ABSOLUTE MAXIMUM RATINGS

PVDD to PGND	0.3V to +6V
OUT_+, OUT to PGND0.3V to	$(V_{PVDD} + 0.3V)$
All Other Pins to PGND	0.3V to +6V
Continuous Current for PVDD, PGND,	
OUTL_, OUTR	±1600mA
Continuous Input Current (all other pins)	±20mA
Duration of Short Circuit Between	
OUTL_, OUTR_ to PVDD or PGND	Continuous
OUTL+ to OUTL-, OUTR+ to OUTR	Continuous

Continuous Power Dissipation for Multilay	,
16-Bump WLP (derate 17.2mW/°C abo	ve +70°C)1.38W
θJA (Note 1)	58°C/W
θ _{JC} (Note 1)	15°C/W
Junction Temperature	+150°C
Operating Temperature Range	40°C to +85°C
Storage Temperature Range	65°C to +150°C
Soldering Temperature (reflow)	+260°C

Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maxim-ic.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{PVDD} = V_{\overline{SHDN}} = 3.7V, V_{PGND} = 0V, A_V = 12dB (GAIN = PVDD), R_L = \infty, R_L connected between OUT_+ to OUT_-, 20Hz to 22kHz AC measurement bandwidth, T_A = T_{MIN} to T_{MAX}, unless otherwise noted. Typical values are at T_A = +25°C.) (Notes 2, 3)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Supply Voltage Range	VPVDD	Inferred from PSRR test	2.6		5.5	V
Undervoltage Lockout	UVLO				2.3	V
				2.0	3.1	_
Quiescent Supply Current	IDD	V _{PVDD} = 5.0V		2.7		mA
Shutdown Supply Current	ISHDN	VSHDN = 0V, TA = +25°C		≤ 0.1	10	μΑ
Turn-On Time	ton			3.4	10	ms
Bias Voltage	VBIAS			1.3		V
		Connect GAIN to PGND	17.5	18	18.5	
Voltage Gain		Connect GAIN to PGND through 100kΩ ±5% resistor	14.5	15	15.5	
	Av	Connect GAIN to PVDD	11.5	12	12.5	dB
		Connect GAIN to PVDD through 100kΩ ±5% resistor	8.5	9	9.5	
		GAIN unconnected	5.5	6	6.5]
Channel-to-Channel Gain Tracking				±0.1		%
		Av = 18dB	15	20	29	
		$A_V = 15dB$	15	20	29]
Input Resistance	RIN	$A_V = 12dB$	15	20	29	kΩ
		$A_V = 9dB$	20	28	40	1
		$A_V = 6dB$	30	40	58	1
Output Offset Voltage	Vos	T _A = +25°C (Note 4)		±0.3	±3	mV

ELECTRICAL CHARACTERISTICS (continued)

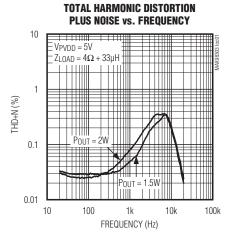
 $(VPVDD = V\overline{SHDN} = 3.7V, VPGND = 0V, AV = 12dB (GAIN = PVDD), R_L = \infty, R_L connected between OUT_+ to OUT_-, 20Hz to 22kHz AC measurement bandwidth, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Notes 2, 3)$

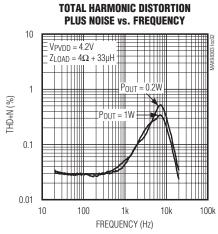
PARAMETER	SYMBOL	CONDITIO	NS	MIN	TYP	MAX	UNITS
Click and Pop	KCP	Peak voltage, A-weighted, 32 samples per second,	Into shutdown		-74		dBV
Chok and 1 op	T T T T	$R_{L} = 8\Omega + 68\mu H$ (Notes 4, 5)	Out of shutdown		-59		dbv
			$A_V = 18dB$		67		
		6 4111	Av = 15dB		72]
Common-Mode Rejection Ratio	CMRR	f _{IN} = 1kHz, input referred	$A_V = 12dB$		67		dB
		Imput referred	Av = 9dB		65		
			$A_V = 6dB$		62]
Crantall		P _{OUT} = 300mW,	f = 1kHz		100		٩D
Crosstalk		$R_L = 8\Omega + 68\mu H$	f = 10kHz		95		dB
		V _P V _{DD} = 2.6V to 5.5V, T _A	= +25°C	51	78		
Power-Supply Rejection Ratio	DODD		f = 217Hz		66		
(Note 4)	PSRR	$V_{RIPPLE} = 200 \text{mV}_{P-P}$	f = 1kHz		66		dB
		$R_L = 8\Omega + 68\mu H$	f = 10kHz		63		
		TUD 11 100/ 6 ///	$V_{PVDD} = 5.0V$		3.1		W
		THD+N = 10%, f = 1kHz, $R_L = 4\Omega + 33\mu H$	$V_{PVDD} = 4.2V$		2.2		
			$V_{PVDD} = 3.7V$		1.7		
		THD+N = 1%, f = 1kHz, RL = $4\Omega + 33\mu$ H	VPVDD = 5.0V		2.5		
	Роит		$V_{PVDD} = 4.2V$		1.7		
Outrast Danier			VPVDD = 3.7V		1.3		
Output Power		THD+N = 10%, f = 1kHz,	$V_{PVDD} = 5.0V$		1.8		
			VPVDD = 4.2V		1.2		
		$R_{L} = 8\Omega + 68\mu H$	$V_{PVDD} = 3.7V$		1.0		1
		TUD NO. 101 (111)	VPVDD = 5.0V		1.4]
		THD+N = 1%, f = 1kHz, R _L = 8 Ω + 68 μ H	$V_{PVDD} = 4.2V$		1.0]
		L = 075 + 00	VPVDD = 3.7V		0.7]
Total Harmonic Distortion Plus	THE M		$R_L = 4\Omega + 33\mu H,$ POUT = 1W		0.047		0/
Noise	THD+N		$R_L = 8\Omega + 68\mu H,$ POUT = 0.5W		0.04		%
Oscillator Frequency	fosc				300		kHz
Spread-Spectrum Bandwidth					±15		kHz
Efficiency	η	THD+N = 10%, f = 1kHz,	$R_L = 8\Omega + 68\mu H$		93		%
Output Noise	VN	Ay = 6dB, A weighted (No			37		μVRMS
Signal-to-Noise Ratio	SNR	POUT = 3.1W, VPVDD = 5.			99.6		dB

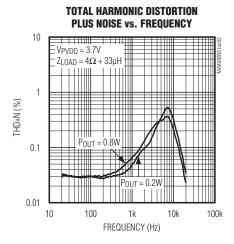
ELECTRICAL CHARACTERISTICS (continued)

 $(V_{PVDD} = V_{\overline{SHDN}} = 3.7V, V_{PGND} = 0V, A_V = 12dB (GAIN = PVDD), R_L = \infty, R_L connected between OUT_+ to OUT_-, 20Hz to 22kHz AC measurement bandwidth, TA = TMIN to TMAX, unless otherwise noted. Typical values are at TA = +25°C.) (Notes 2, 3)$

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS
Output Current Limit	ILIM			2		Α
Thermal Shutdown Level				145		°C
Thermal Shutdown Hysteresis				15		°C
DIGITAL INPUT (SHDN)						
Input Voltage High	VINH	VPVDD = 2.5V to 5.5V	1.4			V
Input Voltage Low	VINL	V _{PVDD} = 2.5V to 5.5V			0.4	V
Input Leakage Current		T _A = +25°C			±1	μΑ

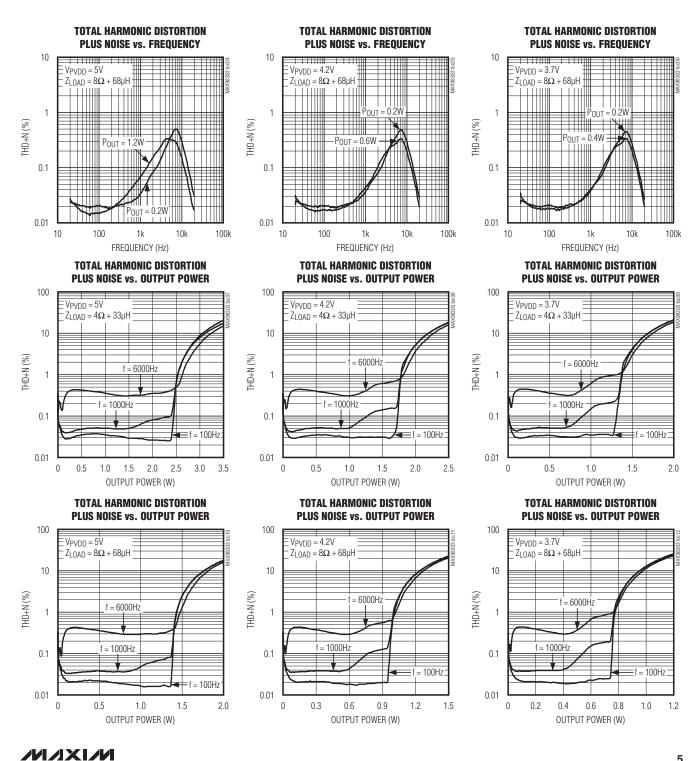

Note 2: This device is 100% production tested at $T_A = +25^{\circ}C$. All temperature limits are guaranteed by design.

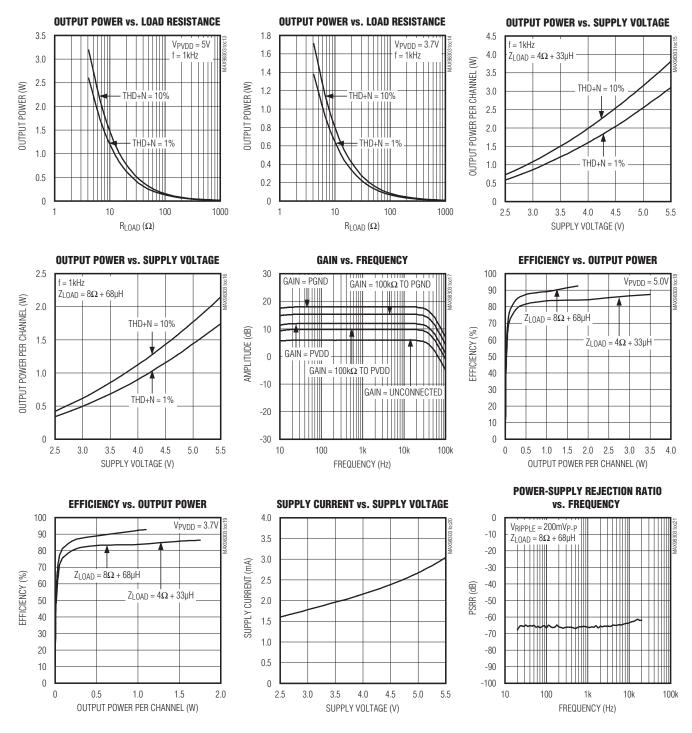

Note 3: Testing performed with a resistive load in series with an inductor to simulate an actual speaker load. For $R_L = 4\Omega$, $L = 33\mu H$. For $R_L = 8\Omega$, $L = 68\mu H$.


Note 4: Amplifier inputs AC-coupled to ground. **Note 5:** Mode transitions controlled by SHDN.

_Typical Operating Characteristics

 $(VPVDD = V\overline{SHDN} = 5.0V, VPGND = 0V, AV = 12dB, RL = \infty, RL connected between OUT_+ to OUT_-, 20Hz to 22kHz AC measurement bandwidth, TA = +25°C, unless otherwise noted.)$

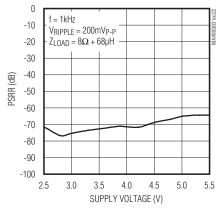



Typical Operating Characteristics (continued)

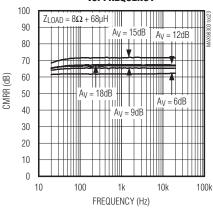
 $(V_{PVDD} = V_{\overline{SHDN}} = 5.0V, V_{PGND} = 0V, AV = 12dB, R_L = \infty, R_L connected between OUT_+ to OUT_-, 20Hz to 22kHz AC measurement bandwidth, T_A = +25°C, unless otherwise noted.)$

Typical Operating Characteristics (continued)

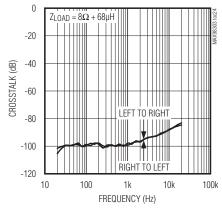
 $(VPVDD = V\overline{SHDN} = 5.0V, VPGND = 0V, AV = 12dB, RL = \infty, RL connected between OUT_+ to OUT_-, 20Hz to 22kHz AC measurement bandwidth, TA = +25°C, unless otherwise noted.)$

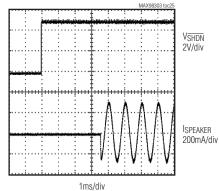


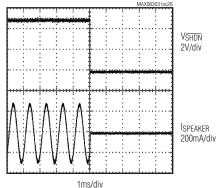
Typical Operating Characteristics (continued)

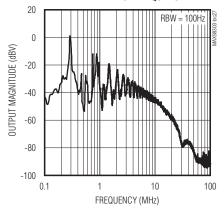

(VPVDD = VSHDN = 5.0V, VPGND = 0V, AV = 12dB, RL = ∞, RL connected between OUT_+ to OUT_-, 20Hz to 22kHz AC measurement bandwidth, TA = +25°C, unless otherwise noted.)

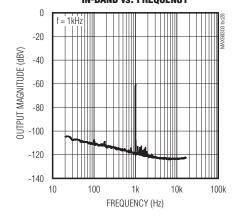
vs. SUPPLY VOLTAGE 0 -10 $V_{RIPPLE} = 200 \text{mV}_{P-P}$ $Z_{LOAD} = 8\Omega + 68 \mu \text{H}$ -20


POWER-SUPPLY REJECTION RATIO

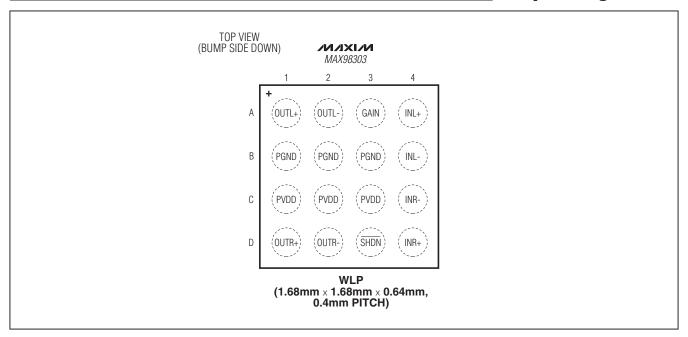

COMMON-MODE REJECTION RATIO vs. FREQUENCY




STARTUP RESPONSE


SHUTDOWN RESPONSE

WIDEBAND vs. FREQUENCY



IN-BAND vs. FREQUENCY

Bump Configuration

Bump Description

BUMP	NAME	FUNCTION
A1	OUTL+	Positive Left Speaker Output
A2	OUTL-	Negative Left Speaker Output
А3	GAIN	Gain Select. See Table 1 for Gain Settings.
A4	INL+	Noninverting Audio Left Input
B1, B2, B3	PGND	Ground
B4	INL-	Inverting Audio Left Input
C1, C2, C3	PVDD	Power Supply. Bypass PVDD to PGND with 0.1µF and 10µF capacitors.
C4	INR-	Inverting Audio Right Input
D1	OUTR+	Positive Right Speaker Output
D2	OUTR-	Negative Right Speaker Output
D3	SHDN	Active-Low Shutdown Input. Drive SHDN low to place the device in shutdown.
D4	INR+	Noninverting Audio Right Input

Detailed Description

The MAX98303 features low quiescent current, a low-power shutdown mode, comprehensive click-and-pop suppression, and excellent RF immunity.

The IC offers Class AB audio performance with Class D efficiency in a minimal board-space solution.

The Class D amplifier features spread-spectrum modulation, edge-rate, and overshoot control circuitry that offers significant improvements to switch-mode amplifier radiated emissions.

The amplifier features click-and-pop suppression that reduces audible transients on startup and shutdown. The amplifier includes thermal-overload and short-circuit protection.

Class D Speaker Amplifier

The filterless Class D amplifier offers much higher efficiency than Class AB amplifiers. The high efficiency of a Class D amplifier is due to the switching operation of the output stage transistors. Any power loss associated with the Class D output stage is mostly due to the I²R loss of the MOSFET on-resistance and quiescent current overhead.

Ultra-Low-EMI Filterless Output Stage

Traditional Class D amplifiers require the use of external LC filters, or shielding, to meet EN55022B electromagnetic-interference (EMI) regulation standards. Maxim's active emissions limiting edge-rate control circuitry and spread-spectrum modulation reduce EMI emissions, while maintaining up to 93% efficiency.

Maxim's spread-spectrum modulation mode flattens wideband spectral components, while proprietary techniques ensure that the cycle-to-cycle variation of the switching period does not degrade audio reproduction or efficiency. The IC's spread-spectrum modulator randomly varies the switching frequency by $\pm 15 \text{kHz}$ around the center frequency (300kHz). Above 10MHz, the wideband spectrum looks like noise for EMI purposes (Figure 1).

Speaker Current Limit

If the output current of the speaker amplifier exceeds the current limit (2A typ), the IC disables the outputs for approximately 100µs. At the end of 100µs, the outputs are reenabled. If the fault condition still exists, the IC continues to disable and reenable the outputs until the fault condition is removed.

Selectable Gain

The IC offers five programmable gains selected using the GAIN input.

Table 1. Gain Control Configuration

GAIN PIN	MAXIMUM GAIN (dB)
Connect to PGND	18
Connect to PGND through 100 k Ω $\pm 5\%$ resistor	15
Connect to PVDD	12
Connect to PVDD through 100 k Ω $\pm 5\%$ resistor	9
Unconnected	6

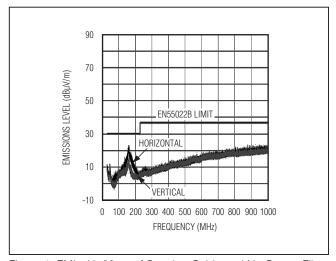


Figure 1. EMI with 30cm of Speaker Cable and No Output Filter

Shutdown

The IC features a low-power shutdown mode, drawing $\leq 0.1 \mu A$ (typ) of supply current. Drive \overline{SHDN} low to place the MAX98303 into shutdown.

Click-and-Pop Suppression

The IC speaker amplifier features Maxim's comprehensive click-and-pop suppression. During startup, the click-and-pop suppression circuitry reduces any audible transient sources internal to the device. When entering shutdown, the differential speaker outputs ramp down to PGND quickly and simultaneously.

Applications Information

Filterless Class D Operation

Traditional Class D amplifiers require an output filter. The filter adds cost and size and decreases THD performance. The IC's filterless modulation scheme does not require an output filter.

Because the switching frequency of the IC is well beyond the bandwidth of most speakers, voice coil movement due to the switching frequency is very small. Use a speaker with a series inductance > $10\mu H$. Typical 8Ω speakers exhibit series inductances in the $20\mu H$ to $100\mu H$ range.

Component SelectionPower-Supply Input (PVDD)

PVDD powers the speaker amplifier. PVDD ranges from 2.6V to 5.5V. Bypass PVDD with $0.1\mu\text{F}$ and $10\mu\text{F}$ capacitors to PGND. Apply additional bulk capacitance at the device if long input traces between PVDD and the power source are used.

Input Filtering

The input-coupling capacitor (C_{IN}), in conjunction with the amplifier's internal input resistance (R_{IN}), forms a highpass filter that removes the DC bias from the incoming signal. These capacitors allow the amplifier to bias the signal to an optimum DC level.

Assuming zero source impedance with a gain setting of 12dB, 15dB, or 18dB, CIN is:

$$C_{IN} = \frac{8}{f_{3dB}} [\mu F]$$

with a gain setting of 9dB, CIN is:

$$C_{IN} = \frac{5.7}{f_{-3dB}} [\mu F]$$

with a gain setting of 6dB, CIN is:

$$C_{IN} = \frac{4}{f_{-3dB}} [\mu F]$$

where f_{-3dB} is the -3dB corner frequency. Use capacitors with adequately low-voltage coefficients for best low-frequency THD performance.

Layout and Grounding

Proper layout and grounding are essential for optimum performance. Good grounding improves audio performance and prevents switching noise from coupling into the audio signal.

Use wide, low-resistance output traces. As the load impedance decreases, the current drawn from the device increases. At higher current, the resistance of the output traces decrease the power delivered to the load. For example, if 2W is delivered from the device output to a 4Ω load through $100m\Omega$ of total speaker trace, 1.904W is delivered to the speaker. If power is delivered through $10m\Omega$ of total speaker trace, 1.99W is delivered to the speaker. Wide output, supply, and ground traces also improve the power dissipation of the device.

The IC is inherently designed for excellent RF immunity. For best performance, add ground fills around all signal traces on top or bottom PCB planes.

WLP Applications Information

For the latest application details on WLP construction, dimensions, tape carrier information, PCB techniques, bump-pad layout, and recommended reflow temperature profile, as well as the latest information on reliability testing results, refer to Application Note 1891: Wafer level packaging (WLP) and its applications. Figure 2 shows the dimensions of the WLP balls used on the IC.

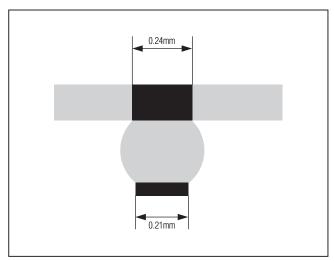
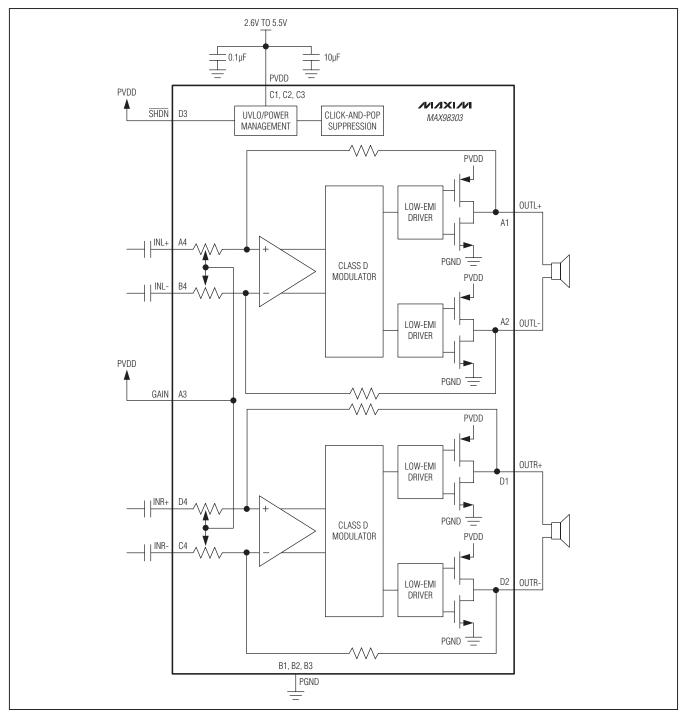
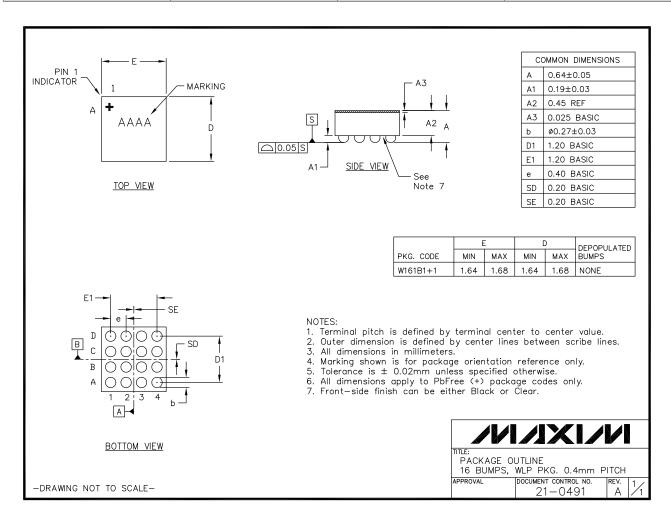



Figure 2. MAX98303 WLP Ball Dimensions

Block Diagram


Chip Information

PROCESS: CMOS

Package Information

For the latest package outline information and land patterns, go to <u>www.maxim-ic.com/packages</u>. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
16 WLP	W161B1+1	<u>21-0491</u>	_

Revision History

REVISION	REVISION	DESCRIPTION	PAGES
NUMBER	DATE		CHANGED
0	9/10	Initial release	_

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.