Precision, Micropower, 1.8V Supply, Low-Dropout, SOT23 Voltage Reference

Absolute Maximum Ratings

(Voltages Referenced to GND)	Operating Temperature Range40°C to +85°C
V _{IN} 0.3V to +6V	Junction Temperature+150°C
Output Short-Circuit Duration to GND or V _{IN} Continuous	Storage Temperature Range65°C to +150°C
Continuous Power Dissipation (T _A = +70°C)	Lead Temperature (soldering, 10s)+300°C
3-Pin SOT23 (derate 4 0mW/°C above +70°C) 320mW	

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Electrical Characteristics (MAX6018_12-1.263V)

 $(V_{IN} = 1.8V; C_{OUT} = 47nF, I_{OUT} = 0; T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.)$ (Note 1)

PARAMETER	SYMBOL	CONDITIONS	MIN	TYP	MAX	UNITS	
OUTPUT						•	
0.44.1/2/15		MAX6018A_12 (0.2%)	1.2605	1.2630	1.2655	V	
Output Voltage	V _{OUT}	MAX6018B_12 (0.4%)	1.2580	1.2630	1.2681	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	
Output Voltage Temperature Drift	TCV _{OUT}	(Note 2)		16	50	ppm/°C	
Line Regulation	ΔV _{OUT} / ΔV _{IN}	1.8V ≤ V _{IN} ≤ 5.5V		50	400	μV/V	
Load Degulation	ΔV _{OUT} /	0 ≤ I _{OUT} ≤ 1mA		90	700	μV/mA	
Load Regulation	ΔI_{OUT}	-100μA ≤ I _{OUT} ≤ 0		2	9	μV/μΑ	
Short-Circuit Current		Sourcing to GND		3		m 1	
Short-Circuit Current	Isc	Sinking from V _{IN}		6		- mA	
Long-Term Stability ΔV _{OUT} / Time		1000hrs at T _A = +25°C		100		ppm	
Thermal Hysteresis		(Note 4)		130		ppm	
DYNAMIC CHARACTERISTICS							
Nicio a Valta na		0.1Hz to 10Hz	45			μV _{p-p}	
Noise Voltage	e _{OUT}	10Hz to 10kHz		100		μV _{RMS}	
Ripple Rejection		V _{IN} = 1.8V ±100mV (f = 120Hz)		85		dB	
Turn-On Settling Time	t _R	Settling to 0.1%; C _{OUT} = 5nF		200		μs	
Capacitive-Load Stability Range	C _{OUT}	(Note 2)	47		1000	nF	
INPUT							
Supply Voltage Range	V _{IN}	Guaranteed by Line Regulation Test	1.8		5.5	V	
		T _A = +25°C		3	5		
Quiescent Supply Current	I _{IN}	$T_A = T_{MIN}$ to T_{MAX}		3	6	μA	
Change in Quiescent Supply Current vs. Input Voltage $\Delta I_{IN}/\Delta V_{IN}$		1.8V ≤ V _{IN} ≤ 5.5V		0.1	0.5	μ A /V	

Precision, Micropower, 1.8V Supply, Low-Dropout, SOT23 Voltage Reference

Electrical Characteristics (MAX6018_16-1.600V)

 $(V_{IN}$ = 1.8V; C_{OUT} = 47nF, I_{OUT} = 0; T_A = T_{MIN} to T_{MAX} , unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
OUTPUT								
Output Valtage		MAX6018A_16 (0.2%)	T _A = +25°C	1.5968	1.6000	1.6032	V	
Output Voltage V _{OUT}		MAX6018B_16 (0.4%)	T _A = +25°C	1.5936	1.6000	1.6064	v	
Output Voltage Temperature Drift	TCV _{OUT}	(Note 2)			16	50	ppm/°C	
Line Regulation	ΔV _{OUT} / ΔV _{IN}	1.8V ≤ V _{IN} ≤ 5.5V			40	250	μV/V	
Lood Domilation	ΔV _{OUT} /	0 ≤ I _{OUT} ≤ 1mA			90	700	μV/mA	
Load Regulation	ΔI _{OUT}	-750μA ≤ I _{OUT} ≤ 0			0.6	50	μV/μΑ	
Dropout Voltage (Note 3)	V _{IN} - V _{OUT}	I _{OUT} = 1mA			100	200	mV	
Object Oisself Ossessel		Sourcing to GND			6		mA	
Short-Circuit Current	I _{SC}	Sinking from V _{IN}			2			
Long-Term Stability	ΔV _{OUT} / Time	1000hrs at T _A = +25°C			100		ppm	
Thermal Hysteresis		(Note 4)			130		ppm	
DYNAMIC CHARACTERISTICS								
Nicios Valtago		0.1Hz to 10Hz			40		μV _{p-p}	
Noise Voltage	eOUT	10Hz to 10kHz			150		μV_{RMS}	
Ripple Rejection		V _{IN} = 1.8V ±100mV (f = 120	Hz)		85		dB	
Turn-On Settling Time	t _R	Settling to 0.1%; C _{OUT} = 5n	F		200		μs	
Capacitive-Load Stability Range	C _{OUT}	(Note 2)		0.1		1000	nF	
INPUT								
Supply Voltage Range	V _{IN}	Guaranteed by Line Regulation Test		1.8		5.5	V	
Quiescent Supply Current I _{IN}		T _A = +25°C			3	5	μA	
		$T_A = T_{MIN}$ to T_{MAX}			3	6	μΛ	
Change in Quiescent Supply Current vs. Input Voltage	$\Delta I_{IN}/\Delta V_{IN}$	1.8V ≤ V _{IN} ≤ 5.5V			0.1	0.5	μ A /V	

Precision, Micropower, 1.8V Supply, Low-Dropout, SOT23 Voltage Reference

Electrical Characteristics (MAX6018_18-1.800V)

 $(V_{IN} = 2.0V; C_{OUT} = 47nF, I_{OUT} = 0; T_A = T_{MIN} \text{ to } T_{MAX}, \text{ unless otherwise noted. Typical values are at } T_A = +25^{\circ}C.) \text{ (Note 1)}$

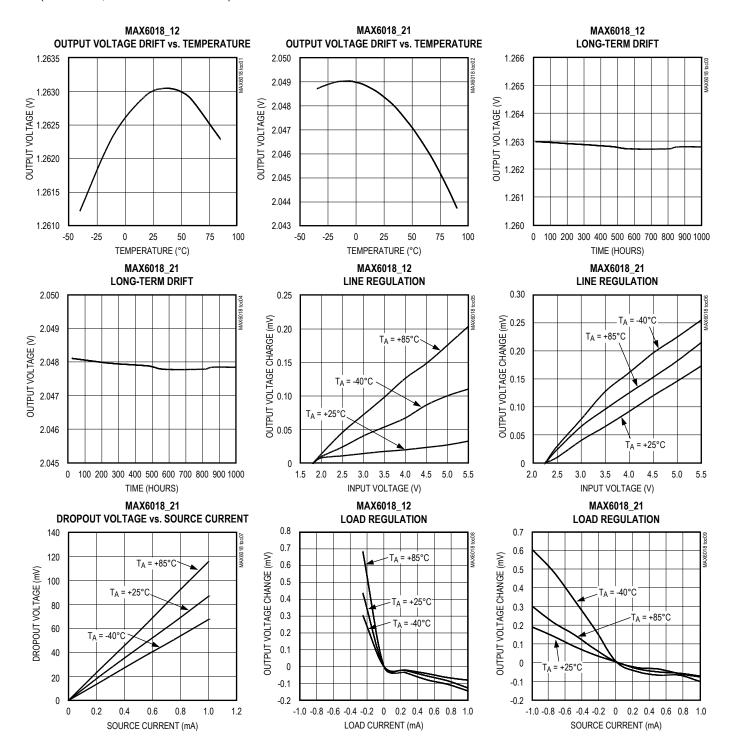
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
OUTPUT								
I () utnut Voltage Vour		MAX6018A_18 (0.2%)	T _A = +25°C	1.7964	1.8000	1.8036	V	
		MAX6018B_18 (0.4%)	T _A = +25°C	1.7928	1.8000	1.8072] V	
Output Voltage Temperature Drift	TCV _{OUT}	(Note 2)			16	50	ppm/°C	
Line Regulation	ΔV _{OUT} / ΔV _{IN}	2.0V ≤ V _{IN} ≤ 5.5V			40	275	μV/V	
Load Description	ΔV _{OUT} /	0 ≤ I _{OUT} ≤ 1mA			90	800	μV/mA	
Load Regulation	Δl _{OUT}	-1mA ≤ I _{OUT} ≤ 0			0.4	50	μV/μΑ	
Dropout Voltage (Note 3)	V _{IN} - V _{OUT}	I _{OUT} = 1mA			100	200	mV	
Chart Cinavit Comment		Sourcing to GND			7.5		0	
Short-Circuit Current	Isc	Sinking from V _{IN}			3		mA	
Long-Term Stability	ΔV _{OUT} / Time	1000hrs at T _A = +25°C	1000hrs at T _A = +25°C		100		ppm	
Thermal Hysteresis		(Note 4)	(Note 4)		130		ppm	
DYNAMIC CHARACTERISTICS	'			'				
		0.1Hz to 10Hz			45		μV _{p-p}	
Noise Voltage	e _{OUT}	10Hz to 10kHz			160		μV _{RMS}	
Ripple Rejection		V _{IN} = 2.0V ±100mV (f = 120	Hz)		85		dB	
Turn-On Settling Time	t _R	Settling to 0.1%; C _{OUT} = 5n	F		200		μs	
Capacitive-Load Stability Range	C _{OUT}	(Note 2)		0.1		1000	nF	
INPUT								
Supply Voltage Range	V _{IN}	Guaranteed by Line Regulation Test		2.0		5.5	V	
Ouiseaset Supply Current		T _A = +25°C			3	5		
Quiescent Supply Current	I _{IN}	$T_A = T_{MIN}$ to T_{MAX}			3	6	μA	
Change in Quiescent Supply Current vs. Input Voltage	ΔΙ _{ΙΝ} /ΔV _{ΙΝ}	2V ≤ V _{IN} ≤ 5.5V			0.1	0.5	μ A /V	

Electrical Characteristics (MAX6018_21-2.048V)

 $(V_{IN}$ = 2.25V; C_{OUT} = 47nF, I_{OUT} = 0; T_A = T_{MIN} to T_{MAX} , unless otherwise noted. Typical values are at T_A = +25°C.) (Note 1)

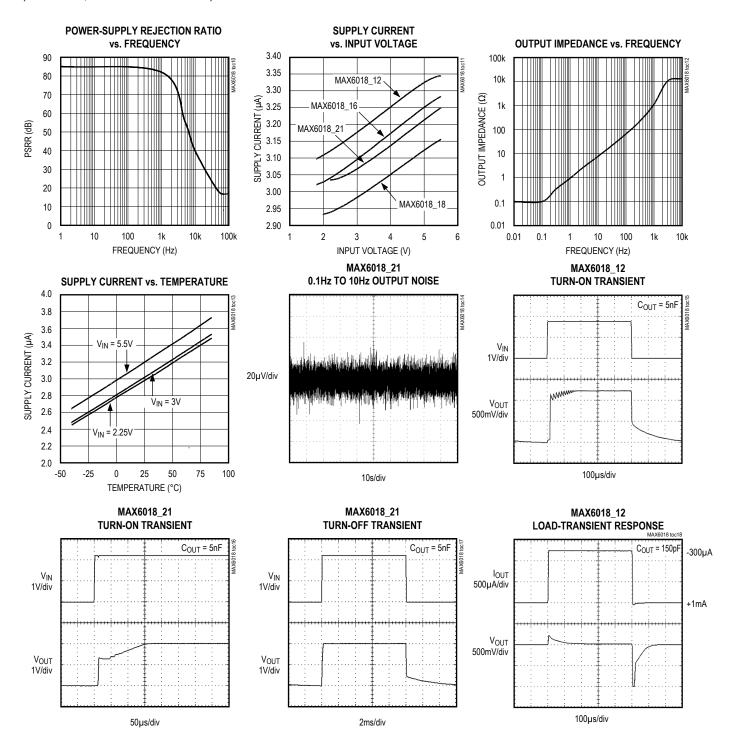
PARAMETER	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS	
OUTPUT		•						
0.45.41/6/65	.,,	MAX6018A_21 (0.2%)	T _A = +25°C	2.0439	2.0480	2.0521	.,	
utput Voltage V _{OUT}		MAX6018B_21 (0.4%)	T _A = +25°C	2.0398	2.0480	2.0562	V	
Output Voltage Temperature Drift	TCV _{OUT}	(Note 2)	1 22		16	50	ppm/°C	
Line Regulation	ΔV _{OUT} / ΔV _{IN}	2.25V ≤ V _{IN} ≤ 5.5V			45	330	μV/V	
Load Degulation	ΔV _{OUT} /	0 ≤ I _{OUT} ≤ 1mA			90	1000	μV/mA	
Load Regulation	Δl _{OUT}	-1mA ≤ I _{OUT} ≤ 0			0.3	50	μV/μΑ	
Dropout Voltage (Note 3)	V _{IN} - V _{OUT}	I _{OUT} = 1mA			100	200	mV	
Chart Cinavit Comment		Sourcing to GND			10		^	
Short-Circuit Current I _{SC}		Sinking from V _{IN}			4		mA	
Long-Term Stability	ΔV _{OUT} / Time	1000hrs at T _A = +25°C			100		ppm	
Thermal Hysteresis		(Note 4)			130		ppm	
DYNAMIC CHARACTERISTICS		•						
Nicion Valtage		0.1Hz to 10Hz			50		μV _{p-p}	
Noise Voltage	eout	10Hz to 10kHz			175		μV _{RMS}	
Ripple Rejection		V _{IN} = 2.25V ±100mV (f = 1	120Hz)		85		dB	
Turn-On Settling Time	t _R	Settling to 0.1%; C _{OUT} = 5	5nF		200		μs	
Capacitive-Load Stability Range	C _{OUT}	(Note 2)		0.1		1000	nF	
INPUT								
Supply Voltage Range	V _{IN}	Guaranteed by Line Regulation Test		2.25		5.5	V	
Ouissant Cumply Cumpnt		T _A = +25°C			3	5		
Quiescent Supply Current	I _{IN}	$T_A = T_{MIN}$ to T_{MAX}			3	6	μA	
Change in Quiescent Supply Current vs. Input Voltage	$\Delta I_{IN}/\Delta V_{IN}$	2.25V ≤ V _{IN} ≤ 5.5V			0.1	0.5	μΑ/V	

Note 1: Devices are 100% production tested at $T_A = +25^{\circ}$ C and are guaranteed by design from $T_A = T_{MIN}$ to T_{MAX} .

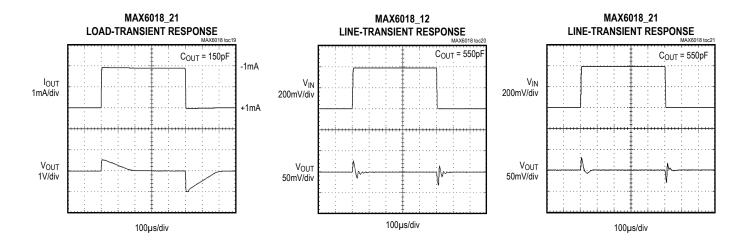

Note 2: Not production tested. Guaranteed by design.

Note 3: Dropout voltage is the minimum input voltage at which V_{OUT} changes ≤ 0.2% from V_{OUT} at rated V_{IN} and is guaranteed by Load Regulation Test.

Note 4: Thermal hysteresis is defined as the change in $T_A = +25^{\circ}C$ output voltage before and after temperature cycling of the device (from $T_A = T_{MIN}$ to T_{MAX}). Initial measurement at $T_A = +25^{\circ}C$ is followed by temperature cycling the device to $T_A = +85^{\circ}C$ then to $T_A = -40^{\circ}C$ and another measurement at $T_A = +25^{\circ}C$ is compared to the original measurement at $T_A = +25^{\circ}C$.


Typical Operating Characteristics

(TA = +25°C, unless otherwise noted.)


Typical Operating Characteristics (continued)

(TA = +25°C, unless otherwise noted.)

Typical Operating Characteristics (continued)

(TA = +25°C, unless otherwise noted.)

Detailed Description

The MAX6018 is a precision, low-voltage, low-dropout, micropower, bandgap voltage reference in a SOT23 package. This three-terminal reference operates with an input voltage from (V_{OUT} + 200mV) to 5.5V, and is available with output voltage options of 1.2V, 1.6V, 1.8V, and 2.048V. These devices can source up to 1mA with <200mV of dropout voltage, making them attractive for use in low-voltage applications.

Applications Information

Output/Load Capacitance

These devices require a minimum of 100pF load to maintain output stability.

They remain stable for capacitive loads as high as $1\mu F$. In applications where the load or the supply can experience step changes, a larger output capacitor reduces the amount of overshoot (or undershoot) and assists the circuit's transient response. Otherwise, applications may not need more than 100pF.

Supply Current

The $5\mu A$ maximum supply current varies only $0.1\mu A/V$ with the supply voltage.

When the supply voltage is below the minimum-specified input voltage (as during turn-on), the devices can draw up to 20µA beyond the nominal supply current. The input voltage source must be capable of providing this current to ensure reliable turn-on.

Pin Description

PIN	NAME	FUNCTION
1	IN	Supply Voltage Input. Bypass with a 0.1μF capacitor to ground.
2	OUT	Reference Voltage Output. Bypass with at least 100pF to ground. (See Output/Load Capacitance section).
3	GND	Ground

Turn-On Time

These devices typically turn on and settle to within 0.1% of their final value in $200\mu s$. The turn-on time can increase up to 1ms with the device operating at the minimum dropout voltage and the maximum load.

MAX6018

Precision, Micropower, 1.8V Supply, Low-Dropout, SOT23 Voltage Reference

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a "+", "#", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE OUTLINE NO.		LAND PATTERN NO.	
3 SOT23	U3+1	21-0051	90-0179	

Chip Information

TRANSISTOR COUNT: 87 PROCESS: BICMOS

www.maximintegrated.com Maxim Integrated | 9

MAX6018

Precision, Micropower, 1.8V Supply, Low-Dropout, SOT23 Voltage Reference

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED	
3	10/15	Added lead-free options	1	

For pricing, delivery, and ordering information, please contact Maxim Direct at 1-888-629-4642, or visit Maxim Integrated's website at www.maximintegrated.com.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits) shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.