ABSOLUTE MAXIMUM RATINGS

Supply Voltage (V _{CC} to GND)	-0.3V to +6V
S1, S0 to GND	0.3V to (V _{CC} + 0.3V)
All Other Pins to GND	0.3V to $(V_{CC} + 0.3V)$
Input/Output Current, All Pins	±20mA
Continuous Power Dissipation	$(T_A = +70^{\circ}C)$
SOT23 (derate 8.7mW/°C al	bove +70°C)696mW

Operating Temperature Range (T _{MIN} to T	MAX)40°C to +125°C
Thermal Resistance (θ_{JA})	115°C/W
Storage Temperature Range	65°C to +150°C
Maximum Die Temperature	+150°C
Lead Temperature (soldering, 10s)	+300°C
Soldering Temperature (reflow)	+260°C

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

 $(V_{CC} = +2.5V \text{ to } +5.5V, R_{PULLUP} = 100 k\Omega$ (MAX6505/MAX6507 only), $T_A = -40^{\circ}C$ to $+125^{\circ}C$, unless otherwise noted. Typical values are at $T_A = +25^{\circ}C$ and $V_{CC} = +5V$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDIT	IONS	MIN	ТҮР	MAX	UNITS
Supply Voltage Range	V _{CC}			2.5		5.5	V
	100	S0 = S1 = GND	MAX6505/ MAX6506		40	80	
Supply Current	Icc	S0 = GND	MAX6507/ MAX6508		30	60	μA
		-40°C to 0°C		-5.5	±0.5	5.5	
Temperature Threshold Accuracy (Note 2)	ΔT_{TH}	0°C to +95°C		-3.5	±0.5	3.5	°C
Accuracy (Note 2)		+95°C to +125°C		-4	±0.5	4	
		S1 = GND, S0 = GND			5		
Delta Temperature	AT	$S1 = GND, S0 = V_{CC}$			10		°C
(Talarm -Twarning) MAX6505/MAX6506	ΔT_{AW}	$S1 = V_{CC}, S0 = GND$			20		C
		$S1 = V_{CC}, S0 = V_{CC}$			30		
		ALARM (MAX6505/MAX6506)			2		
		WARN (MAX6505/MAX6506)	$\Delta T_{AW} = 5^{\circ}C \text{ or}$ 10°C		5		
Temperature Threshold Hysteresis (Note 3)	T _{HYST}		$\Delta T_{AW} = 20^{\circ}C \text{ or}$ 30°C		10		°C
		OK, OVER (MAX6507/MAX6508)	S0 = GND		2		
			$SO = V_{CC}$		10		
Logic Input Levels (S1, S0)	VIH			0.8 x V _{CC}			V
	VIL	1				0.8	1
Output Voltage High	Maria	I _{SOURCE} = 500μA, V _{CC} > 2.5V		0.8 x V _{CC}			
(MAX6506/MAX6508)	Vон	$I_{SOURCE} = 800 \mu A, V_{CC} > 4.5 V$		V _{CC} -1.5			V
Output Voltage Low	V _{OL}	$I_{SINK} = 3.2 \text{mA}, V_{CC} > 2.$	5V			0.5	- V
	VOL	$I_{SINK} = 5 m A, V_{CC} > 4.5 V$				0.5	, v

Typical Operating Characteristics

ELECTRICAL CHARACTERISTICS (continued)

 $(V_{CC} = +2.5V \text{ to } +5.5V, R_{PULLUP} = 100 \text{k}\Omega \text{ (MAX6505/MAX6507 only)}, T_A = -40^{\circ}\text{C} \text{ to } +125^{\circ}\text{C}, \text{ unless otherwise noted}. Typical values are at T_A = +25^{\circ}\text{C} \text{ and } V_{CC} = +5V$, unless otherwise noted.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	ТҮР	MAX	UNITS
Open-Drain Output Leakage		V _{CC} = 5.5V, V _{ALARM} = 5.5V, V _{WARN} = 5.5V (MAX6505)			1	μA
Current		V _{CC} = 5.5V, V _{OK} = 5.5V, V _{OVER} = 5.5V (MAX6507)			1	μΛ

Note 1: 100% production tested at $T_A = +25^{\circ}$ C. Specifications over temperature limits are guaranteed by design.

Note 2: T_{ALARM}, T_{UNDER}, and T_{OVER} are factory-programmed temperature trip thresholds from -40°C to +125°C in 5°C increments.
Note 3: Temperature threshold hysteresis is defined as the difference from positive-going temperature thresholds minus the negative-going temperature thresholds.

SUPPLY CURRENT **TRIP-POINT ERROR (%)** vs. TEMPERATURE **HYSTERESIS vs. TRIP TEMPERATURE** vs. SUPPLY VOLTAGE 50 2.5 0.1 $V_{CC} = +5V$ $V_{CC} = +5V$ $R_{PULLUP} = 100 k\Omega$ $R_{PULLUP} = 100k\Omega$ 0 45 2.0 -0.1 SUPPLY CURRENT (µA) RIP-POINT ERROR (%) 40 HYSTERESIS (°C) -0.2 -0.3 1.5 35 -0.4 30 -0.5 1.0 -0.6 25 NORMALIZED TO TRIP-POINT -0.7 TEMPERATURE AT V_{CC} = +5V 20 0.5 -0.8 -40 -25 -10 5 20 35 50 65 80 95 110 125 -40 -25 -10 5 20 35 50 65 80 95 110 125 3.0 2.5 3.5 4.5 5.0 4.0 5.5 TEMPERATURE (°C) TEMPERATURE (°C) SUPPLY VOLTAGE (V) MAX6505 MAX6505 **STARTUP AND POWER-DOWN STARTUP DELAY** (T < T_{TH}) (T > T_{TH}) А А 2V/div 2V/div В В 100µs/div 100µs/div A: V_{CC} PULSE B: ALARM VOLTAGE, $R_{PULLUP} = 100 k \Omega$ A: V_{CC} PULSE B: ALARM VOLTAGE, $R_{PULLUP} = 100 k\Omega$

 $(V_{CC} = +5V, unless otherwise noted.)$

MAX6505-MAX6508

	Р	IN		NAME	EUNCTION
MAX6505	MAX6506	MAX6507	MAX6508	NAME	FUNCTION
1			-	WARN	Open-Drain Active-Low Warning Output. WARN goes low when the die temperature exceeds $T_{WARN} = T_{ALARM} - \Delta T_{AW}$.
	1			WARN	Push-Pull Active-High Warning Output. WARN goes high when the die temperature exceeds $T_{WARN} = T_{ALARM} - \Delta T_{AW}$.
2	2	2	2	GND	Ground
3, 5	3, 5			S1, S0	Delta Temperature Select Input. Connect to V_{CC} or GND to select the difference between T_{ALARM} and T_{WARN} (Table 1 or see <i>Electrical Characteristics</i>).
		3	3	SO	Hysteresis Select Input. Connect to V _{CC} for 10°C hysteresis. Connect to GND for 2°C hysteresis.
4	4	4	4	Vcc	Supply Voltage Input. Bypass V_{CC} to GND with a $0.1 \mu F$ ceramic capacitor.
		5	5	N.C.	No Connection. Not internally connected.
		6	_	OVER	Open-Drain Active-Low Overtemperature Output. OVER goes low when the die temperature exceeds the factory- set value of T _{OVER} .
		_	6	OVER	Push-Pull Active-High Overtemperature Output. OVER goes high when the die temperature exceeds the factory-set value of T _{OVER} .
		1		ОК	Open-Drain Active-High Temperature Sensor Output. OK goes high impedance when the die temperature is between the factory-set values of T _{OVER} and T _{UNDER} . When the die temperature is above T _{OVER} or below T _{UNDER} , OK goes low.
			1	ОК	Push-Pull Active-Low Temperature Sensor Output. \overline{OK} goes low when the die temperature is between the factory- set values of T _{OVER} and T _{UNDER} . When the die temp- erature is above T _{OVER} or below T _{UNDER} , \overline{OK} goes high.
6				ALARM	Open-Drain Active-Low Alarm Output. ALARM goes low when the die temperature exceeds the factory-set value of TALARM.
	6			ALARM	Push-Pull Active-High Alarm Output. ALARM goes high when the die temperature exceeds the factory-set value of T _{ALARM} .

_____Pin Description

Detailed Description

The MAX6505–MAX6508 fully integrated temperature switches incorporate two temperature-dependent references and a comparator. One reference exhibits a positive temperature coefficient and the other a negative temperature coefficient. The temperature at which the two reference voltages are equal determines the temperature trip point. There are two versions, each of which has two logic outputs.

The MAX6505/MAX6506 have a main trip point (T_{ALARM}) and a lower, "warning" trip point (T_{WARN}). When the die temperature rises above these trip points, the ALARM and WARN outputs are asserted (Figure 1). The difference between the two trip points (Δ T_{AW}) is pin selectable to +5°C, +10°C, +20°C, or +30°C by connecting the two control pins (S0 and S1) high or low (Table 1). MAX6505 has open-drain active-low outputs; MAX6506 has push-pull active-high outputs.

The MAX6507/MAX6508 have two factory-programmed threshold temperatures (ToVER and TUNDER) and two outputs (OK and OVER). One output (OK) asserts when the temperature is between ToVER and TUNDER. The other output (OVER) asserts when the temperature is above ToVER. Table 4 shows the hex codes to determine the part numbers associated with specific values of ToVER and TUNDER. The first hex code indicates the lower trip point (TUNDER) and the second indicates the higher trip point (TOVER). For example, a part with TUNDER = -10°C and TOVER = +75°C will have the part number MAX6508UTA04B (Table 4 and Figure 2). MAX6507 has open-drain outputs; MAX6508 has pushpull outputs.

Hysteresis Selection

The temperature threshold hysteresis for the ALARM output of the MAX6505/MAX6506 is 2°C. The hysteresis for the WARN output depends on the value of ΔT_{AW} . If ΔT_{AW} is 5°C or 10°C (set by S0 and S1), WARN hysteresis is 5°C. If ΔT_{AW} is 20°C or 30°C, WARN hysteresis is 10°C. MAX6507 and MAX6508 have pin-selectable hysteresis of 2°C or 10°C for both OVER and OK outputs (Table 2).

Applications Information

Thermal Considerations

The MAX6505–MAX6508 supply current is typically 30µA. When used to drive high-impedance loads, the devices dissipate negligible power. Therefore, the die temperature is essentially the same as the package temperature. The key to accurate temperature monitoring is good thermal contact between the MAX6505–MAX6508 package and the device being monitored. In

M/XI/M

Table 1. MAX6505/MAX6506 ΔT_{AW} Selection Table

CONTRO	OL PINS	DESCRIPTION
S1	SO	$\Delta T_{AW} = T_{ALARM} - T_{WARN}$ (°C)
GND	GND	5
GND	V _C C	10
Vcc	GND	20
V _{CC}	V _{CC}	30

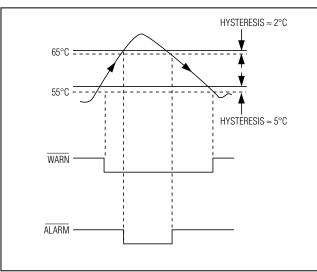
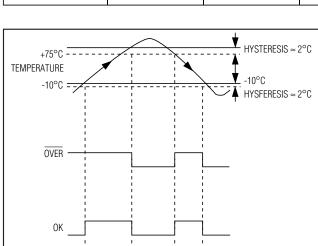


Figure 1. Temperature Response—MAX6505UTP065 Outputs, $\Delta T_{AW} = 10^{\circ}$ C, and WARN Hysteresis $\approx 5^{\circ}$ C


some applications, the SOT23 packages may be small enough to fit underneath a socketed microprocessor (μ P), allowing the device to monitor the μ P's temperature directly. Use the monitor's output to reset the μ P, assert an interrupt, or trigger an external alarm. Accurate temperature monitoring depends on the thermal resistance between the device being monitored and the MAX6505–MAX6508 die.

The rise in die temperature due to self-heating is given by the following formula:

$\Delta T_{J} = \mathsf{P}_{\mathsf{DISSIPATION}} \times \theta_{\mathsf{JA}}$

where PDISSIPATION is the power dissipated by the MAX6505–MAX6508, and θ_{JA} is the package's thermal resistance. The typical thermal resistance is 115°C/W for the SOT23 package. To limit the effects of self-heating, minimize the output currents. For example, if the MAX6505 sinks 5mA, the output voltage is guaranteed to be less than 0.5V. Therefore, an additional 2.5mW of

TYPICAL THRESHOLD HYSTERESIS PART ALARM CONDITIONS WARN CONDITIONS OK, OVER 2°C _____ 5°C $\Delta TWA = 5^{\circ}C \text{ or } 10^{\circ}C$ MAX6505 MAX6506 10°C $\Delta TWA = 20^{\circ}C \text{ or } 30^{\circ}C$ ____ 2°C S0 = GND____ ____ ____ MAX6507 MAX6508 10°C S0 = VCC

Table 2. Hysteresis Selection

Figure 2. Temperature Response—MAX6507A04B Outputs with 2°C Hysteresis

power is dissipated within the IC. This corresponds to a +0.288°C shift in the die temperature in the SOT23.

Power Supply and Bypassing

The MAX6505 and MAX6508 operate from a singlesupply voltage in the +2.5V to +5.5V range. Connect a 0.1μ F capacitor on the supply voltage line close to the V_{CC} pin for bypassing.

Low-Cost, Fail-Safe Temperature Monitor The MAX6505/MAX6506 provide two outputs that can be used for fail-safe temperature applications (Figure 3). For example, the first output can activate a fan when the die temperature exceeds a certain preset temperature. The second output asserts at a higher temperature that could be caused by a wide variety of destructive fault conditions, including latchup, short circuit, and cooling system failure. This output can be used to initiate such actions as shutdown of the entire system (see *Typical Operating Circuits*).

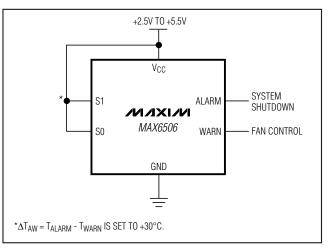


Figure 3. Low-Power, High-Reliability, Fail-Safe Temperature Monitor

The high-level integration, low cost, and small size of the MAX6505–MAX6508 facilitate the use of multiple temperature monitors to increase system reliability.

MXXIM

PART	SUFFIX	TRIP POINT (°C)	TOP MARK	PART	SUFFIX	TRIP POINT (°C)	TOP MARK
MAX6505	UTN035	-35	AAKK	MAX6506	UTN035	-35	AALR
MAX6505	UTN030	-30	AAKL	MAX6506	UTN030	-30	AALS
MAX6505	UTN025	-25	AAKM	MAX6506	UTN025	-25	AALT
MAX6505	UTN020	-20	AAKN	MAX6506	UTN020	-20	AALU
MAX6505	UTN015	-15	AAKO	MAX6506	UTN015	-15	AALV
MAX6505	UTN010	-10	AAKP	MAX6506	UTN010	-10	AALW
MAX6505	UTN005	-5	AAKQ	MAX6506	UTN005	-5	AALX
MAX6505	UTP000	0	AAKR	MAX6506	UTP000	0	AALY
MAX6505	UTP005	5	AAKS	MAX6506	UTP005	5	AALZ
MAX6505	UTP010	10	AAKT	MAX6506	UTP010	10	AAMA
MAX6505	UTP015	15	AAKU	MAX6506	UTP015	15	AAMB
MAX6505	UTP020	20	AAKV	MAX6506	UTP020	20	AAMC
MAX6505	UTP025	25	AAKW	MAX6506	UTP025	25	AAMD
MAX6505	UTP030	30	AAKX	MAX6506	UTP030	30	AAME
MAX6505	UTP035	35	AAKY	MAX6506	UTP035	35	AAMF
MAX6505	UTP040	40	AAKZ	MAX6506	UTP040	40	AAMG
MAX6505	UTP045	45	AALA	MAX6506	UTP045	45	AAMH
MAX6505	UTP050	50	AALB	MAX6506	UTP050	50	AAMI
MAX6505	UTP055	55	AALC	MAX6506	UTP055	55	AAMJ
MAX6505	UTP060	60	AALD	MAX6506	UTP060	60	AAMK
MAX6505	UTP065	65	AALE	MAX6506	UTP065	65	AAML
MAX6505	UTP070	70	AALF	MAX6506	UTP070	70	AAMM
MAX6505	UTP075	75	AALG	MAX6506	UTP075	75	AAMN
MAX6505	UTP080	80	AALH	MAX6506	UTP080	80	AAMO
MAX6505	UTP085	85	AALI	MAX6506	UTP085	85	AAMP
MAX6505	UTP090	90	AALJ	MAX6506	UTP090	90	AAMQ
MAX6505	UTP095	95	AALK	MAX6506	UTP095	95	AAMR
MAX6505	UTP100	100	AALL	MAX6506	UTP100	100	AAMS
MAX6505	UTP105	105	AALM	MAX6506	UTP105	105	AAMT
MAX6505	UTP110	110	AALN	MAX6506	UTP110	110	AAMU
MAX6505	UTP115	115	AALO	MAX6506	UTP115	115	AAMV
MAX6505	UTP120	120	AALP	MAX6506	UTP120	120	AAMW
MAX6505	UTP125	125	AALQ	MAX6506	UTP125	125	AAMX

Table 3. MAX6505/MAX6506 Suffix and Top Mark Codes

MAX6505-MAX6508

TRIP TEMPERATURE (°C)	HEX CODE*			
-40	82			
-35	87			
-30	8C			
-25	91			
-20	96			
-15	9B			
-10	AO			
-5	A5			
0	00			
5	05			
10	0A			
15	0F			
20	14			
25	19			
30	1E			
35	23			
40	28			
45	2D			
50	32			
55	37			
60	3C			
65	41			
70	46			
75	4B			
80	50			
85	55			
90	5A			
95	5F			
100	64			
105	69			
110	6E			
115	73			
120	78			
125	7D			

Table 4. MAX6507/MAX6508 Trip Temperature Code

*Two hex codes are used in the suffix. The first indicates the the low trip temperature and the second indicates the high trip temperature. For example, the MAX6507UT8255+T has a lower trip point of -40°C and an upper trip point of +85°C.

Temperature-Window Alarm

The MAX6507 and MAX6508 have an output (OK, \overline{OK}) that indicates the die temperature is within the selected temperature window. This output is asserted when within the window, and deasserted when outside the window. Additionally, a second digital output indicates when the die temperature is above the upper set point. This is useful in systems where operation is optimized over a predetermined temperature range. The thermal overrange signal can be used to assert a thermal shutdown, power-up, recalibration, or other temperature dependent function (Figure 4 and *Typical Operating Circuits*).

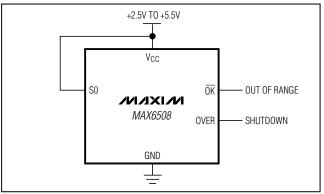
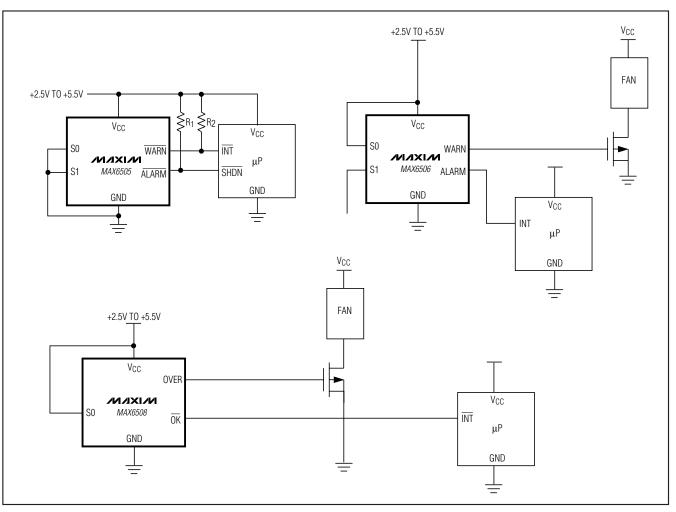


Figure 4. Temperature-Window Alarms

Chip Information

///XI//I


PROCESS: BICMOS

Package Information

For the latest package outline information and land patterns (footprints), go to **www.maxim-ic.com/packages**. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE	PACKAGE	OUTLINE	LAND
TYPE	CODE	NO.	PATTERN NO.
6 SOT23	U6SN+1	<u>21-0058</u>	<u>90-0175</u>

MAX6505-MAX6508

_Typical Operating Circuits

Selector Guide

PART	OUTPUT LOGIC	OUTPUT STAGE	TEMPERATURE THRESHOLD RANGE
MAX6505	ALARM, WARN	Open Drain	-40°C to +125°C
MAX6506	ALARM, WARN	Push-Pull	-40°C to +125°C
MAX6507	OVER, OK	Open Drain	-40°C to +125°C
MAX6508	OVER, OK	Push-Pull	-40°C to +125°C

MAX6505-MAX6508

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	4/00	Initial release	_
1	2/11	Changed all leaded parts to lead(Pb)-free parts in the <i>Ordering Information</i> table; in the <i>Absolute Maximum Ratings</i> section changed the continuous power dissipation numbers (7.1mW/°C to 8.7mW/°C and 571mW to 696mW) and added the soldering temperature; added the <i>Package Information</i> table	1, 2, 8

Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.

10

_Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600

© 2011 Maxim Integrated Products

Maxim is a registered trademark of Maxim Integrated Products, Inc.