ELECTRICAL CHARACTERISTICS (T_A = 25°C unless otherwise noted) | Symbol | Parameter | | | | | |-----------------|--|--|--|--|--| | V_{RWM} | Peak Reverse Working Voltage | | | | | | I _R | Reverse Leakage Current @ V _{RWM} | | | | | | V_{BR} | Breakdown Voltage @ I _⊺ | | | | | | I _T | Test Current | | | | | | I _{PP} | Maximum Reverse Peak Pulse Currer | | | | | | V _C | Clamping Voltage @ I _{PP} | | | | | | P _{PP} | Peak Pulse Power | | | | | | CJ | Junction Capacitance | | | | | | I _F | Forward Current | | | | | | V _F | Forward Voltage @ I _F | | | | | # Electrical Characteristics @ 25°C (Unless Otherwise Specified) ### ESD3V3D5 | Parameter | Symbol | Conditions | Min. | Тур. | Max. | Units | |---------------------------|-----------------|--|------|------|------|-------| | Reverse Working Voltage | V_{RWM} | | | | 3.3 | V | | Reverse Breakdown Voltage | V_{BR} | I _T = 1mA | 5 | | | V | | Reverse Leakage Current | I _R | V _{RWM} =3.3V | | | 0.08 | μA | | Forward Voltage | V_{F} | I _F = 10mA | | | 0.9 | V | | Peak Pulse Current | I _{PP} | t _P =8/20µs | | | 16 | Α | | Clamping Voltage | V _C | I _{PP} =5A, t _P =8/20μs | | | 9.4 | V | | Clamping Voltage | V _C | I _{PP} =16A, t _P =8/20μs | | | 13 | V | | Peak Pulse Power | P _{PK} | t _P =8/20µs | | | 220 | W | | Junction Capacitance | CJ | $V_R = 0V, f = 1MHz$ | | 105 | | pF | ### ESD5V0D5 | Parameter | Symbol | Conditions | Min. | Тур. | Max. | Units | |---------------------------|-----------------|---|------|------|------|-------| | Reverse Working Voltage | V_{RWM} | | | | 5 | V | | Reverse Breakdown Voltage | V_{BR} | I _T = 1mA | 6.2 | | | V | | Reverse Leakage Current | I _R | V _{RWM} =5V | | | 0.05 | μA | | Forward Voltage | V _F | I _F = 10mA | | | 0.9 | V | | Peak Pulse Current | I _{PP} | t _P =8/20µs | | | 9.4 | Α | | Clamping Voltage | V _C | I _{PP} =5A, t _P =8/20μs | | | 11.6 | V | | Clamping Voltage | V _C | I _{PP} =9.4A, t _P =8/20μs | | | 18.6 | V | | Peak Pulse Power | P _{PK} | t _P =8/20µs | | | 174 | W | | Junction Capacitance | CJ | V _R = 0V, f = 1MHz | | 80 | | pF | ## Electrical Characteristics @ 25°C (Unless Otherwise Specified) ## ESD7V0D5 | Parameter | Symbol | Conditions | Min. | Тур. | Max. | Units | |---------------------------|-----------------|---|------|------|------|-------| | Reverse Working Voltage | V_{RWM} | | | | 7 | V | | Reverse Breakdown Voltage | V_{BR} | I _T = 1mA | 7.5 | | | V | | Reverse Leakage Current | I _R | V _{RWM} =7V | | | 0.03 | μA | | Forward Voltage | V _F | I _F = 10mA | | | 0.9 | V | | Peak Pulse Current | I _{PP} | t _P =8/20µs | | | 8.8 | Α | | Clamping Voltage | V _C | I _{PP} =5A, t _P =8/20μs | | | 13.5 | V | | Clamping Voltage | V _C | I _{PP} =8.8A, t _P =8/20μs | | | 22.7 | V | | Peak Pulse Power | P _{PK} | t _P =8/20µs | | | 200 | W | | Junction Capacitance | CJ | V _R = 0V, f = 1MHz | | 65 | | pF | ### ESD12VD5 | Parameter | Symbol | Conditions | Min. | Тур. | Max. | Units | |---------------------------|-----------------|---|------|------|------|-------| | Reverse Working Voltage | V_{RWM} | | | | 12 | V | | Reverse Breakdown Voltage | V_{BR} | I _T = 1mA | 14.1 | | | V | | Reverse Leakage Current | I _R | V _{RWM} =12V | | | 0.02 | μA | | Forward Voltage | V _F | I _F = 10mA | | | 0.9 | V | | Peak Pulse Current | I _{PP} | t _P =8/20µs | | | 9.6 | Α | | Clamping Voltage | V _C | I _{PP} =5A, t _P =8/20μs | | | 23 | V | | Clamping Voltage | V _C | I _{PP} =9.6A, t _P =8/20μs | | | 25 | V | | Peak Pulse Power | P _{PK} | t _P =8/20µs | | | 240 | W | | Junction Capacitance | CJ | V _R = 0V, f = 1MHz | | 55 | | pF | ### **Curve Characteristics** 0 ! 20 Fig. 1 - 8 X 20µs Pulse Waveform Peak value I_{RSM} @ 8µs Pulse width(t_p) is defined as that point where the peak current decay=8µs Half value I_{RSM} @ 20µs Half value I_{RSM} @ 20µs 40 Time (µs) 60 # **Ordering Information** | Device | Packing | |----------------|-----------------------| | Part Number-TP | Tape&Reel: 8Kpcs/Reel | #### ***IMPORTANT NOTICE*** *Micro Commercial Components Corp.* reserves the right to make changes without further notice to any product herein to make corrections, modifications, enhancements, improvements, or other changes. *Micro Commercial Components Corp*. does not assume any liability arising out of the application or use of any product described herein; neither does it convey any license under its patent rights, nor the rights of others. The user of products in such applications shall assume all risks of such use and will agree to hold *Micro Commercial Components Corp*, and all the companies whose products are represented on our website, harmless against all damages. *Micro Commercial Components Corp*, products are sold subject to the general terms and conditions of commercial sale, as published at https://www.mccsemi.com/Home/TermsAndConditions. #### ***LIFE SUPPORT*** MCC's products are not authorized for use as critical components in life support devices or systems without the express written approval of Micro Commercial Components Corporation. #### ***CUSTOMER AWARENESS*** Counterfeiting of semiconductor parts is a growing problem in the industry. Micro Commercial Components (MCC) is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. MCC strongly encourages customers to purchase MCC parts either directly from MCC or from Authorized MCC Distributors who are listed by country on our web page cited below. Products customers buy either from MCC directly or from Authorized MCC Distributors are genuine parts, have full traceability, meet MCC's quality standards for handling and storage. MCC will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. MCC is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.