

PIN CONFIGURATION 28-Pin SOP

PIN CONFIGURATION 28-Pin TSOP

PIN DESCRIPTIONS

A0-A14	Address Inputs
CS	Chip Select Input
ŌĒ	Output Enable Input
WE	Write Enable Input
I/O0-I/O7	Input/Output
Vcc	Power
GND	Ground

TRUTH TABLE

Mode	WE	CS	ŌĒ	I/O Operation	Vcc Current
Not Selected (Power-down)	Х	Н	Х	High-Z	ISB1, ISB2
Output Disabled	Н	L	Н	High-Z	Icc1, Icc2
Read	Н	L	L	D оит	Icc1, Icc2
Write	L	L	Χ	Din	Icc1, Icc2

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Parameter	Value	Unit
VTERM	Terminal Voltage with Respect to GND	-0.5 to +7.0	V
TBIAS	Temperature Under Bias	-55 to +125	°C
Тѕтс	Storage Temperature	-65 to +150	°C
Рт	Power Dissipation	0.5	W
Іоит	DC Output Current (LOW)	20	mA

Note:

 Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

OPERATING RANGE

Range	Ambient Temperature	Vcc
Commercial	0°C to +70°C	5V ± 10%
Industrial	–40°C to +85°C	5V ± 10%

DC ELECTRICAL CHARACTERISTICS

Symbol	Parameter	Test Conditions		Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = Min., Iон = −1.0 mA		2.4	_	V
Vol	Output LOW Voltage	Vcc = Min., loL = 2.1 mA		_	0.4	V
VIH	Input HIGH Voltage			2.2	Vcc + 0.5	V
VIL	Input LOW Voltage(1)			-0.3	0.8	V
ILI	Input Leakage	GND ≤ Vin ≤ Vcc	Com.	-2	2	μΑ
			Ind.	-10	10	
ILO	Output Leakage	GND ≤ Vouт ≤ Vcc,	Com.	-2	2	μΑ
		Outputs Disabled	Ind.	-10	10	

Note:

POWER SUPPLY CHARACTERISTICS⁽¹⁾ (Over Operating Range)

	.	T (0 11/1		-45 ns	-70 ns	
Symbol	Parameter	Test Conditions		Min. Max.	Min. Max.	Unit
Icc1	Vcc Operating	$Vcc = Max., \overline{CS} = Vll$	Com.	- 60	— 60	mA
	Supply Current	IOUT = 0 mA, f = 0	Ind.	 70	 70	
lcc2	Vcc Dynamic Operating	Vcc = Max., CS = V⊩	Com.	- 70	— 65	mA
	Supply Current	IOUT = 0 mA, f = fMAX	Ind.	— 80	— 75	
Isb1	TTL Standby Current	Vcc = Max.,	Com.	— 5	— 5	mA
	(TTL Inputs)	VIN = VIH or VIL	Ind.	- 10	— 10	
		$\overline{\text{CS}} \ge \text{V}_{\text{IH}}, \text{f} = 0$				
ISB2	CMOS Standby	Vcc = Max.,	Com.	— 0.5	— 0.5	mA
	Current (CMOS Inputs)	$\overline{\text{CS}} \ge \text{Vcc} - 0.2\text{V}$,	Ind.	— 1.0	— 1.0	
		$Vin \ge Vcc - 0.2V$, or				
		$Vin \leq 0.2V, \ f = 0$				

Note:

CAPACITANCE(1,2)

Symbol	Parameter	Conditions	Max.	Unit
Cin	Input Capacitance	VIN = 0V	8	pF
Соит	Output Capacitance	Vout = 0V	10	pF

Notes:

- 1. Tested initially and after any design or process changes that may affect these parameters.
- 2. Test conditions: $T_A = 25^{\circ}C$, f = 1 MHz, Vcc = 5.0V.

^{1.} $V_{IL} = -3.0V$ for pulse width less than 10 ns.

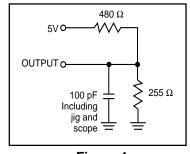
^{1.} At f = fmax, address and data inputs are cycling at the maximum frequency, f = 0 means no input lines change.

DATA RETENTION CHARACTERISTICS

Symbol	Parameter	Test Conditions	Min.	Max.	Units
V DR	Vcc for retention of data		2.0	_	V
I DR1	Data retention current	VDR = 3.0 V, TA = 0 °C to + 25 °C	_	200	μΑ
I DR2	Data retention current	VDR = 3.0 V, TA = 0 °C to + 70 °C	_	200	μΑ

READ CYCLE SWITCHING CHARACTERISTICS⁽¹⁾ (Over Operating Range)

		-45	i ns	-70	ns		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	
t RC	Read Cycle Time	45	_	70	_	ns	
t AA	Address Access Time	_	45	_	70	ns	
tона	Output Hold Time	2	_	2	_	ns	
tacs	CS Access Time	_	45	_	70	ns	
t DOE	OE Access Time	_	25	_	35	ns	
tLZOE ⁽²⁾	OE to Low-Z Output	0	_	0	_	ns	
thzoe ⁽²⁾	OE to High-Z Output	0	20	0	25	ns	
tLZCS(2)	CS to Low-Z Output	3	_	3	_	ns	
thzcs(2)	CS to High-Z Output	0	20	0	25	ns	
t PU ⁽³⁾	CS to Power-Up	0	_	0	_	ns	
t PD ⁽³⁾	CS to Power-Down	_	30	_	50	ns	


Notes:

- 1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1.
- 2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
- 3. Not 100% tested.

AC TEST CONDITIONS

Parameter	Unit
Input Pulse Level	0V to 3.0V
Input Rise and Fall Times	3 ns
Input and Output Timing	1.5V
and Reference Levels	
Output Load	See Figures 1 and 2

AC TEST LOADS

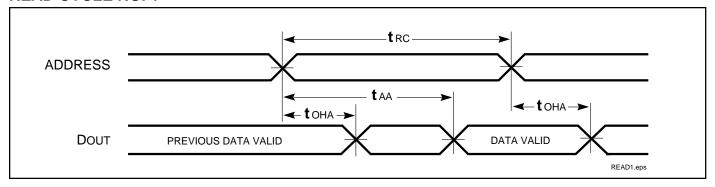
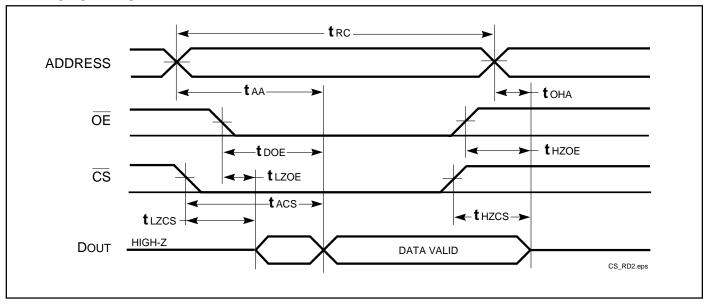

 $\begin{array}{c|c} & 480 \ \Omega \\ \hline 5 \text{VO} & & \\ \hline \\ \text{OUTPUT O} & & \\ \hline \\ \text{Including} \\ \text{jig and} & \\ \text{scope} & \\ \hline \end{array} \qquad \begin{array}{c} 255 \ \Omega \\ \hline \end{array}$

Figure 1. Figure 2.



AC WAVEFORMS

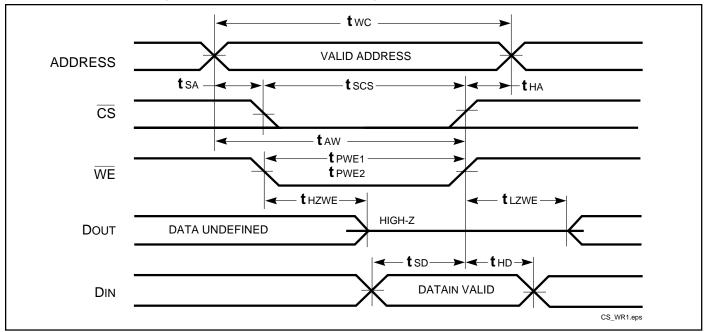
READ CYCLE NO. 1^(1,2)

READ CYCLE NO. 2^(1,3)

- Notes:

 1. WE is HIGH for a Read Cycle.
- 2. The device is continuously selected. \overline{OE} , \overline{CS} = V_IL.
- 3. Address is valid prior to or coincident with \overline{CS} LOW transitions.

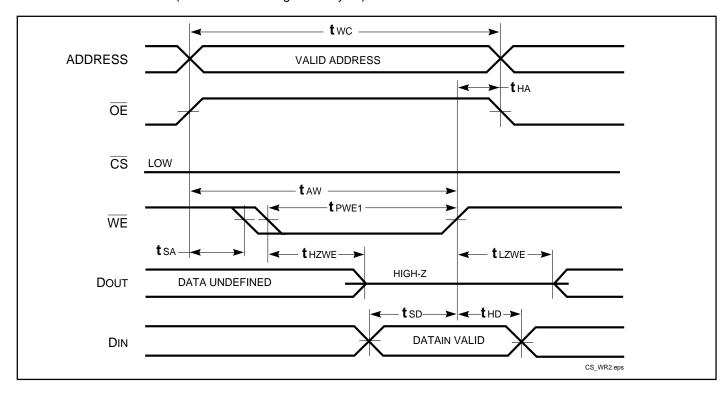
WRITE CYCLE SWITCHING CHARACTERISTICS(1,3) (Over Operating Range)

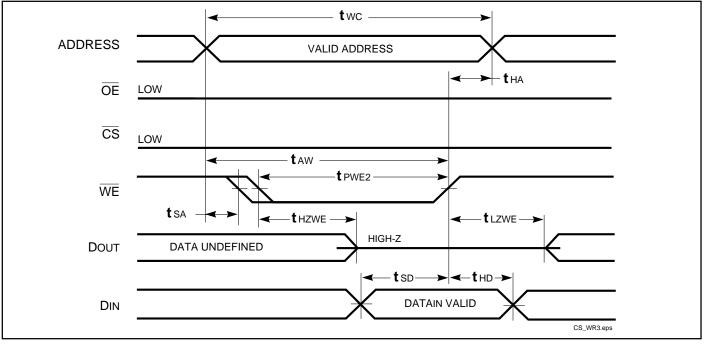

		-45	ns	-70r	ıs		
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	
twc	Write Cycle Time	45	_	70	_	ns	
tscs	CS to Write End	35	_	60	_	ns	
taw	Address Setup Time to Write End	25	_	60	_	ns	
t HA	Address Hold from Write End	0	_	0	_	ns	
tsa	Address Setup Time	0	_	0	_	ns	
tPWE ⁽⁴⁾	WE Pulse Width	25	_	55	_	ns	
tsp	Data Setup to Write End	20	_	30	_	ns	
t HD	Data Hold from Write End	0	_	0	_	ns	

Notes:

- 1. Test conditions assume signal transition times of 5 ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V and output loading specified in Figure 1.
- 2. Tested with the load in Figure 2. Transition is measured ±500 mV from steady-state voltage. Not 100% tested.
- 3. The internal write time is defined by the overlap of \overline{CS} LOW and \overline{WE} LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.
- 4. Tested with OE HIGH.

AC WAVEFORMS


WRITE CYCLE NO. 1 (CS Controlled, OE is HIGH or LOW) (1)



AC WAVEFORMS

WRITE CYCLE NO. 2 (OE is HIGH During Write Cycle) (1,2)

WRITE CYCLE NO. 3 (OE is LOW During Write Cycle) (1)

Notes:

- 1. The internal write time is defined by the overlap of $\overline{\text{Cs}}$ LOW and $\overline{\text{WE}}$ LOW. All signals must be in valid states to initiate a Write, but any one can go inactive to terminate the Write. The Data Input Setup and Hold timing are referenced to the rising or falling edge of the signal that terminates the write.
- 2. I/O will assume the High-Z state if $\overline{OE} = V_{IH}$.

ORDERING INFORMATION

Commerical Range: 0°C to +70°C

Speed (ns)	Order Part No.	Package
45	IS62C256-45T IS62C256-45U	TSOP Plastic SOP
70	IS62C256-70T IS62C256-70U	TSOP Plastic SOP

ORDERING INFORMATION

Industrial Range: -40°C to +85°C

Speed		
(ns)	Order Part No.	Package
45	IS62C256-45TI	TSOP
	IS62C256-45UI	Plastic SOP
70	IS62C256-70TI	TSOP
	IS62C256-70UI	Plastic SOP

Integrated Silicon Solution, Inc.

2231 Lawson Lane Santa Clara, CA 95054 Tel: 1-800-379-4774

Fax: (408) 588-0806 E-mail: sales@issi.com

www.issi.com