

ON Semiconductor®

FDMS7620S Dual N-Channel PowerTrench[®] MOSFET Q1: 30 V, 13 A, 20.0 m Ω Q2: 30 V, 22 A, 11.2 m Ω

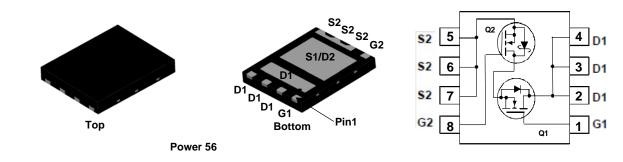
Features

Q1: N-Channel

- Max $r_{DS(on)}$ = 20.0 m Ω at V_{GS} = 10 V, I_D = 10.1 A
- Max $r_{DS(on)}$ = 30.0 m Ω at V_{GS} = 4.5 V, I_D = 7.5 A

Q2: N-Channel

- Max r_{DS(on)} = 11.2 mΩ at V_{GS} = 10 V, I_D = 12.4 A
- Max r_{DS(on)} = 14.2 mΩ at V_{GS} = 4.5 V, I_D = 10.9 A
- Pinout optimized for simple PCB design
- Thermally efficient dual Power 56 Package
- RoHS Compliant


General Description

This device includes two specialized MOSFETs in a unique dual Power 56 package. It is designed to provide an optimal synchronous buck power stage in terms of efficiency and PCB utilization. The low switching loss "High Side" MOSFET is complementory by a low conduction loss "Low Side" SyncFET.

Applications

Synchronous Buck Converter for:

- Notebook System Power
- General Purpose Point of Load

MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter		Q1	Q2	Units	
V _{DS}	Drain to Source Voltage		30	30	V	
V _{GS}	Gate to Source Voltage	(Note 3)	±20	±20	V	
	Drain Current -Continuous	T _C = 25 °C	13	22	1	
I _D	-Continuous	T _A = 25 °C	10.1	12.4	Α	
	-Pulsed		27	45		
E _{AS}	Single Pulse Avalanche Energy	(Note 4)	9	21	mJ	
D	Power Dissipation for Single Operation	T _A = 25°C	2.2 ^{1a}	2.5 ^{1b}	W	
P _D	Power Dissipation for Single Operation	T _A = 25°C	1.0 ^{1c}	1.0 ^{1d}	vv	
T _J , T _{STG}	Operating and Storage Junction Temperature Range		-55 to	+150	°C	

Thermal Characteristics

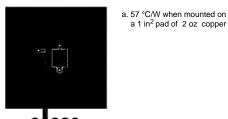
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	57 ^{1a}	50 ^{1b}	°C/W
R_{\thetaJA}	Thermal Resistance, Junction to Ambient	125 ^{1c}	120 ^{1d}	C/W

Package Marking and Ordering Information

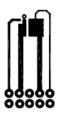
Device Marking	Device	Package	Reel Size	Tape Width	Quantity
FDMS7620S	FDMS7620S	Power 56	13 "	12 mm	3000 units

©2013 Semiconductor Components Industries, LLC. October-2017, Rev.3

FDMS7
MS7620S [
Dual N-
V -Channel
PowerTrench
[®] MOSFET


Symbol	Parameter	Test Conditions		Min	Тур	Max	Units
Off Chara	cteristics						
BV _{DSS}	Drain to Source Breakdown Voltage	$I_D = 250 \ \mu A, V_{GS} = 0 \ V$ $I_D = 1 \ mA, V_{GS} = 0 \ V$	Q1 Q2	30 30			V
$\frac{\Delta BV_{DSS}}{\Delta T_J}$	Breakdown Voltage Temperature Coefficient	$I_D = 250 \mu A$, referenced to 25°C (I_D = 10 mA, referenced to 25°C (0)			19 19		mV/°C
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} = 24 V, V _{GS} = 0 V				1 500	μA
I _{GSS}	Gate to Source Leakage Current, Forward	$V_{GS} = 20 V, V_{DS} = 0 V$				100 100	nA nA
On Chara	cteristics						
V _{GS(th)}	Gate to Source Threshold Voltage	$\label{eq:VGS} \begin{array}{l} V_{GS} = V_{DS}, \ I_D = 250 \ \mu\text{A} \\ V_{GS} = V_{DS}, \ I_D = 1 \ \text{mA} \end{array}$	Q1 Q2	1.0 1.0	2.2 2.0	3.0 3.0	V
$\frac{\Delta V_{GS(th)}}{\Delta T_J}$	Gate to Source Threshold Voltage Temperature Coefficient	$I_D = 250 \ \mu$ A, referenced to 25°C $I_D = 10 \ m$ A, referenced to 25°C	Q1 Q2		-6 -5		mV/°C
	Static Drain to Source On Resistance		Q1		15.2 22.7 18.7	20.0 30.0 22.5	- mΩ
r _{DS(on)}	State Drain to Source On Resistance	$V_{GS} = 10 \text{ V}, \text{ I}_{D} = 12.4 \text{ A}$ $V_{GS} = 4.5 \text{ V}, \text{ I}_{D} = 10.9 \text{ A}$ $V_{GS} = 10 \text{ V}, \text{ I}_{D} = 12.4 \text{ A}, \text{ T}_{J} = 125^{\circ}\text{C}$			8.3 10.5 8.9	11.2 14.2 15.1	11122
9 _{FS}	Forward Transconductance	$V_{DD} = 5 V, I_D = 10.1 A$ $V_{DD} = 5 V, I_D = 12.4 A$	Q1 Q2		22 53		S
Dynamic	Characteristics						
C _{iss}	Input Capacitance		Q1 Q2		457 1050	608 1400	pF
C _{oss}	Output Capacitance	$V_{DS} = 15 V, V_{GS} = 0 V, f = 1 MHZ$	Q1 Q2		167 358	222 477	pF
C _{rss}	Reverse Transfer Capacitance		Q1 Q2		22 35	31 49	pF
R _g	Gate Resistance		Q1 Q2	0.2 0.2	1.6 1.2	4.4 3.5	Ω
Switching	g Characteristics						
t _{d(on)}	Turn-On Delay Time	Q1	Q1 Q2		5.2 6.6	10 14	ns
t _r	Rise Time	V_{DD} = 15 V, I _D = 10.1 A, R _{GEN} = 6 Ω	Q1 Q2		1.2 1.8	10 10	ns
t _{d(off)}	Turn-Off Delay Time	Q2 V _{DD} = 15 V, I _D = 12.4 A, R _{GEN} = 6 Ω	Q1 Q2		11.9 17.4	22 32	ns
					T		1

t _{d(on)}	Turn-On Delay Time	Q1		Q1 Q2	5.2 6.6	10 14	ns
t _r	Rise Time	$V_{DD} = 15 \text{ V}, \text{ I}_{D} = 10.1 \text{ A}, \text{ R}_{\text{GEN}} = 6 \Omega$		Q1 Q2	1.2 1.8	10 10	ns
t _{d(off)}	Turn-Off Delay Time	Q2 V _{DD} = 15 V, I _D = 12.4 A, R _{GEN} = 6 Ω		Q1 Q2	11.9 17.4	22 32	ns
t _f	Fall Time			Q1 Q2	1.4 1.5	10 10	ns
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0V$ to 10 V	Q1	Q1 Q2	7.2 15.6	11 23	nC
Q _{g(TOT)}	Total Gate Charge	$V_{GS} = 0V \text{ to } 5 \text{ V}$	V _{DD} = 15 V, I _D = 10.1 A	Q1 Q2	3.8 7.9	6 12	nC
Q _{gs}	Gate to Source Charge	Q2 V _{DD} = 15 V, I _D = 12.4 A	Q1 Q2	1.6 3.2		nC	
Q _{gd}	Gate to Drain "Miller" Charge		Q1 Q2	1.1 1.6		nC	


Electrical Characteristics $T_J = 25^{\circ}C$ unless otherwise noted									
Symbol	Parameter	Test Conditions		Туре	Min	Тур	Max	Units	
Drain-Sou	Irce Diode Characteristics								
V _{SD}	Source-Drain Diode Forward Voltage	$V_{GS} = 0 V, I_S = 10.1 A$ $V_{GS} = 0 V, I_S = 12.4 A$	(Note 2) (Note 2)	Q1 Q2		0.90 0.83	1.2 1.2	V	
t _{rr}	Reverse Recovery Time	Q1 I _F = 10.1 A, di/dt = 100 A/s		Q1 Q2		16 18	28 32	ns	
Q _{rr}	Reverse Recovery Charge	Q2 $I_F = 12.4 \text{ A, di/dt} = 300 \text{ A/s}$		Q1 Q2		4 13	10 23	nC	

Notes:

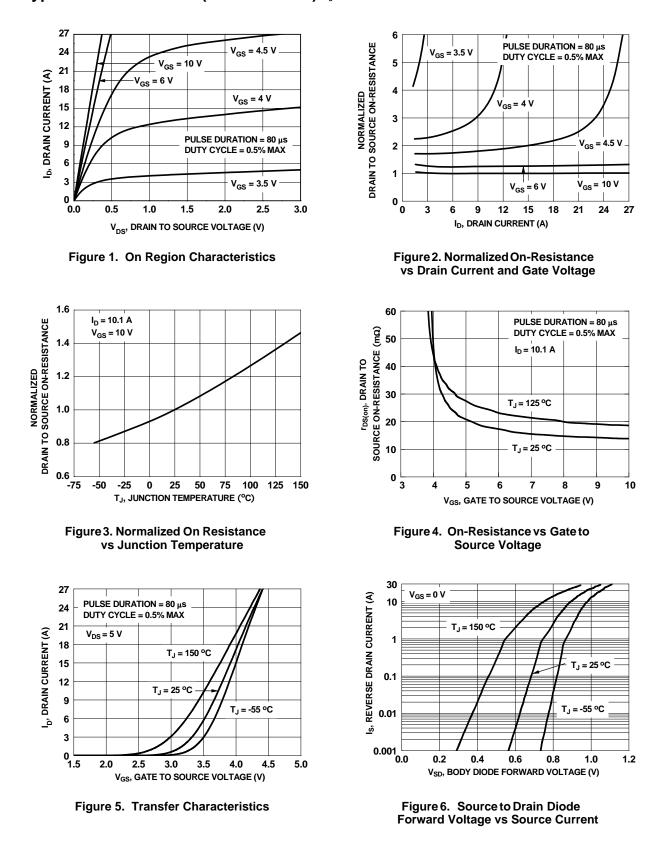
1. R_{0JA} is determined with the device mounted on a 1 in² pad 2 oz copper pad on a 1.5 x 1.5 in. board of FR-4 material. R_{0JC} is guaranteed by design while R_{0CA} is determined by the user's board design.

c. 125 °C/W when mounted on a minimum pad of 2 oz copper

00000

d. 120 °C/W when mounted on a minimum pad of 2 oz copper

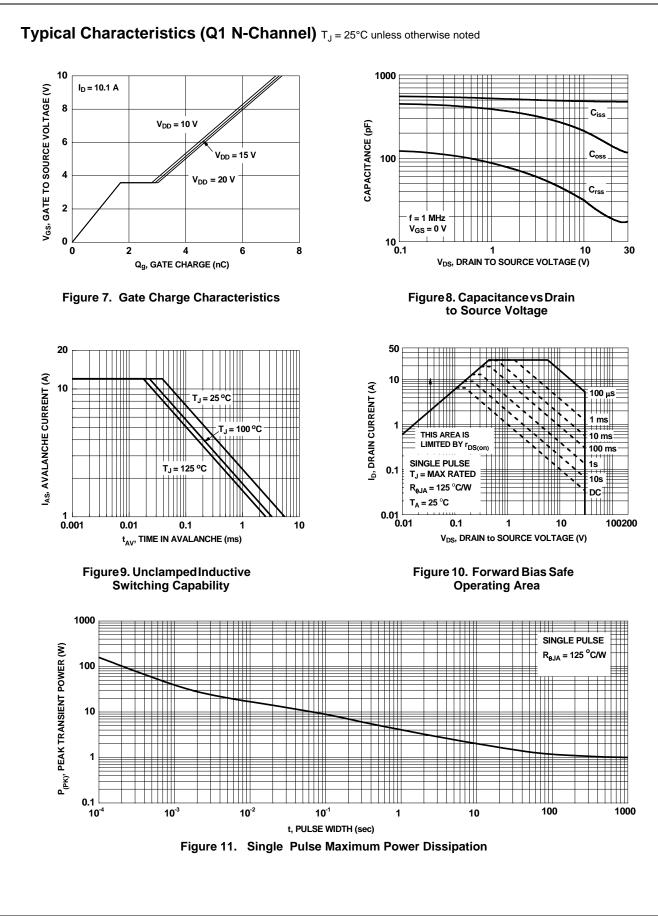
b. 50 °C/W when mounted on

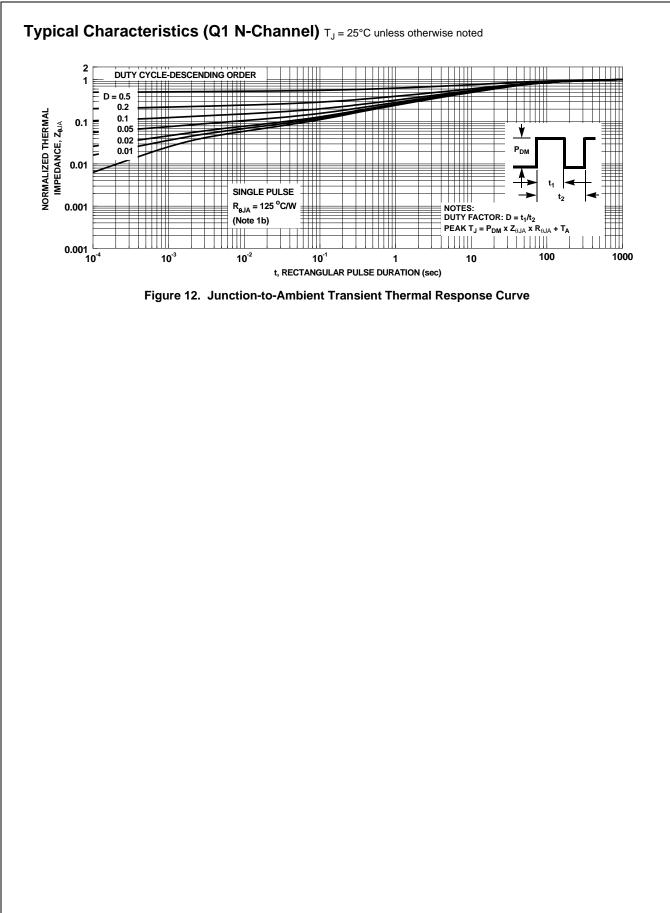

a 1 in² pad of 2 oz copper

2. Pulse Test: Pulse Width < 300 $\ \mu s,$ Duty cycle < 2.0%.

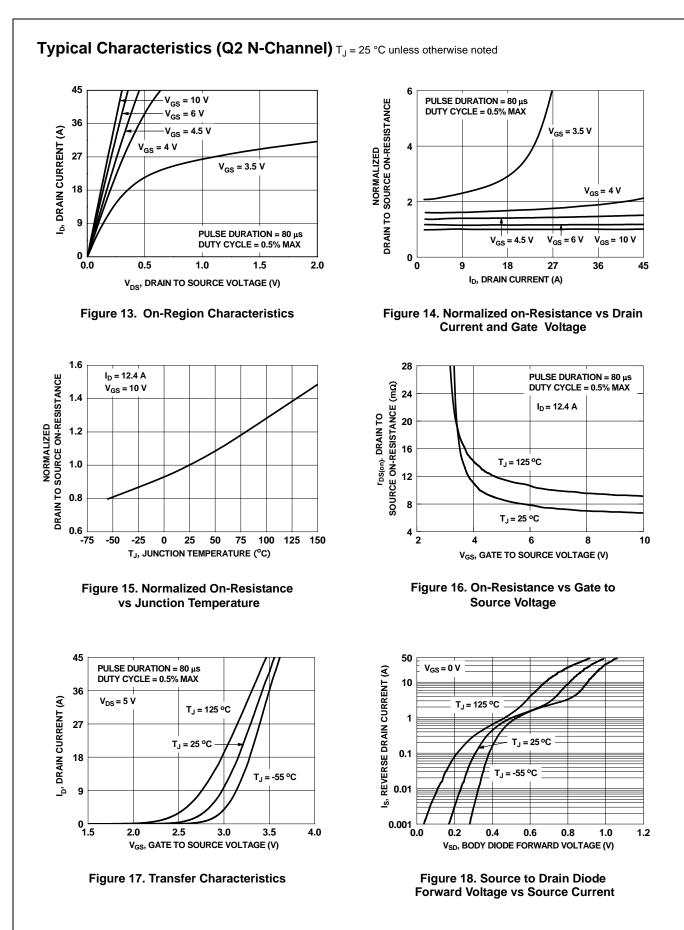
3. As an N-ch device, the negative Vgs rating is for low duty cycle pulse ocurrence only. No continuous rating is implied.

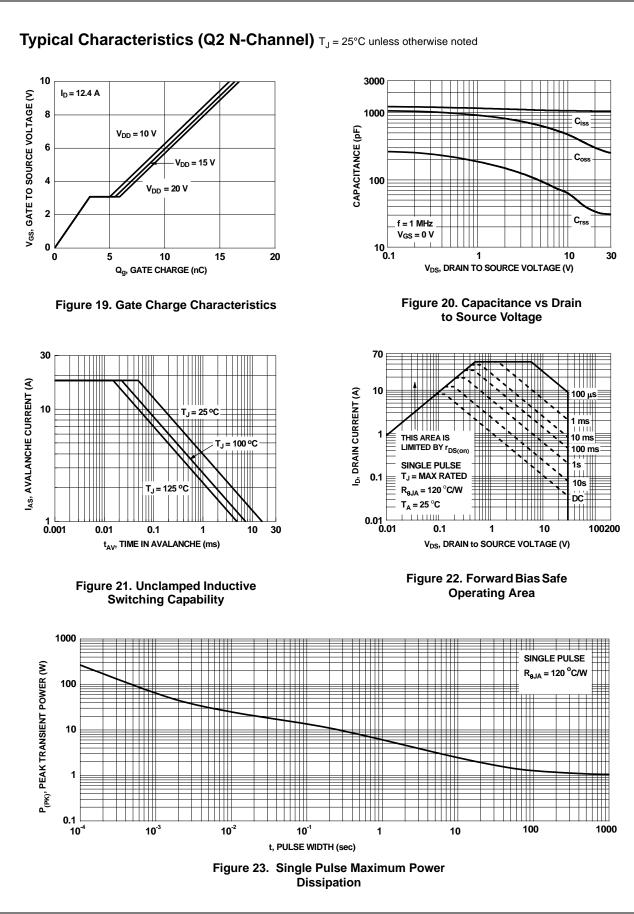
4. Q1: E_{AS} of 9 mJ is based on starting T_J = 25 °C, L = 0.3 mH, I_{AS} = 8 A, V_{DD} = 27 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 12 A.


Q2: E_{AS} of 21 mJ is based on starting T_J = 25 °C, L = 0.3 mH, I_{AS} = 12 A, V_{DD} = 27 V, V_{GS} = 10 V. 100% test at L = 0.1 mH, I_{AS} = 18 A.

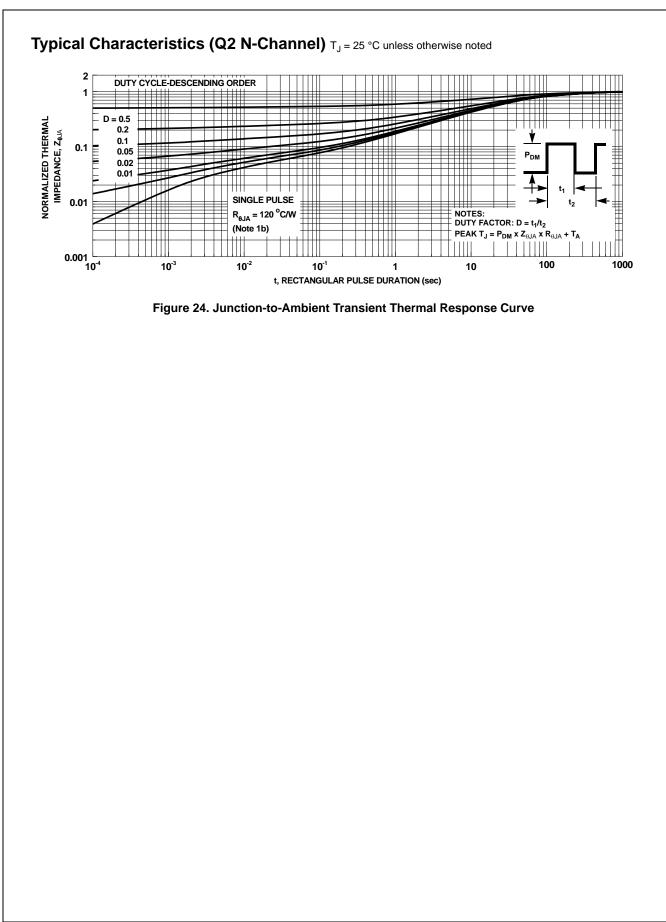


Typical Characteristics (Q1 N-Channel) T_J = 25°C unless otherwise noted


www.onsemi.com 4



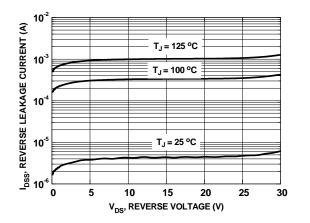
FDMS7620S Dual N-Channel PowerTrench[®] MOSFET



www.onsemi.com 7

www.onsemi.com 8

Typical Characteristics (continued)


SyncFETTM Schottky body diode Characteristics

ON Semiconductor's SyncFETTM process embeds a Schottky diode in parallel with PowerTrench[®] MOSFET. This diode exhibits similar characteristics to a discrete external Schottky diode in parallel with a MOSFET. Figure 26 shows the reverse recovery characteristic of the FDMS7620S.

15 10 di/dt = 300 A/µs CURRENT (A) 5 0 -5 0 50 100 150 200 TIME (ns)

Figure 25. FDMS7620S SyncFET[™] Body **Diode Reverse Recovery Characteristic**

Schottky barrier diodes exhibit significant leakage at high tem-

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor haves against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death a

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910

Japan Customer Focus Center Phone: 81-3-5817-1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

Semiconductor Components Industries, LLC