International **TOR** Rectifier

Electrical Characteristics		Q1 - Control FET		Q2 - Synch FET & Schottky					
Parameter		Min	Тур	Max	Min	Тур	Max	Units	Conditions
Drain-to-Source Breakdown Voltage*	BV _{DSS}	30	-	-	30	-	-	V	$V_{_{GS}}{=}0V,I_{_{D}}{=}250\mu A$
Static Drain-Source on Resistance*	R _{DS} (on)	-	28	38	-	23	32	mΩ	$V_{GS} = 4.5 V$, $I_D = 5 A$
Gate Threshold Voltage*	V _{GS} (th)	1.0	-	-	1.0	-	-	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
Drain-Source Leakage	I _{DSS}	-	-	30	-	-	30	μA	$V_{\rm DS} = 24 V, V_{\rm GS} = 0$
		-	-	0.15	-	-	4.3	mA	$V_{DS} = 24V, V_{GS} = 0, T_{J} = 125^{\circ}C$
Gate-Source Leakage Current*	I _{GSS}	-	-	±100	-	-	±100	nA	$V_{GS} = \pm 20V$
Total Gate Charge*	Q _{G cont}	-	7.6	10.5	-	15.5	21.0		$V_{_{\rm GS}} = 5V, V_{_{\rm DS}} = 16V, I_{_{\rm D}} = 5A$
	$Q_{_{\mathrm{G}\ \mathrm{synch}}}$	-	6.7	9.0	-	13.5	18.3		$V_{GS} = 5V, V_{DS} = 100mV, I_{D} = 5A$
Pre-Vth Gate-Source Charge	Q _{GS1}	-	2.0	-	-	5.5	-		V _{DS} = 16V, I _D = 5A
Post-Vth Gate-Source Charge	Q _{GS2}	-	0.5	-	-	0.9	-	nC	
Gate to Drain Charge	Q _{gp}	-	1.9	-	-	4.7	-		
Switch Charge* (Q _{gs2} + Q _{gd})	Q _{sw}	-	2.4	3.8	-	5.6	9.0		
Output Charge*	Q _{oss}	-	13.5	18.0	-	9.0	12.3		$V_{DS} = 16V, V_{GS} = 0$
Gate Resistance	R _g	-	3.4	-	-	4.3	-	Ω	
Input Capacitance	Ciss	-	780	-	-	1810	-		
Output Capacitance	C _{oss}	-	430	-	-	310	-	pF	$V_{DS} = 16V, V_{GS} = 0, f = 1MHz$
Transfer Capacitance	Crss	-	30	-	-	110	-		
Turn-On Delay Time	t _d (on)	-	7.2	-	-	10.4	-		$V_{DD} = 16V, I_{D} = 5A, V_{GS} = 5V$
RiseTime	ţ,		13.8	-	-	16.4	-	ns	Clamped inductive load
Turn-Off Delay Time	t _d (off)	-	14.7	-	-	14.6	-		See test diagram Fig 17.
FallTime	t,	-	8	-	-	5.2	-		

Source-Drain Ratings and Characteristics

			Q1		Q2 & parallel Schottky					
Parameter		Min	Тур	Max	Min	Тур	Max	Units	Conditions	
Diode Forward Voltage*@	V _{sp}	-	0.7	1.0	-	0.48	0.52	V	$I_s = 1A, V_{gs} = 0V$	
Reverse Recovery Charge	Q _m	-	62.3	-	-	8.9	-	nC	$\frac{dI/dt}{V_{\rm DS}}$ = 16V, $V_{\rm GS}$ = 0V, $I_{\rm S}$ = 5A	

0 Repetitive rating; pulse width limited by max. junction temperature.
0 Pulse width ≤ 300 μs; duty cycle ≤ 2%.
0 When mounted on 1 inch square copper board, t < 10 sec.

Combined Q1, Q2 I_{RMS} @ Pwr V_{oct} pins. Calculated continuous current based on maximum allowable junction temperature; switching or other losses will decrease RMS current capability ۲ When mounted on IRNBPS2 design kit. Measured as device T, ٢ to Pwr leads (V, & V,) Devices are 100% tested to these parameters.

.

International

IRF7901D1

Power MOSFET Optimization for DC-DC Converters

Table 1 and Table 2 describes the event during the various charge segments and shows an approximation of losses during that period.

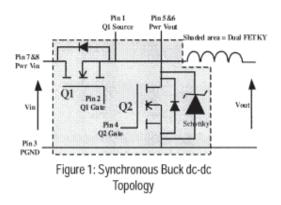
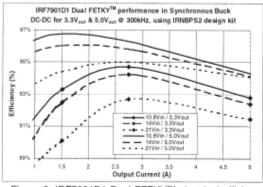

	Table 1 – Control FET Losses						
	Description	Segment Losses					
Conduction Loss	Losses associated with MOSFET on time. I _{RMS} is a function of load current and duty cycle.	$P_{\text{COND}} = I_{\text{RMS}}^2 \times R_{\text{DS (on)}}$					
Gate Drive Loss	Losses associated with charging and discharging the gate of the MOSFET every cycle. Use the control FET O_{g} .	$P_{IN} = V_{G} \!\times\! Q_{G} \!\times\! f$					
Switching Loss	Losses during the drain voltage and drain current transitions for every full cycle. Losses occur during the Q _{gs2} and Q _{go} time period and can be simplified by using Q _{switch} .	$\begin{split} P_{OGS\;2} &\simeq V_{N} \times I_{L} \times \frac{Q_{GS\;2}}{I_{G}} \times J \\ P_{QGD} &\approx V_{IN} \times I_{L} \times \frac{Q_{GD}}{I_{G}} \times f \\ P_{SWTCH} &\simeq V_{N} \times I_{L} \frac{Q_{SW}}{I_{G}} \times f \end{split}$					
Output Loss	Losses associated with the Q _{ces} of the device every cycle when the control FET turns on. Losses are caused by both FETs, but are dissipated by the control FET.	$P_{OUTPUT} = \frac{Q_{OSS}}{2} \times V_{IN} \times f$					

Table	0	0.		EET	
lable	2 -	· 51	nchronous/	FEI	Losses

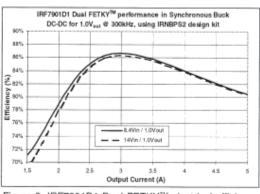
	Description	Segment Losses
Conduction Loss	Losses associated with MOSFET on time. I _{RMS} is a function of load current and duty cycle.	$P_{COND} = I_{RMS}^{2} \times R_{DSon}$
Gate Drive Loss	Losses associated with charging and discharging the gate of the MOSFET every cycle. Use the Sync FET Q _c .	$P_{IN} = V_{G} \!\times\! Q_{G} \!\times\! f$
Switching Loss	Generally small enough to ignore except at light loads when the current reverses in the output inductor. Under these conditions various light load power saving techniques are employed by the control IC to maintain switching losses to a negligible level.	$\begin{split} \mathbf{P}_{\text{SWITCH}} &= 0 \\ \mathbf{P}_{\text{OUTPUT}} &= \frac{\mathbf{Q}_{\text{OSS}}}{2} \times \mathbf{V}_{\text{IN}} \times f \end{split}$
Output Loss	Losses associated with the Q _{oss} of the device every cycle when the control FET turns on. They are caused by the synchronous FET, but are dissipated in the control FET.	

Typical Application

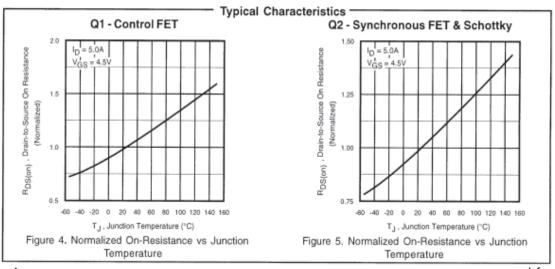
The performance of the new Dual FETKYTM has been tested in-circuit using IR's new IRNBPS2 "Dual Output Synchronous Buck Design Kit", operating up to 21V_{in} and 5A peak output current, with operating voltages from 1V_{out} to 5V_{out}.

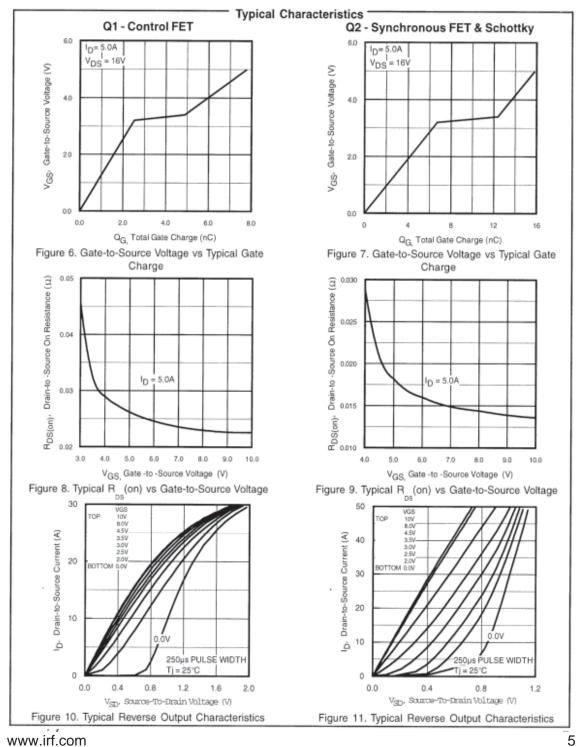

International

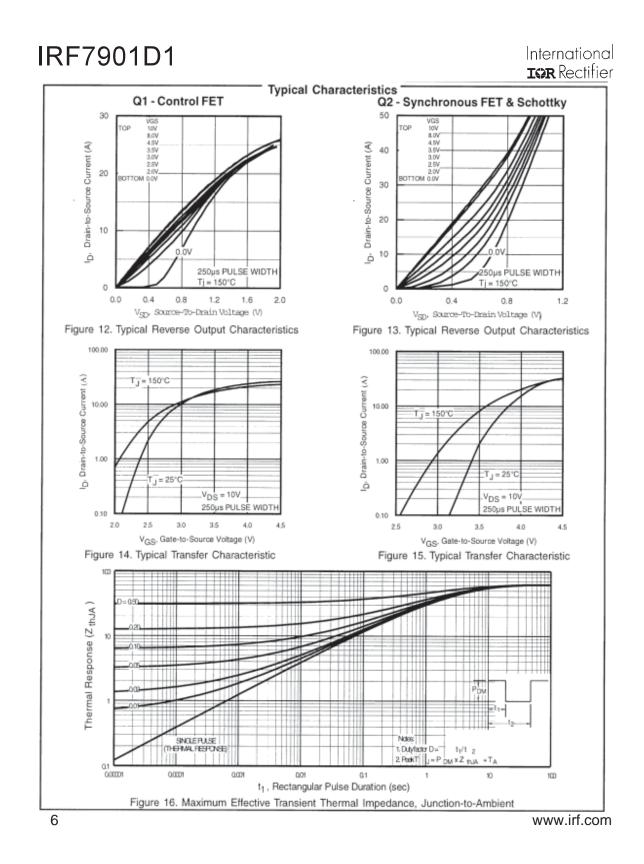
Typical Application (Contd.)


The Dual FETKY integrates all the power semiconductor devices for DC-DC conversion within one SO-8 package, as shown on page 1. The high side control MOSFET (Q1) is optimized for low combined Q_{sw} and $R_{DS}(on)$. The low side synchronous MOSFET (Q2) is optimized for low $R_{DS}(on)$ and high Cdv/dt immunity. The ultra-low V_f schottky diode is internally connected in parallel with the synchronous MOSFET, for improved deadtime efficiency. For ease of circuit board layout, the Dual FETKY has been internally configured such that it represents a functional block for the power device portion of the synchronous buck DC-DC converter. This helps to minimize the external PCB traces compared to a discrete solution.

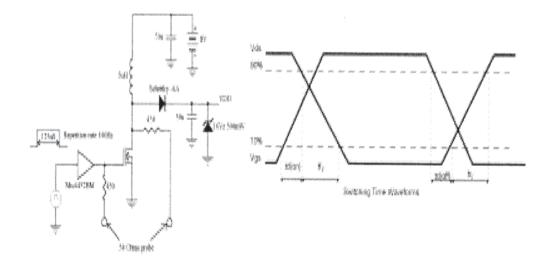
In-Circuit Efficiency

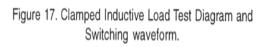

The in-circuit efficiency curves for the Dual FETKY are shown in Figure 2 & 3. The Dual FETKY can achieve up to 96.6% and 94.6% peak efficiency for the 5.0V and 3.3V applications respectively, with excellent maximum load efficiency.



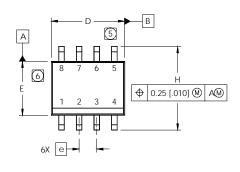

www.irf.com

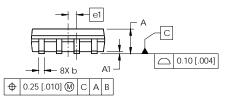
International **TOR** Rectifier


IRF7901D1



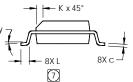
www.irf.com

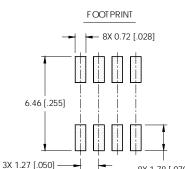

International **IGR** Rectifier



SO-8 (Fetky) Package Outline

Dimensions are shown in millimeters (inches)

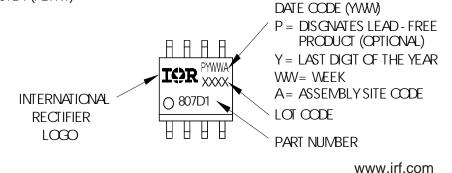

1. DIMENSIONING & TOLERANCING PER ASME Y14.5M-1994.


 DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
OUTLINE CONFORMS TO JEDEC OUTLINE MS-012AA
DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.15 [.006].

 DIMENSION DOES NOT INCLUDE MOLD PROTRUSIONS. MOLD PROTRUSIONS NOT TO EXCEED 0.25 [.010].
DIMENSION IS THE LENGTH OF LEAD FOR SOLDERING TO

2. CONTROLLING DIMENSION: MILLIMETER

DIM	INC	HES	MILLIMETERS		
DIIVI	MIN	MAX	MIN	MAX	
А	.0532	.0688	1.35	1.75	
A1	.0040	.0098	0.10	0.25	
b	.013 .020		0.33	0.51	
С	.0075	.0098	0.19	0.25	
D	.189	.1968	4.80	5.00	
Ε	.1497	.1574	3.80	4.00	
е	.050 B	ASIC	1.27 BASIC		
е1	.025 B	ASIC	0.635 BASIC		
Н	.2284	.2440	5.80	6.20	
К	.0099	.0196	0.25	0.50	
L	.016	.050	0.40	1.27	
у	0° 8°		0°	8°	


8X 1.78 [.070]

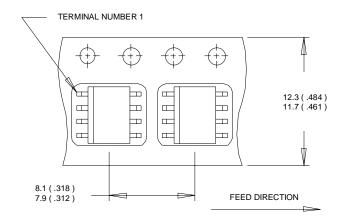
SO-8 (Fetky) Part Marking Information

EXAMPLE: THIS IS AN IRF7807D1 (FETKY)

ASUBSTRATE

NOTES:

8

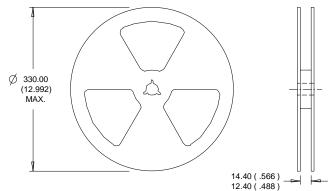

Downloaded from Arrow.com.

International **ICPR** Rectifier

International **TOR** Rectifier

SO-8 (Fetky) Tape and Reel

Dimensions are shown in millimeters (inches)



NOTES:

1. CONTROLLING DIMENSION : MILLIMETER.

2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS(INCHES).

3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES · 1. CONTROLLING DIMENSION : MILLIMETER. 2. OUTLINE CONFORMS TO EIA-481 & EIA-541.

> Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualifications Standards can be found on IR's Web site.

> > International **ICR** Rectifier

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information.10/04 9