0.20	0.25	0.30
D2	6.00 BSC		;
E2	6.00 BSC		
е	0.50 BSC		;
R	0.20 REF		-
L	0.35 0.40		0.45
N	64		
ND	16		

NOTES:

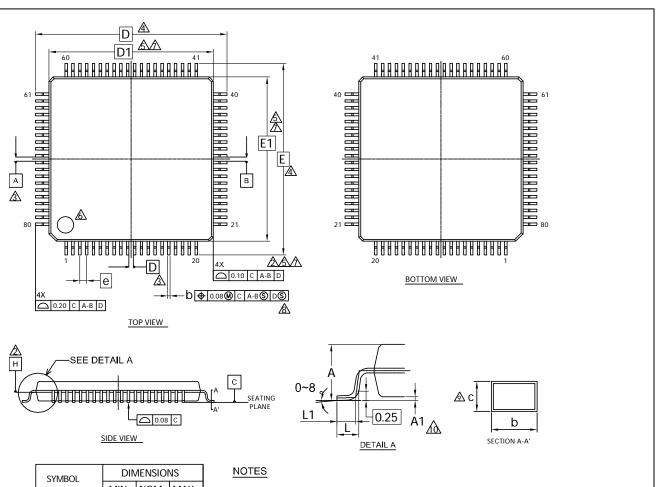
- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- 2. DIMENSIONING AND TOLERANCING CONFORMS TO ASME Y14.5M-1994.
- 3. N IS THE TOTAL NUMBER OF TERMINALS.

DIMENSION "b" APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP. IF THE TERMINAL HAS THE OPTIONAL RADIUS ON THE OTHER END OF THE TERMINAL, THE DIMENSION "b" SHOULD NOT BE MEASURED IN THAT RADIUS AREA.

ND REFERS TO THE NUMBER OF TERMINALS ON D SIDE OR E SIDE.

6. MAX. PACKAGE WARPAGE IS 0.05mm.

7. MAXIMUM ALLOWABLE BURR IS 0.076mm IN ALL DIRECTIONS.
PIN #1 ID ON TOP WILL BE LOCATED WITHIN THE INDICATED ZONE.


BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE TERMINALS.

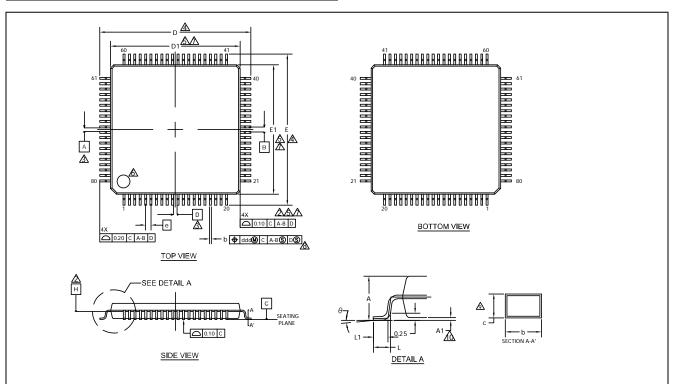
002-13234 **

PACKAGE OUTLINE, 64 LEAD QFN 9.0X9.0X0.9 MM VNC064 6.0X6.0 MM EPAD (SAWN) Rev*.*

Package Type	Package Code	
LQFP 80 (0.5mm pitch)	LQH080	

SYMBOL	DIMENSIONS			
	MIN.	NOM.	MAX.	
А	_	_	1.70	
A1	0.05	_	0.15	
b	0.15	_	0.27	
С	0.09	_	0.20	
D	14.00 BSC.			
D1	12.00 BSC.			
е	0.50 BSC			
E	14.00 BSC.			
E1	12.00 BSC.			
L	0.45	0.60	0.75	
L1	0.30 0.50 0.70			

- 1. CONTROLLING DIMENSIONS ARE IN MILLIMETERS (mm)


 ADATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- ⚠DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
- TO BE DETERMINED AT SEATING PLANE C.
- ⚠ DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
 ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.
 DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- ⚠DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ⚠ DIMENSION & DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION (\$) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED & MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- ⚠ THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

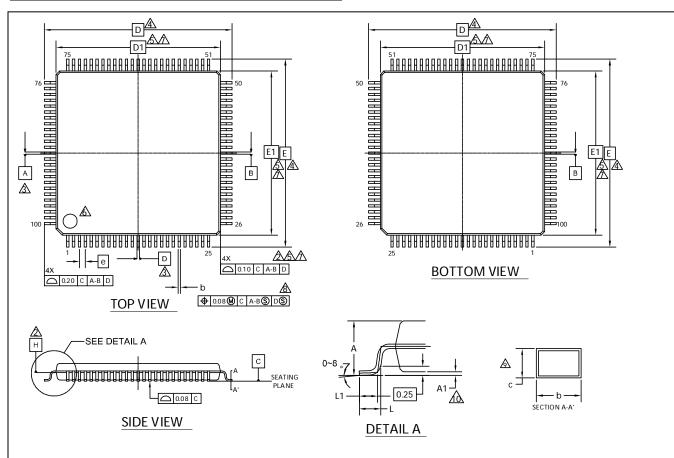
002-11501 **

PACKAGE OUTLINE, 80 LEAD LQFP 12.0X12.0X1.7 MM LQH080 Rev **

Package Type	Package Code
LQFP 80 (0.65mm pitch)	LQJ080

SYMBOL	DIMENSIONS		
STIVIBOL	MIN.	NOM.	MAX.
Α	_	_	1.70
A1	0.00		0.20
b	0.16	0.32	0.38
С	0.09		0.20
D	16.00 BSC		
D1	14.00 BSC		
е	0.65 BSC		
E	16.00 BSC		
E1	14.00 BSC		
L	0.45	0.60	0.75
L1	0.30	0.50	0.70
θ	0°	_	8°

NOTES


- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- △ DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- ⚠ DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
- TO BE DETERMINED AT SEATING PLANE C.
- ⚠DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
 ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.
 DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- ⚠ DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- AREGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ⚠ DIMENSION b DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION (\$) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- ⚠ THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- 1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

002-14043 **

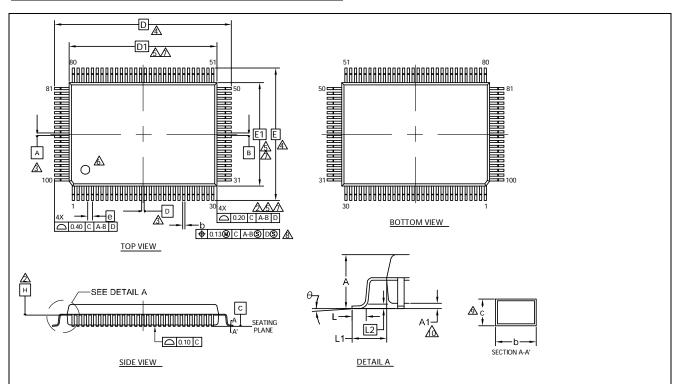
PACKAGE OUTLINE, 80 LEAD LQFP 14.0X14.0X1.7 MM LQJ080 REV**

Package Type	Package Code
LQFP 100	LQI100

SYMBOL	DIMENSIONS			
STIVIBUL	MIN.	NOM.	MAX.	
Α	_		1.70	
A1	0.05		0.15	
b	0.15		0.27	
С	0.09	_	0.20	
D	16.00 BSC			
D1	14.00 BSC			
е	0.50 BSC			
E	16.00 BSC			
E1	14.00 BSC			
L	0.45	0.60	0.75	
L1	0.30 0.50 0.70			

NOTES:

- 1. ALL DIMENSIONS ARE IN MILLIMETERS.
- ⚠DATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.
- ⚠DATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.
- TO BE DETERMINED AT SEATING PLANE C.
- 🖒 DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION. ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.
 - DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.
- ⚠DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.
- REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS DI AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.
- ⚠ DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. THE DAMBAR PROTRUSION (S) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.
- 9. THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.
- 1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.


002-11500 *A

PACKAGE OUTLINE, 100 LEAD LQFP 14.0X14.0X1.7 MM LQI100 REV*A

Page 107 of 111

Package Type	Package Code
QFP 100	PQH100

SYMBOL	DIMENSIONS		
STIVIDUL	MIN. NOM.		MAX.
Α		_	3.35
A1	0.05	_	0.45
b	0.27	0.32	0.37
С	0.11	_	0.23
D	23	3.90 BS0	
D1	20	0.00 BSC	
е	0	.65 BSC	
E	17	7.90 BSC	;
E1	14.00 BSC		;
θ	0°	_	8°
L	0.73	0.88	1.03
L1	1.95 REF		
L2	0.25 BSC		

NOTES

1. ALL DIMENSIONS ARE IN MILLIMETERS.

ADATUM PLANE H IS LOCATED AT THE BOTTOM OF THE MOLD PARTING LINE COINCIDENT WITH WHERE THE LEAD EXITS THE BODY.

ADATUMS A-B AND D TO BE DETERMINED AT DATUM PLANE H.

TO BE DETERMINED AT SEATING PLANE C.

⚠ DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD PROTRUSION.
ALLOWABLE PROTRUSION IS 0.25mm PRE SIDE.
DIMENSIONS D1 AND E1 INCLUDE MOLD MISMATCH AND ARE DETERMINED AT DATUM PLANE H.

⚠DETAILS OF PIN 1 IDENTIFIER ARE OPTIONAL BUT MUST BE LOCATED WITHIN THE ZONE INDICATED.

REGARDLESS OF THE RELATIVE SIZE OF THE UPPER AND LOWER BODY SECTIONS. DIMENSIONS D1 AND E1 ARE DETERMINED AT THE LARGEST FEATURE OF THE BODY EXCLUSIVE OF MOLD FLASH AND GATE BURRS. BUT INCLUDING ANY MISMATCH BETWEEN THE UPPER AND LOWER SECTIONS OF THE MOLDER BODY.

⚠ DIMENSION b DOES NOT INCLUDE DAMBER PROTRUSION. THE DAMBAR PROTRUSION (\$) SHALL NOT CAUSE THE LEAD WIDTH TO EXCEED b MAXIMUM BY MORE THAN 0.08mm. DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OR THE LEAD FOOT.

⚠ THESE DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.10mm AND 0.25mm FROM THE LEAD TIP.

A1 IS DEFINED AS THE DISTANCE FROM THE SEATING PLANE TO THE LOWEST POINT OF THE PACKAGE BODY.

002-15156 **

PACKAGE OUTLINE, 100 LEAD QFP 20.00X14.00X3.35 MM PQH100 REV**

Page 109 of 111

15. Major Changes

Spansion Publication Number: DS706-00041

Page	Section	Change Results
Revision	1 3.0	
18	list of pin functions • List of pin numbers	Revised the Pin state type.
26	List of pin functions	Revised the pin name of "External Interrupt". INIT15_1 → INT15_1
63	pin status in each cpu state	Added "Y" and "Z" type to the Pin status type.
Revision	• List of pin status	Added the footnote.
-	-	Company name and layout design change
Revision	1 4.0	Company hamo and layout dodign onlings
2	Features On-chip Memories	Changed the description of on-chip SRAM
7 - 34	Packages Pin Assignment List of Pin Functions	Deleted BGA package
46	Handling Devices	Added "· Stabilizing power supply voltage"
46	Handling Devices Crystal oscillator circuit	Added the following description "Evaluate oscillation of your using crystal oscillator by your mount board."
48	Block Diagram	Modified the block diagram
50	Memory Map · Memory map(2)	Added the summary of Flash memory sector and the note
65 - 67	Electrical Characteristics DC Characteristics Current rating	Changed the table format Added Main Timer mode current Added Flash Memory Current Moved A/D Converter Current Moved D/A Converter Current
68	Electrical Characteristics DC Characteristics Pin Characteristics	Added the input leak current of CEC port at power off
72	Electrical Characteristics AC Characteristics Operating Conditions of Main PLL Operating Conditions of Main PLL	· Added the figure of Main PLL connection
73	Electrical Characteristics AC Characteristics Power-on Reset Timing	Changed the figure of timing Changed from Reset release delay time(tond) to Time until releasing Power-on reset(tprt)
75 - 82	Electrical Characteristics AC Characteristics CSIO/UART Timing	Modified from UART Timing to CSIO/UART Timing Changed from Internal shift clock operation to Master mode Changed from External shift clock operation to Slave mode
86	Electrical Characteristics 12bit A/D Converter	Added the typical value of Integral Nonlinearity, Differential Nonlinearity, Zero transition voltage and Full-scale transition voltage Added Conversion time at AVcc < 2.7 V Changed from Non linearity error to Integral Nonlinearity Changed from Differential linearity error to Differential Nonlinearity
89	Electrical Characteristics 10bit D/A Converter	Changed from Non linearity error to Integral Nonlinearity Changed from Differential linearity error to Differential Nonlinearity
90	Electrical Characteristics Low-voltage Detection Characteristics	Deleted the figure

Page	Section	Change Results
93	Electrical Characteristics Flash Memory Write/Erase Characteristics	Change to the erase time of include write time prior to internal erase
94 - 97	Electrical Characteristics 9. Return Time from Low-Power Consumption Mode	Added Return Time from Low-Power Consumption Mode
98	Ordering Information	Changed notation of part number
99	Package Dimensions	Deleted BGA-112P-M04

NOTE: Please see "Document History" about later revised information.

Document History

Document Title: MB9AA30N Series 32-bit ARM® Cortex®-M3 FM3 Microcontroller

Document Number: 002-05640

Revision	ECN	Orig. of Change	Submission Date	Description of Change
**	-	AKIH	06/19/2015	Migrated to Cypress and assigned document number 002-05640. No change to document contents or format.
*A	5189010	AKIH	04/18/2016	Migrated to Cypress format
*B	5742352	YSKA	05/23/2017	Adapted new Cypress logo Modified RTC description in "Features, Real-Time Clock(RTC)". Changed starting count value from 01 to 00. Deleted "second, or day of the week" in the Interrupt function. Changed package code as the following in chapter: 2. Packages 3. Pin Assignment 13. Ordering Information 14. Package Dimensions. FTP-64P-M38 -> LQD064, FPT-64P-M39 -> LQG064, LCC-64P-M24 -> VNC064, FPT-80P-M37 -> LQH080, FPT-80P-M40 -> LQJ080, FPT-100P-M23 -> LQI100, FPT-100P-M06 -> PQH100 Corrected "J-TAG" to "JTAG" in 4. List of Pin Functions. Added Note for JTAG pin in 4. List of Pin Functions. Added the Baud rate spec in 12.4.9 CSIO/UART Timing.

Document Number: 002-05640 Rev *B Page 110 of 111

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products

ARM® Cortex® Microcontrollers cypress.com/arm Automotive cypress.com/automotive Clocks & Buffers cypress.com/clocks Interface cypress.com/interface Internet of Things cypress.com/iot Memory cypress.com/memory Microcontrollers cypress.com/mcu **PSoC** cypress.com/psoc Power Management ICs cypress.com/pmic Touch Sensing cypress.com/touch **USB Controllers** cypress.com/usb Wireless/RF cypress.com/wireless

PSoC® Solutions

PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6

Cypress Developer Community

Forums | WICED IOT Forums | Projects | Video | Blogs | Training | Components

Technical Support

cypress.com/support

ARM and Cortex are the registered trademarks of ARM Limited in the EU and other countries.

All other trademarks or registered trademarks referenced herein are the property of their respective owners.

© Cypress Semiconductor Corporation, 2012-2017. This document is the property of Cypress Semiconductor Corporation and its subsidiaries, including Spansion LLC ("Cypress"). This document, including any software or firmware included or referenced in this document ("Software"), is owned by Cypress under the intellectual property laws and treaties of the United States and other countries worldwide. Cypress reserves all rights under such laws and treaties and does not, except as specifically stated in this paragraph, grant any license under its patents, copyrights, trademarks, or other intellectual property rights. If the Software is not accompanied by a license agreement and you do not otherwise have a written agreement with Cypress governing the use of the Software, then Cypress hereby grants you a personal, non-exclusive, nontransferable license (without the right to sublicense) (1) under its copyright rights in the Software (a) for Software provided in source code form, to modify and reproduce the Software solely for use with Cypress hardware products, only internally within your organization, and (b) to distribute the Software in binary code form externally to end users (either directly or indirectly through resellers and distributors), solely for use on Cypress hardware product units, and (2) under those claims of Cypress's patents that are infringed by the Software (as provided by Cypress, unmodified) to make, use, distribute, and import the Software solely for use with Cypress hardware products. Any other use, reproduction, modification, translation, or compilation of the Software is prohibited.

TO THE EXTENT PERMITTED BY APPLICABLE LAW, CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS DOCUMENT OR ANY SOFTWARE OR ACCOMPANYING HARDWARE, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. To the extent permitted by applicable law, Cypress reserves the right to make changes to this document without further notice. Cypress does not assume any liability arising out of the application or use of any product or circuit described in this document. Any information provided in this document, including any sample design information or programming code, is provided only for reference purposes. It is the responsibility of the user of this document to properly design, program, and test the functionality and safety of any application made of this information and any resulting product. Cypress products are not designed, intended, or authorized for use as critical components in systems designed or intended for the operation of weapons, weapons systems, nuclear installations, life-support devices or systems, other medical devices or systems (including resuscitation equipment and surgical implants), pollution control or hazardous substances management, or other uses where the failure of the device or system could cause personal injury, death, or property damage ("Unintended Uses"). A critical component is any component of a device or system whose failure to perform can be reasonably expected to cause the failure of the device or system, or to affect its safety or effectiveness. Cypress is not liable, in whole or in part, and you shall and hereby do release Cypress from any claim, damage, or other liability arising from or related to all Unintended Uses of Cypress products. You shall indemnify and hold Cypress harmless from and against all claims, costs, damages, and other liabilities, including claims for personal injury or death, arising from or related to any Unintended Uses of Cypress products.

Cypress, the Cypress logo, Spansion, the Spansion logo, and combinations thereof, WICED, PSoC, CapSense, EZ-USB, F-RAM, and Traveo are trademarks or registered trademarks of Cypress in the United States and other countries. For a more complete list of Cypress trademarks, visit cypress.com. Other names and brands may be claimed as property of their respective owners.

Document Number: 002-05640 Rev *B May 23, 2017 Page 111 of 111