Contents

Со	ntents		
1	Pin con	nections	5
2	Maximu	um ratings	6
3	Electric	al characteristics	7
	3.1	Schematic diagram	9
	3.2	Input section	10
	3.3	Overtemperature protection	10
	3.4	Undervoltage protection	10
	3.5	Overcurrent operation	10
	3.6	Diagnostic logic	11
	3.7	Demagnetization of inductive loads	11
	3.8	Diagnostic truth table	12
4	Applica	ation circuits	13
5	Packag	e information	15
	5.1	SO-8 package information	15
	5.2	SO-8 packing information	17
6	Revisio	on history	19

List of tables

Table 1: Device summary	1
Table 2: Pin description	
Table 3: Absolute maximum ratings	
Table 4: Thermal data	6
Table 5: Electrical characteristics	7
Table 6: Diagnostic truth table	12
Table 7: SO-8 package mechanical data	
Table 8: SO-8 tape and reel mechanical data	17
Table 9: SO-8 tube mechanical data	18
Table 10: Document revision history	19

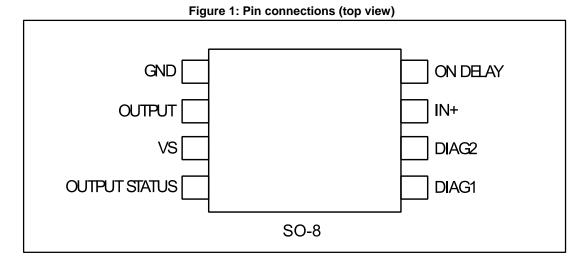

List of figures

Figure 1: Pin connections (top view)	5
Figure 2: Block diagram	
Figure 3: Switching waveforms	
Figure 4: Short-circuit operation waveforms	
Figure 5: Input comparator hysteresis	13
Figure 6: External demagnetization circuit (versus ground)	
Figure 7: External demagnetization circuit (versus VS)	
Figure 8: Application schematic	
Figure 9: SO-8 package outline	15
Figure 10: SO-8 recommended footprint	
Figure 11: SO-8 tape and reel outline	17
Figure 12: SO-8 tube outline	18

L6375S

1 Pin connections

Table 2: Pin description

Pin	Pin name	Function
1	GND	Ground
2	OUTPUT	High-side output with built-in current limitation
3	VS	Supply voltage range with undervoltage monitoring
4	Output status	This current source output can drive a LED to signal the status of the output pin. The pin is active (source current) when the output pin is high
5	DIAG1	Diagnostic1 output. This open drain reports the IC working conditions
6	DIAG2	Diagnostic2 output. This open drain reports the IC working conditions
7	IN+	Comparator inverting input
8	ON DELAY	Programmable ON time interval duration during short-circuit operation

2 Maximum ratings

Table 3: Absolute maximum ratings

Symbol Parameter		Value	Unit
N	Supply voltage (tw ≤ 10 ms)	50	V
Vs	Supply voltage (DC)	40	V
Vs- Vout	Supply to output differential voltage	Internally limited	V
V _{od}	ON DELAY pin voltage	-0.3 to 7	V
l _{od}	ON DELAY pin current	± 1	mA
lout	Output current	Internally limited	А
Vout	Output voltage	Internally limited	V
Eı	Energy inductive load: T _J = 85 °C	200	mJ
P _{tot}	Power dissipation	Internally limited	W
V _{diag}	DIAGx pin voltage	-0.3 to 40	V
I _{diag}	DIAGx pin current	-10 to 10	mA
li	IN+ pin current	20	mA
Vi	IN+ pin voltage	-10 to V _s +0.3	V
T _{op}	Ambient temperature, operating range	-25 to 85	°C
TJ	Junction tmperature, operating range	-25 to 125	°C
T _{stg}	Storage temperature	-55 to 150	°C

Table 4: Thermal data

Symbol	Parameter	Value	Unit
R _{th(JA)}	Thermal resistance junction-ambient	100 max. ⁽¹⁾	
R _{th(JP)}	Thermal resistance junction-pins	15 max.	°C/W

Notes:

 $^{(1)}$ When mounted on a standard single-sided FR-4 board with 0.5 cm² of Cu (at least 35 μm thick) connected to all VCC pins. Horizontal mounting and no artificial air flow.

3 Electrical characteristics

 V_{S} = 24 V; T_{J} = -25 to 125 °C, unless otherwise specified.

Table 5: Electrical characteristics

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{smin}	Supply voltage for valid diagnostic	$I_{diag} \ge 0.5 \text{ mA}; V_{diag} = 1.5 \text{ V}$	4		35	V
Vs	Operative supply voltage		8	24	35	V
V _{sth1}	Undervoltage threshold 1		7	7.5	8	V
V _{sth2}	Undervoltage threshold 2		6.5	7	7.5	V
V_{shys}	Undervoltage hysteresis		300	500	700	mV
lq	Quieseent eurrent	Output open		800		μA
l _{qo}	Quiescent current	Output on		1.6		mA
V _{ith}	IN+ pin threshold voltage		0.8	1.3	2	V
Viths	IN+ pin threshold hysteresis		50		400	mV
V _{il}	IN+ pin low level voltage		-7		0.8	V
N/	IN+ pin high level voltage	V _S < 18 V	2		Vs-3	V
Vih			2		15	
lib	IN+ pin bias current	V _i = -7 to 15 V	-250		250	μA
Idch	Delay capacitor charging current	ON DELAY pin shorted-to-ground		2.5		μA
		I _{out} = 500 mA; T _J = 25 °C		200	280	
N/		T _J = 125 °C		320	440	
Vdon	Output voltage drop	$I_{out} = 625 \text{ mA}; T_J = 25 \text{ °C}$		250	350	mV
		T _J = 125 °C		400	550	
l _{olk}	Output leakage current	$V_i = Iow; V_{out} = 0$			100	μA
Vol	Output low-state voltage	V _i = high; pin floating		0.8	1.5	V
V _{cl}	Internal voltage clamp (Vs- Vout)	I _o = 200 mA single Pulsed = 300 ms	48	53	58	V
I _{SC}	Short-circuit output current	$V_S = 8$ to 35 V; $R_I = 2 \Omega$	0.75	1.1	1.5	А
lold	Open load detection current	$V_i = V_{ih}$; $T_A = 0$ to +85 °C	1	3	6	mA
V _{oth1}	Output status threshold 1 voltage		4.5	5	5.5	V

Electrical characteristics

L6375S

Symbol	Parameter	Test conditions	Min.	Тур.	Max.	Unit
V _{oth2}	Output status threshold 2 voltage		4	4.5	5	V
Vohys	Output status threshold hysteresis		300	500	700	mV
l _{osd}	Output status source current	$V_{out} > V_{oth1}; V_{OS} = 2.5 V$	2		4	mA
Vosd	Active output status driver drop voltage	$V_S - V_{OS}$; $I_{OS} = 2 \text{ mA}$; $T_A = 0 \text{ to } +85 \text{ °C}$		1.5	3	V
l _{oslk}	Output status driver leakage current	$V_{out} < V_{oth2}$; $V_{OS} = 0$ V; $V_S = 18$ to 35 V			25	μA
M	Diagnostic drop	D1 / D2 = L; I _{diag} = 0.5 mA		40		
V _{dgl}	voltage	D1 / D2 = L; I_{diag} = 3 mA		250		mV
Idglk	Diagnostic leakage current	D1 / D2 = H; 0 < V _{dg} < V _S V _S = 15.6 to 35 V			5	μA
T _{max.}	Overtemperature upper threshold			150		°C
T _{hys}	Overtemperature hysteresis			20		°C
AC opera	ation					
tr- t _f	Rise or fall time	V _s = 24 V; R _l = 70 Ω; R _l		20		
td	Delay time	to ground		5		μs
dV/dt	Slew rate (rising and falling edge)		0.7	1	1.5	V/µs
ton	On-time during short- circuit condition	50 pF < C _{DON} < 2 nF		1.28		µs/pF
toff	Off-time during short- circuit condition			64		ton
f _{max.}	Maximum operating frequency			25		kHz
Source d	Irain NDMOS diode	•				
V _{fsd}	Forward on voltage	I _{fsd} = 625 mA		1	1.5	V
I _{fp}	Forward peak current	t _p = 10 ms; duty cycle = 20%	1		2	Α
t _{rr}	Reverse recovery time	I_{fsd} = 625 mA; dI _{fsd} /dt = 25 A/µs	1	200		ns
t _{fr}	Forward recovery time			50		ns

8/20

3.1 Schematic diagram

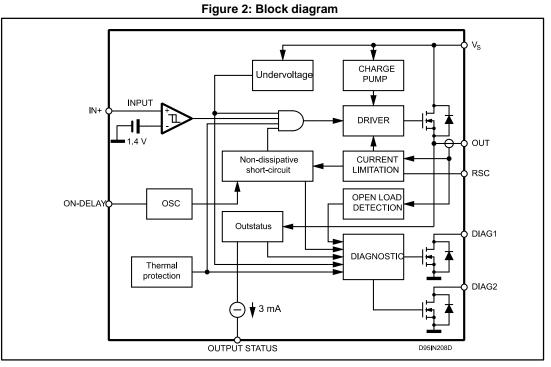
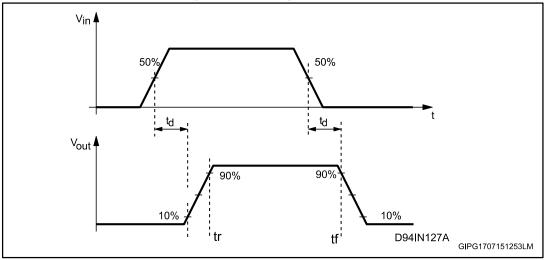



Figure 3: Switching waveforms

3.2 Input section

A single ended input TTL/CMOS compatible with a wide voltage range and high noise immunity (thanks to a built-in hysteresis) is available.

3.3 Overtemperature protection

On-chip overtemperature protection provides an excellent protection of the device in extreme conditions. Whenever the temperature, measured on a central portion of the chip, exceeds $T_{max.} = 150$ °C (typical value) the device shuts down, and the DIAG2 output goes low. Normal operation is resumed as the chip temperature (normally after few seconds) falls below $T_{max.}$ - $T_{hys} = 130$ °C (typical value). The hysteresis avoids that an intermittent behavior occurs.

3.4 Undervoltage protection

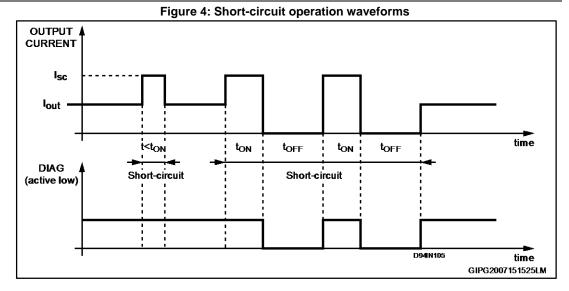
The supply voltage operates correctly in a range from 8 to 35 V. Below 8 V the overall system has to be considered not reliable. To avoid any malfunctioning, the supply voltage is continuously monitored to provide an undervoltage protection. As V_s falls below V_{sth}-V_{shys} (typically 7.5 V) the output power MOSFET switches off and DIAG1 and DIAG2 output go low. Normal operation is resumed as soon as V_s exceeds V_{sth}. The hysteretic behavior prevents intermittent operation at low supply voltage.

3.5 Overcurrent operation

In order to implement a short-circuit protection, the output power MOSFET is driven to linear mode to limit the output current to the I_{SC} value (1.1 A typical value).

This condition (current limited to the I_{SC} value) lasts for a T_{ON} time interval that can be set by a capacitor (C_{DON}) connected to the ON DELAY pin according to the following formula:

Equation 1:


 t_{ON} = 1.28 µs/pF for 50 pF < C_{DON} < 2 nF

After the ton interval has expired the output power MOSFET switches off for the toFF time interval:

Equation 2:

toff = 64. ton

When the t_{OFF} interval has expired, the output power MOSFET switches on. In this manner two conditions may occur:

- the overload is still present. In this case, the output power MOSFET is again driven to linear mode (limiting the output current to Isc) for another to_N, starting a new cycle
- the overload condition is removed, and the output power MOSFET is no longer driven to linear mode

Please, see the DIAG pin (see *Figure 4: "Short-circuit operation waveforms"*). This unique feature is called no-dissipative short-circuit protection and it ensures a very safe operation even in permanent overload conditions. The choice of the most appropriate value for the to_N interval (the value of the C_{DON} capacitor) is very important, a delay (the to_N itself) prevents the misleading short-circuit information is presented on the DIAG output, when capacitive loads are driven or incandescent lamp, a cold filament, has a very low resistive value. The non-dissipative short-circuit protection can be disabled (keeping to_N = 0 but with the output current still limited to I_{SC}, and diagnostic disabled) by shorting to ground the ON DELAY pin.

3.6 Diagnostic logic

The operating conditions of the device are permanently monitored and the following occurrences are indicated by DIAG1/DIAG2 open drain output pins.

- Short-circuit vs. ground
- Short-circuit vs. VS
- Undervoltage (UV)
- Overtemperature (OVT)
- Open load, if the output current is less than 3 mA (typical value)

3.7 Demagnetization of inductive loads

An internal Zener diode, limiting the voltage across the power MOSFET between 50 and 60 V (V_{cl}), provides safe and fast demagnetization of inductive loads without the external clamping devices. The maximum energy absorbed by an inductive load is specified as 200 mJ (at $T_J = 85$ °C).

3.8

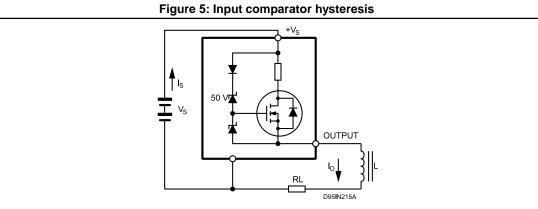
Diagnostic truth table

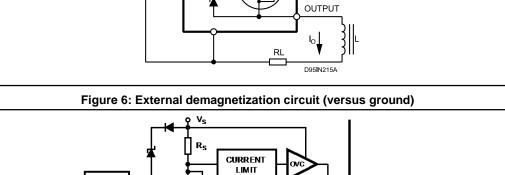
Diagnostic conditions	Input	Output	DIAG1	DIAG2
Normal operation	L	L	Н	Н
	Н	Н	Н	Н
Open load condition (I _o < I _{old})	L	L	Н	Н
	Н	Н	L	Н
Short to V	L	Н	L	Н
Short to V _S		Н	L	Н
Short circuit to ground $(L - L)^{2}$ (ON DELAX pip grounded)	Н	Х	Н	Н
Short-circuit to ground $(I_0 = I_{sc})^a$ (ON DELAY pin grounded)	L	L	Н	Н
	L	L	Н	Н
Output DMOS open	Н	L	L	Н
Quartemperatura	L	L	Н	L
Overtemperature	Н	L	Н	L
	L	L	L	L
Supply undervoltage (V _S < V _{sth2})		L	L	L

Table 6: Diagnostic truth table

^a A cold lamp filament or a capacitive load activates the current limiting circuit of the IPS, when the IPS is initially turned on.

L6375S

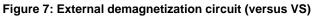

4 Application circuits

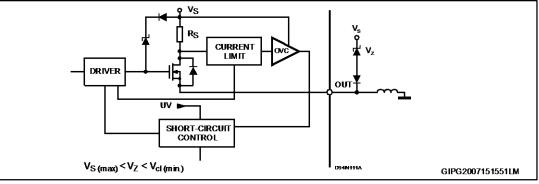

DRIVER

UV

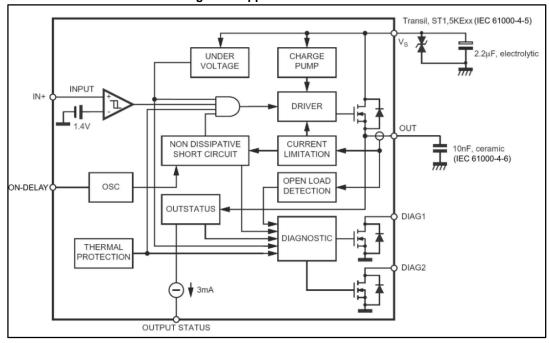
V_Z < V_{cl (min.)}- V_{S (max.)}

SHORT-CIRCUIT CONTROL





оит


D94IN112

GIPG2007151545LM

57

L6375S

5 Package information

In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK[®] packages, depending on their level of environmental compliance. ECOPACK[®] specifications, grade definitions and product status are available at: *www.st.com*. ECOPACK[®] is an ST trademark.

5.1 SO-8 package information

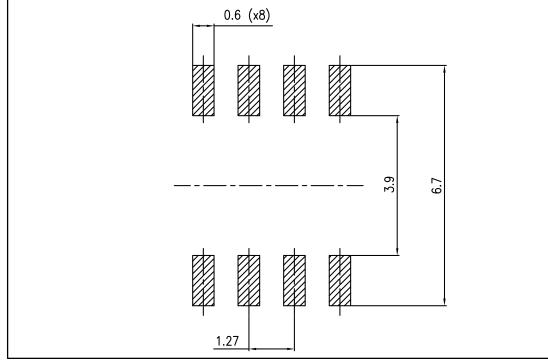


Table 7: SO-8 package mechanical data

Dim.	•	mm	
Dim.	Min.	Тур.	Max.
A			1.75
A1	0.10		0.25
A2	1.25		
b	0.28		0.48
С	0.17		0.23
D	4.80	4.90	5.00
E	5.80	6.00	6.20
E1	3.80	3.90	4.00
е		1.27	
h	0.25		0.50
L	0.40		1.27
L1		1.04	
k	0°		8°
CCC			0.10

Package information

16/20

DocID12603 Rev 9

5.2 SO-8 packing information

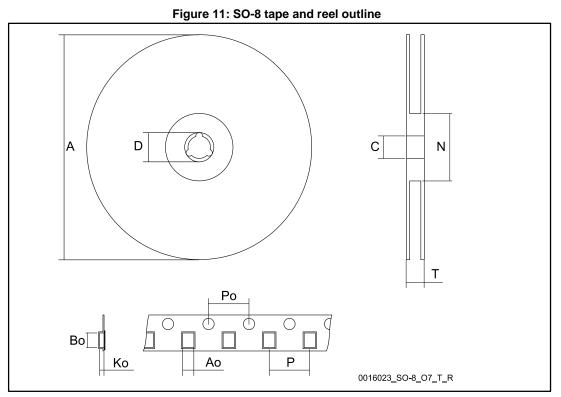


Table 8: SO-8 tape and reel mechanical data

Dim.	•	mm	
Dim.	Min.	Тур.	Max.
A			330
С	12.8		13.2
D	20.2		
N	60		
Т			22.4
Ao	8.1		8.5
Во	5.5		5.9
Ко	2.1		2.3
Po	3.9		4.1
Р	7.9		8.1

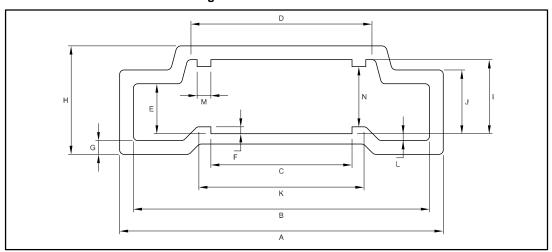


Table 9: SO-8 tube mechanical data

Dim.	mm
A	18.80
В	17.2 ± 0.2
С	8.20 ± 0.2
D	10.90 ± 0.2
E	2.90 ± 0.2
F	0.40
G	0.80
Н	6.30
1	4.30 ± 0.2
J	3.7 ± 0.2
к	9.4
L	0.40
М	0.80
Ν	3.50 ± 0.2

18/20

6 Revision history

Table 10: Document revision history

Date	Revision	Changes
18-Sep-2006	1	Initial release.
19-Jun-2007	2	Truth table updated
05-Jul-2007	3	Typo in Table 5
16-Jul-2007	4	Updated pinout
15-Oct-2007	5	Updated table 4
29-Jun-2009	6	Updated table 5
12-Mar-2010	7	Updated table 5
20-Dec-2011	8	Updated table 5
23-Feb-2016	9	Changed Figure 1: "Pin connections (top view)". Updated Table 3: "Absolute maximum ratings" and Table 5: "Electrical characteristics ".

IMPORTANT NOTICE – PLEASE READ CAREFULLY

STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement.

Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products.

No license, express or implied, to any intellectual property right is granted by ST herein.

Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.

ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.

Information in this document supersedes and replaces information previously supplied in any prior versions of this document.

© 2016 STMicroelectronics - All rights reserved

