Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
VS	High side offset voltage		V _{B1,2,3} - 25	V _{B1,2,3} + 0.3	
V _{BS}	High side floating supply voltage		-0.3	625	
V _{HO}	High side floating output voltage		V _{S1,2,3} - 0.3	V _{B1,2,3} + 0.3	
V _{CC}	Low side and logic fixed supply voltage		-0.3	25	
V _{SS}	Logic ground		V _{CC} - 25	V _{CC} + 0.3	.,
VLO1,2,3	Low side output voltage		-0.3	V _{CC} + 0.3	V
VIN	Input voltage LIN, HIN, ITRIP, EN, RCIN		V _{SS} - 0.3	lower of	
				(V _{SS} + 15) or	
				V _{CC} + 0.3)	
V _{FLT}	FAULT output voltage		V _{SS} - 0.3	V _{CC} + 0.3	
dV/dt	Allowable offset voltage slew rate		_	50	V/ns
PD	Package power dissipation @ $T_A \le +25^{\circ}C$	(28 lead PDIP)	_	1.5	
		(28 lead SOIC)	—	1.6	W
		(44leadPLCC)	_	2.0	
Rth _{JA}	Thermal resistance, junction to ambient	(28 lead PDIP)	_	83	
		(28 lead SOIC)	_	78	°C/W
		(44 lead PLCC)	—	63	
ТJ	Junction temperature		—	150	
Τ _S	Storage temperature		-55	150	°C
TL	Lead temperature (soldering, 10 seconds)	_	300		

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recom-mended conditions. All voltage parameters are absolute referenced to COM. The V_S offset rating is tested with all supplies biased at 15V differential.

Symbol	Definition		Min.	Max.	Units
V _{B1,2,3}	High side floating supply voltage	IR2136(8)	V _{S1,2,3} +10	V _{S1,2,3} +20	
		IR21362	Vs1,2,3 +11.5	Vs1,2,3 +20	
		IR2136(3)(5)(6)(7)	V _{S1,2,3} +12	V _{S1,2,3} +20	
V _{S1,2,3}	High side floating supply offset voltage		Note 1	600	
V _{HO1,2,3}	High side output voltage		V _{S1,2,3}	V _{B1,2,3}	
V _{LO1,2,3}	Low side output voltage		0	V _{CC}	v
V _{CC}	Low side and logic fixed supply voltage	IR2136(8)	10	20	
		IR21362	11.5	20	
		IR2136(3)(5)(6)(7)	12	20	
V _{SS}	Logic ground		-5	5	
V _{FLT}	FAULT output voltage		V _{SS}	V _{CC}	
V _{RCIN}	RCIN input voltage		V _{SS}	V _{CC}	

Note 1: Logic operational for V_S of COM -5V to COM +600V. Logic state held for V_S of COM -5V to COM -V_{BS}. (Please refer to the Design Tip DT97-3 for more details). Note 2: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode.

International

IR2136(2)(3)(5)(6)(7)(8)(J&S)&(PbF)

Recommended Operating Conditions cont.

The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. All voltage parameters are absolute referenced to COM. The V_S offset rating is tested with all supplies biased at 15V differential.

Symbol	Definition	Min.	Max.	Units
VITRIP	ITRIP input voltage	V _{SS}	V _{SS} +5	V
VIN	Logic input voltage LIN, HIN (IR2136,IR21363(5)(6)(7)(8)),			v
	HIN(IR21362), EN	Vss	V _{SS} +5	
TA	Ambient temperature	-40	125	°C

Note 2: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode.

Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS} 1,2,3) = 15V unless otherwise specified. The V_{IN} , V_{TH} and I_{IN} parameters are referenced to V_{SS} and are applicable to all six channels (H_S 1,2,3 and L_S 1,2,3). The V_O and I_O parameters are referenced to COM and V_S 1,2,3 and are applicable to the respective output leads: $H_{O1,2,3}$ and $L_{O1,2,3}$.

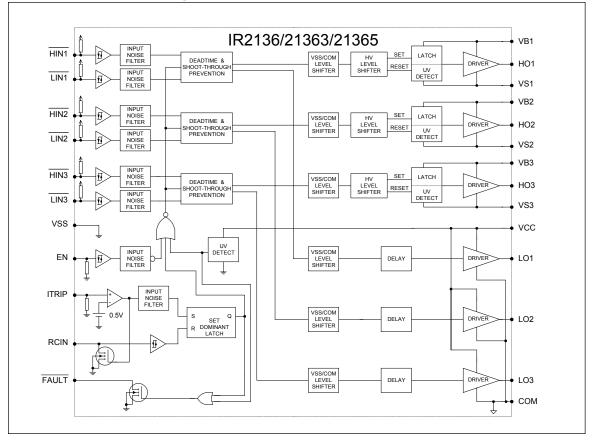
Symbol	Definition		Min.	Тур.	Max.	Units	Test Conditions
VIH	Logic "0" input voltage LIN1,2,3, F	IIN1,2,3					
		IR2136(3)(5)	3.0	_	_		
	Logic "1" input voltage HIN1,2,3	IR21362					
	Logic "0" input voltage LIN1,2,3, F	IIN1,2,3					
		IR21366(7)(8)	2.5	_	_		
VIL	Logic "1" input voltage LIN1,2,3,	HIN1,2,3					
		IR2136(3)(5)	_	_	0.8		
	Logic "0" input voltage HIN1,2,3	IR21362					
	Logic "0" input voltage LIN1,2,3, F	IIN1,2,3					
		IR21366(7)(8)	—	—	0.8		
V _{EN,TH+}	EN positive going threshold			—	3		
V _{EN,TH-}	EN negative going threshold			—	_	V	
VIT,TH+	ITRIP positive going threshold						
		IR2136(2)(3)(6)	0.37	0.46	0.55		
		IR21365(7)(8)	3.85	4.30	4.75		
VIT,HYS	ITRIP input hysteresis						
		IR2136(2)(3)(6)	—	0.07	—		
		IR21365(7)(8)	—	.15	—		
V _{RCIN,TH+}	RCIN positive going threshold		—	8	—		
V _{RCIN,HYS}	RCIN input hysteresis		—	3	_		
VOH	High level output voltage, V _{BIAS} - V _O		—	0.9	1.4	Ī	I _O = 20 mA
V _{OL}	Low level output voltage, VO		—	0.4	0.6		I _O = 20 mA
V _{CCUV+}	V_{CC} and V_{BS} supply undervoltage	e IR2136(8)	8.0	8.9	9.8		
V _{BSUV+}	positive going threshold	IR21362	9.6	10.4	11.2		
		IR21363(5)(6)(7)	10.6	11.1	11.6		

Static Electrical Characteristics cont. V_{BIAS} (V_{CC}, V_{BS}1,2,3) = 15V unless otherwise specified. The V_{IN}, V_{TH} and I_{IN} parameters are referenced to V_{SS} and are applicable to all six channels (H_S1,2,3 and L_S1,2,3). The V_O and I_O parameters are referenced to COM and V_S1,2,3 and are applicable to the respective output leads: H_{O1,2,3} and L_{O1,2,3}.

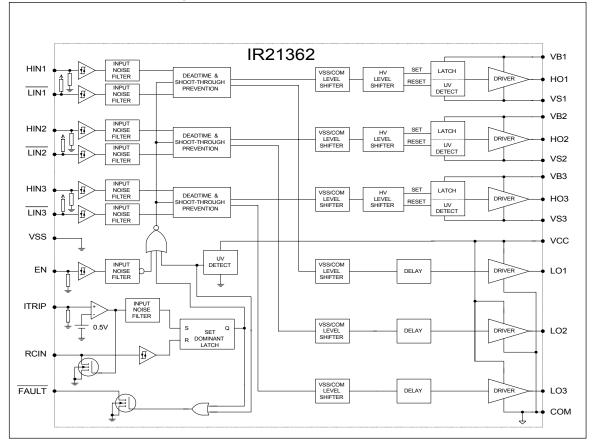
Symbol	Definition		Min.	Тур.	Max.	Units	Test Conditions
Vccuv-	V _{CC} and V _{BS} supply undervoltage	IR2136(8)	7.4	8.2	9.0		
VBSUV-	negative going threshold	IR21362	8.6	9.4	10.2		
	_	IR21363(5)(6)(7)	10.4	10.9	11.4	·V	
Vссиvн	V_{CC} and V_{BS} supply undervoltage	IR2136	0.3	0.7	_	· V	
VBSUVH	lockout hysteresis	IR21362	0.5	1.0	_		
		IR21363(5)	—	0.2	—		
ILK	Offset supply leakage current		_	—	50		V _{B1,2,3} =V _{S1,2,3} =600V
IQBS	Quiescent V _{BS} supply current		—	70	120	μA	
lacc	Quiescent V _{CC} supply current			1.6	2.3	mA	V _{IN} = 0V or 5V
VIN, CLAMP	Input clamp voltage (HIN, LIN, ITRIP and		4.9	5.2	5.5	V	lin =100μA
I _{LIN+}	Input bias current (LOUT = HI)	IR2136(2)(3)(5)	—	200	300		V _{LIN} = 5V
		IR21366(7)(8)	—	0	1		
I _{LIN-}	Input bias current (LOUT = LO)	IR2136(2)(3)(5)		100	220		V _{LIN} = 0V
		IR21366(7)(8)	—	0	1		
I _{HIN+}	Input bias current (HOUT = HI)	IR2136(3)(5)	—	200	300		VHIN = 5V
		IR21362	_	30	100		
		IR21366(7)(8)	—	0	1	μA	
I _{HIN-}	Input bias current (HOUT = LO)	IR2136(3)(5)	_	100	220	-	V _{HIN} = 0V
		IR21362(6)(7)(8)	_	0	1		
I _{ITRIP+}	"high" ITRIP input bias current		—	30	100	-	V _{ITRIP} = 5V
IITRIP-	"low" ITRIP input bias current		_	0	1	-	VITRIP = 0V
I _{EN+}	"high" ENABLE input bias current		_	30	100	-	V _{ENABLE} = 5V
I _{EN-}	"low" ENABLE input bias current		_	0	1	-	V _{ENABLE} = 0V
IRCIN	RCIN input bias current		_	0	1	-	V _{RCIN} = 0V or 15V
I _{O+}	Output high short circuit pulsed cur	rent	120	200		- mA	V_{O} =0V, PW \leq 10 µs
I ₀₋	Output low short circuit pulsed current		250	350	_	• 111A	V _O =15V, PW ≤10 µs
Ron, RCIN	RCIN low on resistance			50	100		
R _{ON,FLT}	FAULT low on resistance			50	100	Ω	

IR2136(2)(3)(5)(6)(7)(8)(J&S)&(PbF)

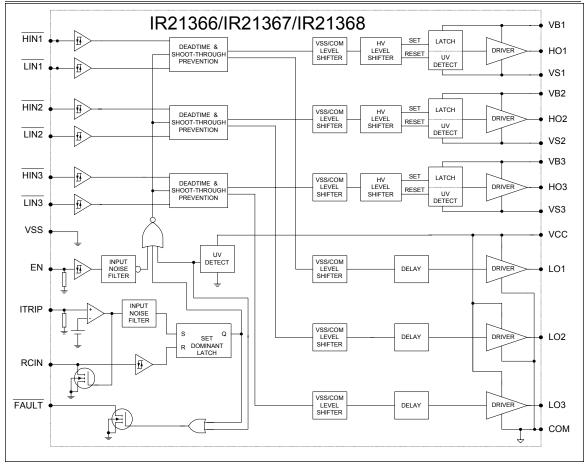
Dynamic Electrical Characteristics $V_{CC} = V_{BS} = V_{BIAS} = 15V$, $V_{S1,2,3} = V_{SS} = COM$, TA = 25°C and C_L = 1000 pF unless otherwise specified.


Symbol	Definition	Min.	Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay IR2136(2)(3)(5)(8)	300	425	550		
	IR21366(7)	_	250	_		
toff	Turn-off propagation delay IR2136(2)(3)(5)(8)	250	400	550		V _{IN} = 0 & 5V
	IR21366(7)	—	180			
tr	Turn-on rise time	—	125	190		
tf	Turn-off fall time		50	75		
^t EN	ENABLE low to output IR2136(2)(3)(5)(8)	300	450	600	nS	V _{IN,} V _{EN} = 0V or 5V
	shutdown propagation delay IR21366(7)	100	250	400	110	
tITRIP	ITRIP to output shutdown propagation delay	500	750	1000		V _{ITRIP} = 5V
tbl	ITRIP blanking time	100	150	—		V _{IN} = 0V or 5V
						V _{ITRIP} = 5V
^t FLT	ITRIP to FAULT propagation delay		600	800		V _{IN} = 0V or 5V
						V _{ITRIP} = 5V
tFILIN	Input filter time (HIN, LIN, EN)	100	200	_		V _{IN} = 0 & 5V
	(IR2136(2)(3)(5)(8) only)					
^t FLTCLR	FAULT clear time RCIN: R=2meg, C=1nF	1.3	1.65	2	mS	V _{IN} = 0V or 5V
						V _{ITRIP} = 0V
DT	Deadtime	220	290	360		V _{IN} = 0 & 5V
MT	Matching delay ON and OFF	—	40	75		External dead
MDT	Matching delay, max (t _{on} ,t _{off}) - min (t _{on} ,t _{off}),	—	25	70	nS	time
	(ton,toff are applicable to all 3 channels)					>400nsec
PM	Output pulse width matching, PWin -PWout (fig.2)	_	40	75		

NOTE: For high side PWM, HIN pulse width must be $\geq 1 \mu \text{sec}$

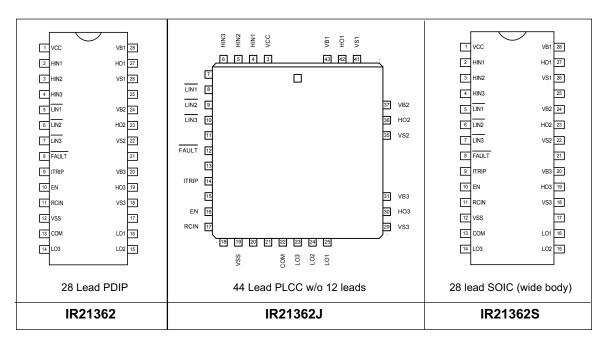

VCC	VBS	ITRIP	ENABLE	FAULT	LO1,2,3	HO1,2,3
<uvcc< td=""><td>Х</td><td>Х</td><td>Х</td><td>0 (note 1)</td><td>0</td><td>0</td></uvcc<>	Х	Х	Х	0 (note 1)	0	0
15V	<uvbs< td=""><td>0V</td><td>5V</td><td>high imp</td><td>LIN1,2,3</td><td>0</td></uvbs<>	0V	5V	high imp	LIN1,2,3	0
15V	15V	0V	5V	high imp	LIN1,2,3	HIN1,2,3
15V	15V	>VITRIP	5V	0 (note 2)	0	0
15V	15V	0V	0V	high imp	0	0

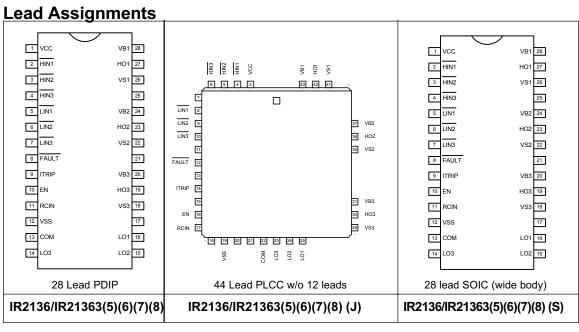
Note: A shoot-through prevention logic prevents LO1,2,3 and HO1,2,3 for each channel from turning on simultaneously. Note 1: UVCC is not latched, when VCC>UVCC, FAULT returns to high impedance.


Note 2: When ITRIP <V_{ITRIP}, FAULT returns to high-impedance after RCIN pin becomes greater than 8V (@ VCC = 15V)

Functional Block Diagram

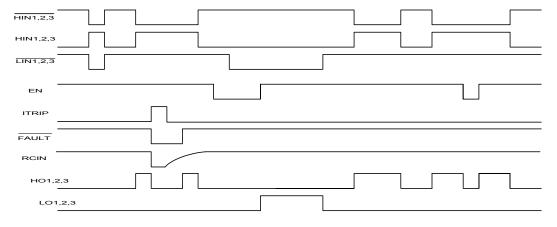
Functional Block Diagram


Functional Black Diagram


Lead Definitions

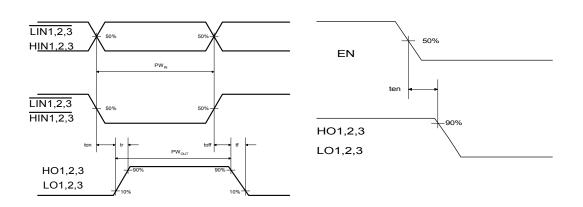
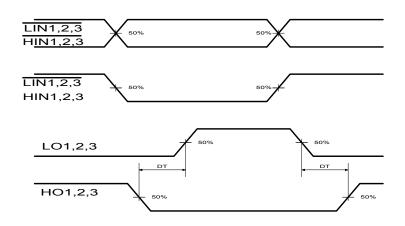
Symbol	Description
Vcc	Low side and logic fixed supply
VSS	Logic Ground
HIN1,2,3 HIN1,2,3	Logic inputs for high side gate driver outputs (HO1,2,3), out of phase (IR2136/IR21363(5)(6)(7)(8) Logic inputs for high side gate driver outputs (HO1,2,3), in phase (IR21362)
LIN1,2,3	Logic inputs for low side gate driver outputs (LO1,2,3), out of phase
FAULT	Indicates over-current (ITRIP) or low-side undervoltage lockout has occured. Negative logic, open-drain output
EN	Logic input to enable I/O functionality. Positive logic, i.e. I/O logic functions when ENABLE is high. No effect on FAULT and not latched
ITRIP	Analog input for overcurrent shutdown. When active, ITRIP shuts down outputs and activates
	FAULT and RCIN low. When ITRIP becomes inactive, FAULT stays active low for an externally
	set time T _{FLTCLR} , then automatically becomes inactive (open-drain high impedance).
RCIN	External RC network input used to define FAULT CLEAR delay, T _{FLTCLR} , approximately equal
	to R*C. When RCIN>8V, the FAULT pin goes back into open-drain high-impedance
COM	Low side gate driver return
V _B 1,2,3	High side floating supply
HO1,2,3	High side gate driver outputs
V _{S1,2,3}	High voltage floating supply returns
LO1,2,3	Low side gate driver output

Note: All input pins and the ITRIP pin are internally clamped with a 5.2V zener diode.


10

IR2136(2)(3)(5)(6)(7)(8)(J&S)&(PbF)

International IOR Rectifier

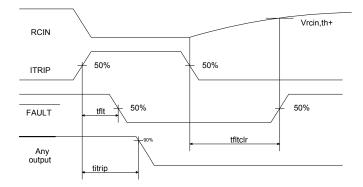

Figure 2. Switching Time Waveforms

Figure 3. Output Enable Timing Waveform

International IOR Rectifier

Figure 4. Internal Deadtime Timing Waveforms

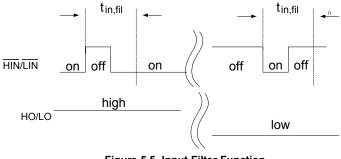
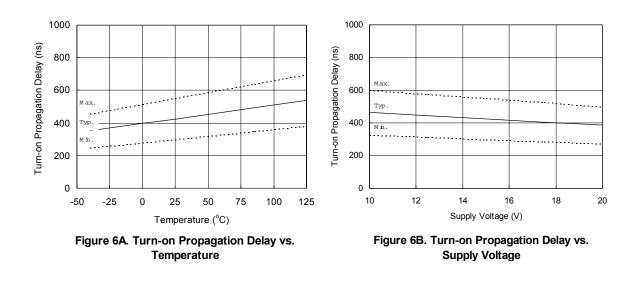
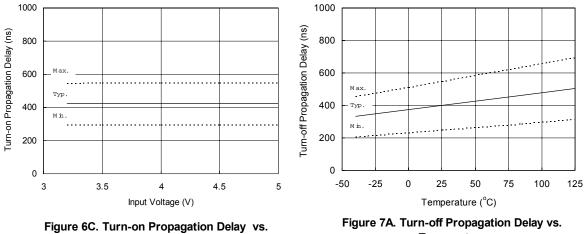
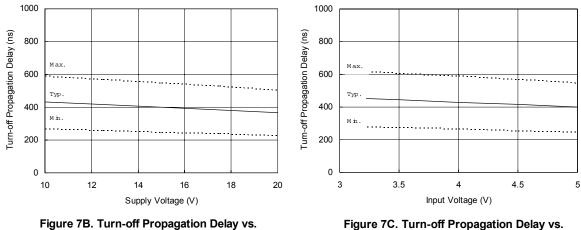
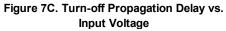




Figure 5.5 Input Filter Function


IR2136(2)(3)(5)(6)(7)(8)(J&S)&(PbF)



Input Voltage

Supply Voltage

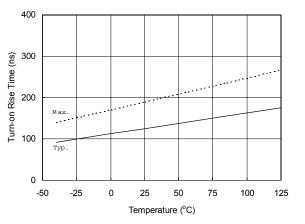


Figure 8A. Turn-on Rise Time vs. Temperature

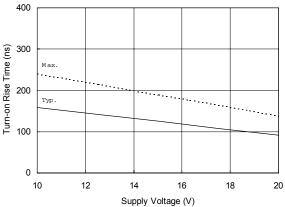
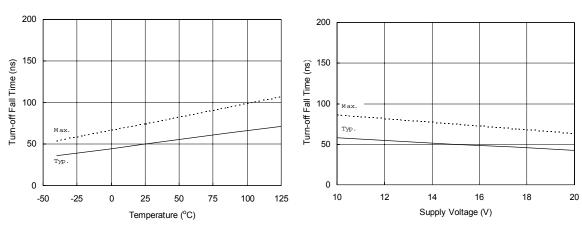
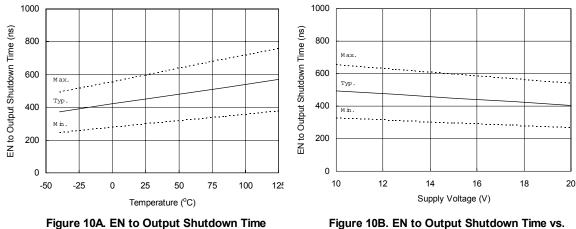
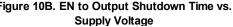


Figure 8B. Turn-on Rise Time vs. Supply Voltage

IR2136(2)(3)(5)(6)(7)(8)(J&S)&(PbF)

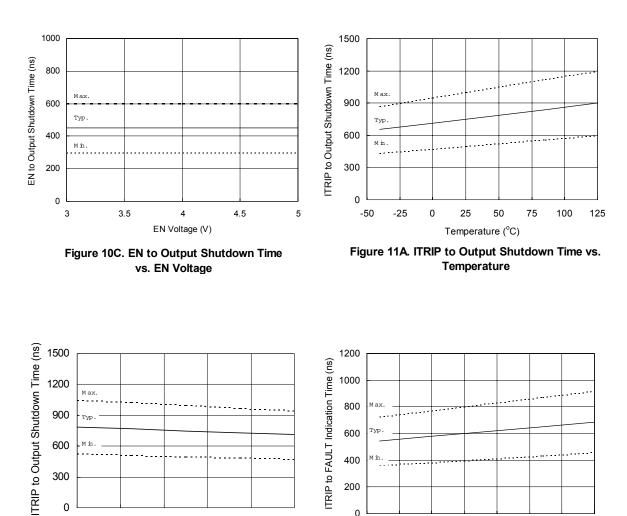
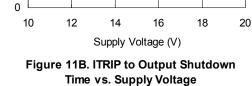

Figure 9A. Turn-off Fall Time vs. Temperature

Figure 9B. Turn-off Fall Time vs. Supply Voltage

vs. Temperature



0

-50

-25

0

100

125

50

25

Temperature (°C)

Figure 12A. ITRIP to FAULT Indication Time vs.

Temperature

75

16

IR2136(2)(3)(5)(6)(7)(8)(J&S)&(PbF)

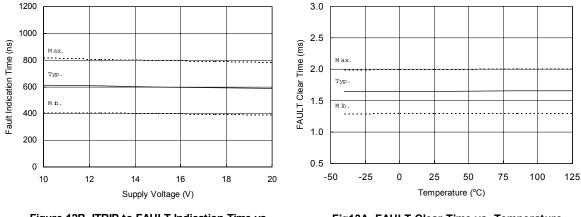


Figure 12B. ITRIP to FAULT Indication Time vs. Supply Voltage

Fig13A. FAULT Clear Time vs. Temperature

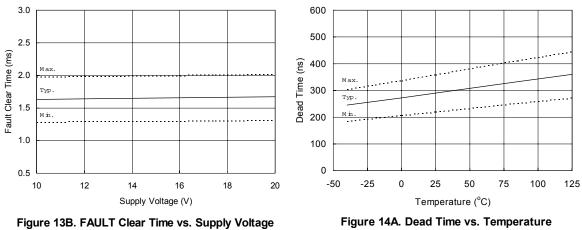
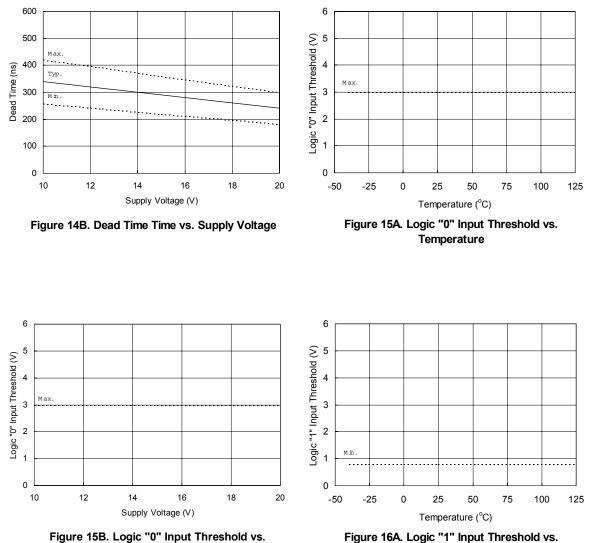



Figure 14A. Dead Time vs. Temperature

Supply Voltage

www.irf.com

Temperature

IR2136(2)(3)(5)(6)(7)(8)(J&S)&(PbF)

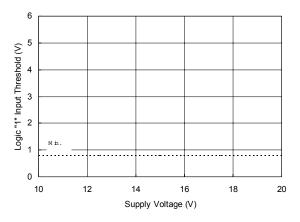


Figure 16B. Logic "1" Input Threshold vs. Supply Voltage

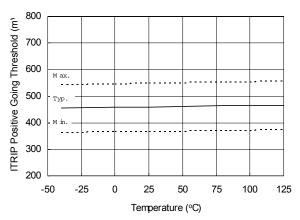


Figure 17A. ITRIP Positive Going Threshold vs. Temperature (IR2136/21362/21363/IR21366 Only)

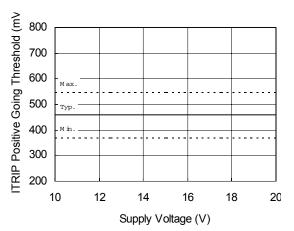


Figure 17B. ITRIP Positive Going Threshold vs. Supply Voltage (IR2136/21362/21363/IR21366 Only)

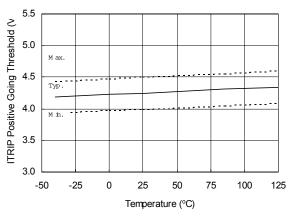


Figure 17C. ITRIP Positive Going Threshold vs. Temperature (IR21365/IR21367/IR21368 Only)

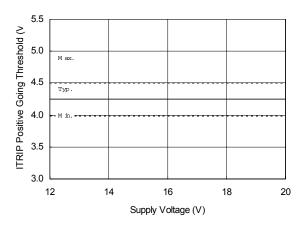


Figure 17D. ITRIP Positive Going Threshold vs. Supply Voltage (IR21365/IR21367/IR21368 Only)

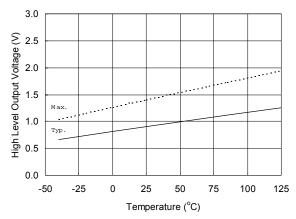


Figure 18A. High Level Output vs. Temperature

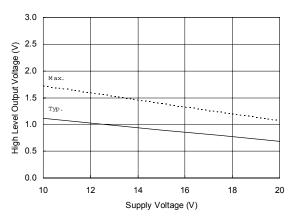


Figure 18B. High Level Output vs. Supply Voltage

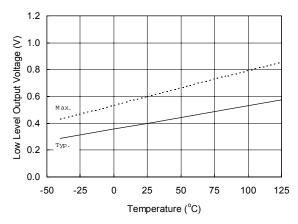
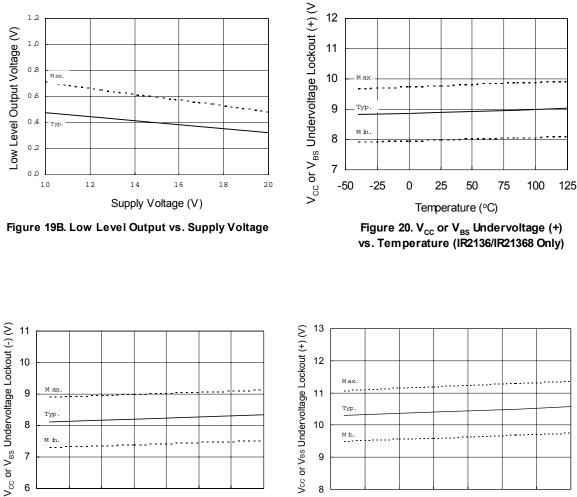
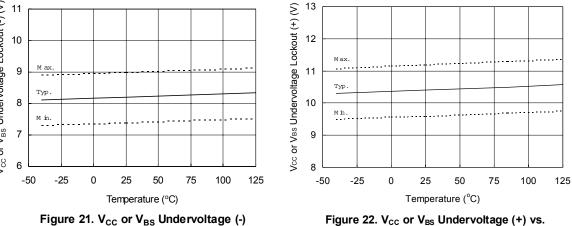




Figure 19A. Low Level Output vs. Temperature

Temperature (IR21362 Only)

www.irf.com

vs. Temperature (IR2136/IR21368 Only)

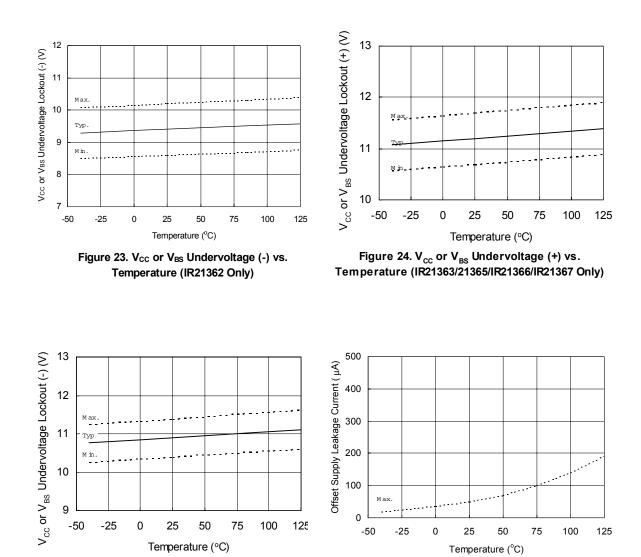


Figure 25. V_{cc} or V_{BS} Undervoltage (-) vs. Temperature (IR21363/21365/IR21366/IR21367 Only)

www.irf.com

Figure 26A. Offset Supply Leakage Current vs.

Temperature

IR2136(2)(3)(5)(6)(7)(8)(J&S)&(PbF)

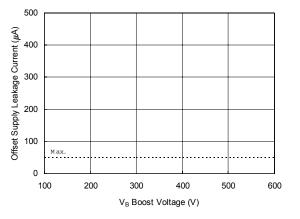


Figure 26B. Offset Supply Leakage Current vs. V_B Boost Voltage

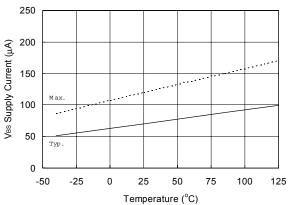
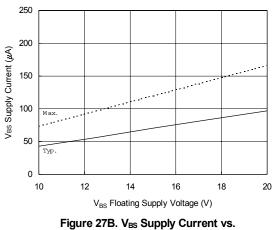



Figure 27A. V_{BS} Supply Current vs. Temperature

V_{BS} Floating Supply Voltage

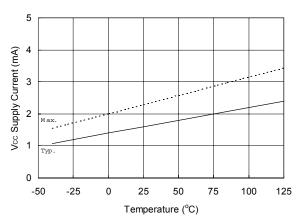


Figure 28A. Vcc Supply Current vs. Temperature

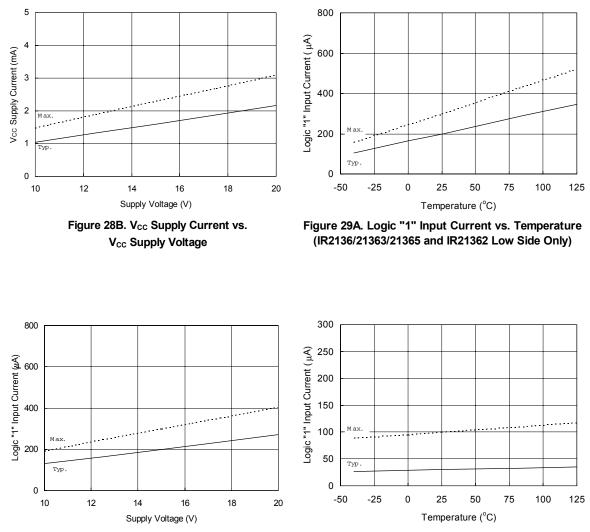


Figure 29B. Logic "1" Input Current vs. Supply Voltage (IR2136/21363/21365 and IR21362 Low Side Only)

Figure 29C. Logic "1" Input Current vs. Temperature (IR21362 High Side Only)

IR2136(2)(3)(5)(6)(7)(8)(J&S)&(PbF)

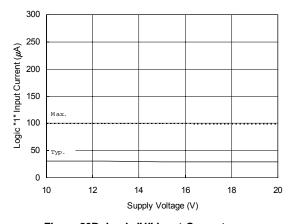


Figure 29D. Logic "1" Input Current vs. Supply Voltage (IR21362 High Side Only)

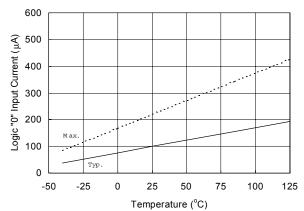


Figure 30A. Logic "0" Input Current vs. Temperature (IR2136/21363/21365 and IR21362 Low Side Only)

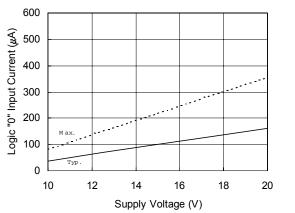


Figure 30B. Logic "0" Input Current vs. Supply Voltage (IR2136/21363/21365 and IR21362 Low Side Only)

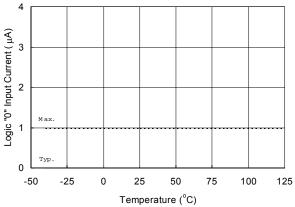


Figure 30C. Logic "0" Input Current vs. Temperature (IR21362 High Side Only)

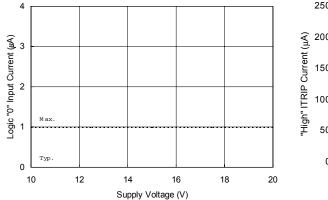


Figure 30D. Logic "0" Input Current vs. Supply Voltage (IR21362 High Side Only)

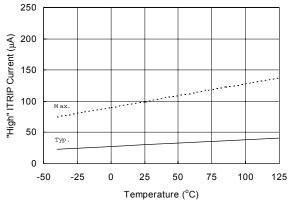


Figure 31A. "High" ITRIP Current vs. Temperature

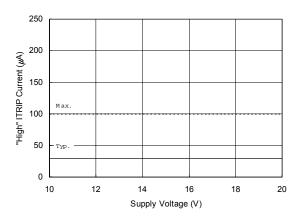


Figure 31B. "High" ITRIP Current vs. Supply Voltage

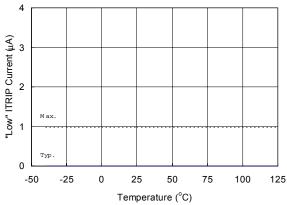


Figure 32A. "Low" ITRIP Current vs. Temperature

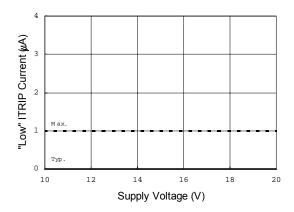


Figure 32B. "Low" ITRIP Current vs. Supply Voltage

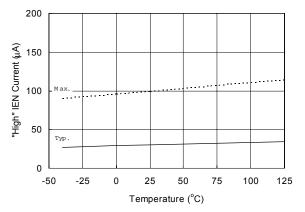


Figure 33A. "High" IEN Current vs. Temperature

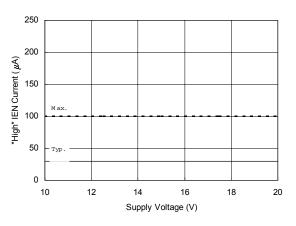


Figure 33B. "High" IEN Current vs. Supply Voltage

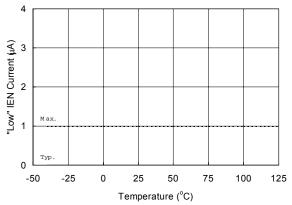
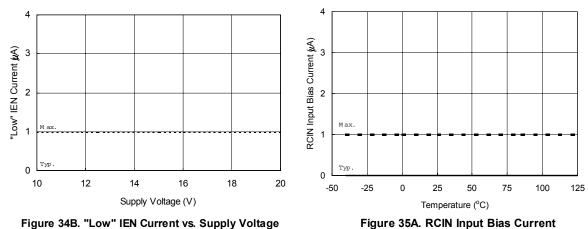
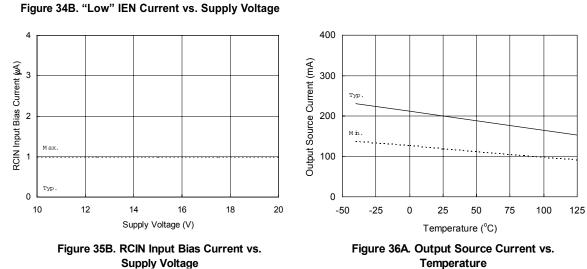
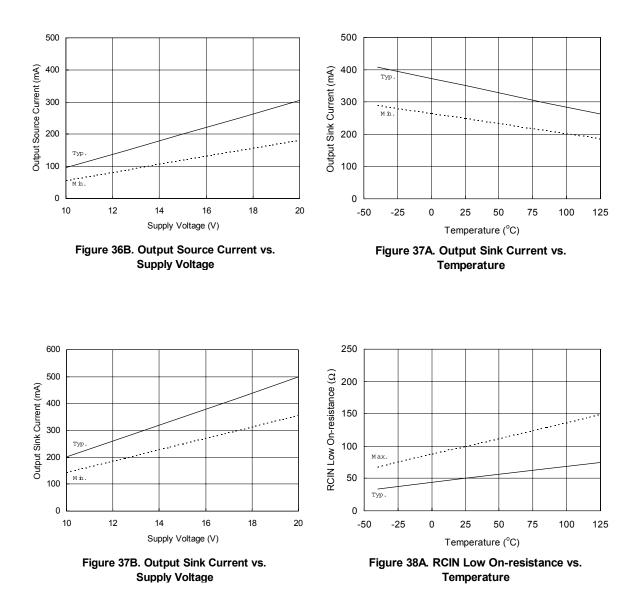
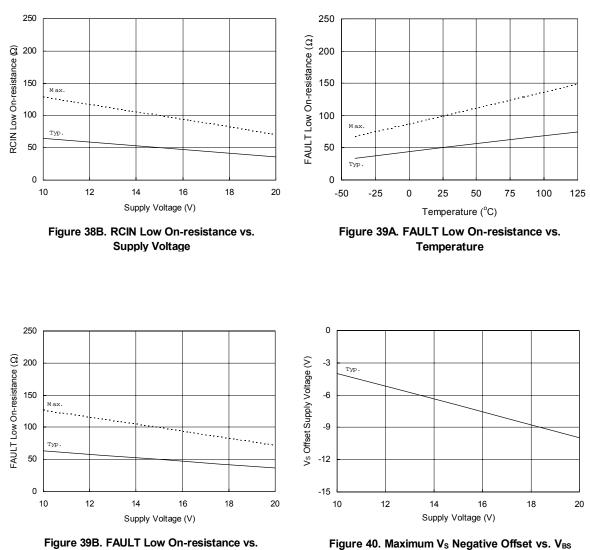




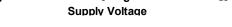
Figure 34A. "Low" IEN Current vs. Temperature



vs. Temperature



IR2136(2)(3)(5)(6)(7)(8)(J&S)&(PbF)



www.irf.com

29

Supply Voltage

IR2136(2)(3)(5)(6)(7)(8)(J&S)&(PbF)

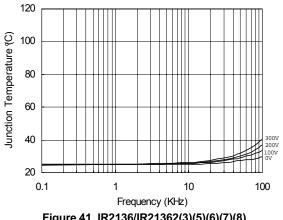


Figure 41. IR2136/IR21362(3)(5)(6)(7)(8) vs. Frequency (IRG4BC20W), Rgate=33Ω, Vcc=15V

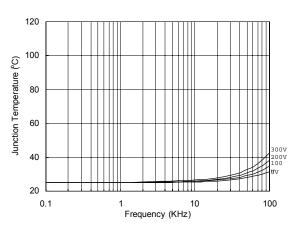


Figure 42. IR2136/IR21362(3)(5)(6)(7)(8) vs. Frequency (IRG4BC30W), Rgate=15Ω, Vcc=15V

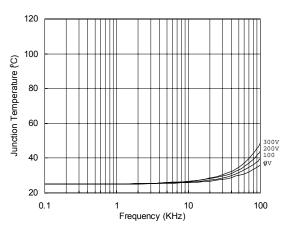


Figure 43. IR2136/IR21362(3)(5)(6)(7)(8) vs. Frequency (IRG4BC40W), Rgate=10Ω, Vcc=15V

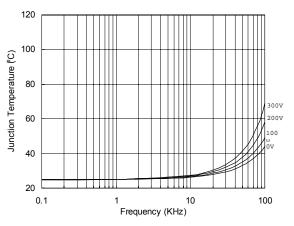
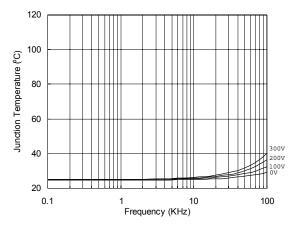



Figure 44. IR2136/IR21362(3)(5)(6)(7)(8) vs. Frequency (IRG4PC50W), Rgate=5Ω, Vcc=15V

International

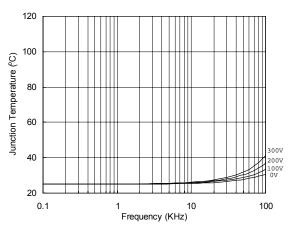
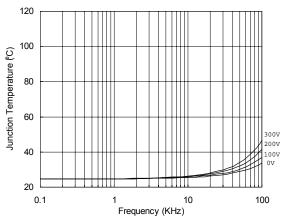
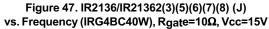




Figure 46. IR2136/IR21362(3)(5)(6)(7)(8) (J) vs. Frequency (IRG4BC30W), Rgate=15 Ω , Vcc=15V

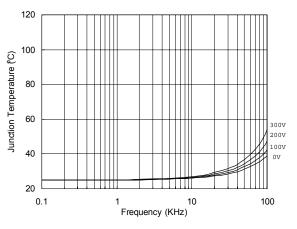
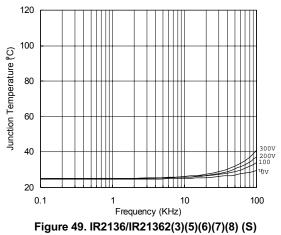



Figure 48. IR2136/IR21362(3)(5)(6)(7)(8) (J) vs. Frequency (IRG4PC50W), Rgate=5Ω, Vcc=15V

International

IR2136(2)(3)(5)(6)(7)(8)(J&S)&(PbF)

vs. Frequency (IRG4BC20W), Rgate=33Ω, Vcc=15V

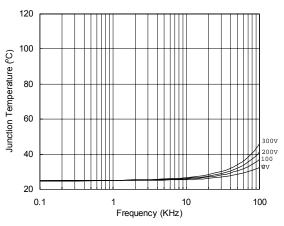


Figure 50. IR2136/IR21362(3)(5)(6)(7)(8) (S) vs. Frequency (IRG4BC30W), Rgate=15Ω, Vcc=15V

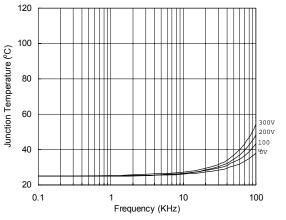
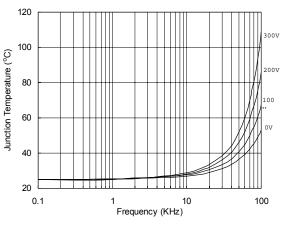


Figure 51. IR2136/IR21362(3)(5)(6)(7)(8) (S) vs. Frequency (IRG4BC40W), Rgate=10Ω, Vcc=15V



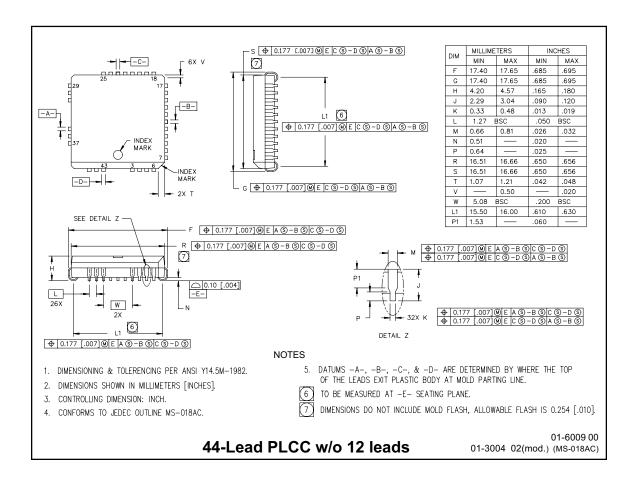
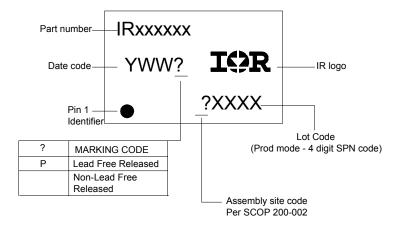


Figure 52. IR2136/IR21362(3)(5)(6)(7)(8) (S) vs. Frequency (IRG4PC50W), Rgate=5 Ω , Vcc=15V

Case outlines



IR2136(2)(3)(5)(6)(7)(8)(J&S)&(PbF)

International **IOR** Rectifier

LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

Basic Part

28-Lead PDIP IR2136/IR21363(5)(6)(7)(8) 28-Lead SOIC IR2136/IR21363(5)(6)(7)(8) (S) 44-Lead PLCC IR2136/IR21363(5)(6)(7)(8) (J)) 28-Lead PDIP IR21362 28-Lead SOIC IR21362S 44-Lead PLCC IR21362J

Leadfree Part

28-Lead PDIP IR2136/IR21363(5)(6)(7)(8) 28-Lead SOIC IR2136/IR21363(5)(6)(7)(8) (S) 44-Lead PLCC IR2136/IR21363(5)(6)(7)(8) (J)) 28-Lead PDIP IR21362 28-Lead SOIC IR21362S 44-Lead PLCC IR21362J order IR2136/IR21363(5)(6)(7)(8) order IR2136/IR21363(5)(6)(7)(8) (S) order IR2136/IR21363(5)(6)(7)(8) (J) order IR21362 order IR21362S order IR21362J

order IR2136/IR21363(5)(6)(7)(8)PbF order IR2136/IR21363(5)(6)(7)(8) (S)PbF order IR2136/IR21363(5)(6)(7)(8) (J)PbF order IR21362PbF order IR21362SPbF order IR21362JPbF

International

WORLD HEADQUARTERS: 233 Kansas Street, El Segundo, California 90245 Tel: (310) 252-7105 This product has been qualified per industrial level http://www.irf.com/ Data and specifications subject to change without notice. 5/25/2005