

Thermal Resistance

Parameter	Symbol	Value	Unit
Junction - soldering point ¹⁾	R_{thJS}		K/W
BAR90-02LS		≤ 90	
All others		≤ 65	

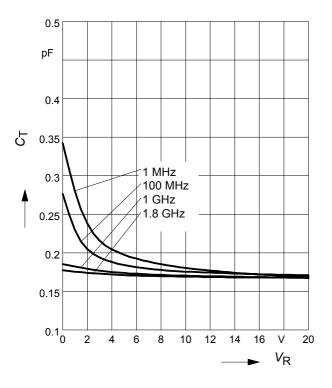
Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit
		min.	typ.	max.	
DC Characteristics		•			•
Breakdown voltage	$V_{(BR)}$	80	-	-	V
$I_{(BR)} = 5 \mu A$					
Reverse current	I_{R}	-	-	50	nA
V _R = 60 V					
Forward voltage	V_{F}				V
$I_{F} = 3 \; mA$		0.75	0.81	0.87	
$I_{\rm F}$ = 100 mA		-	0.9	1	

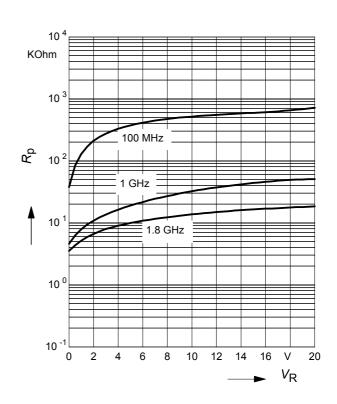
 $^{^{1}}$ For calculation of R_{thJA} please refer to Application Note AN077 (Thermal Resistance Calculation)

Electrical Characteristics at $T_A = 25$ °C, unless otherwise specified

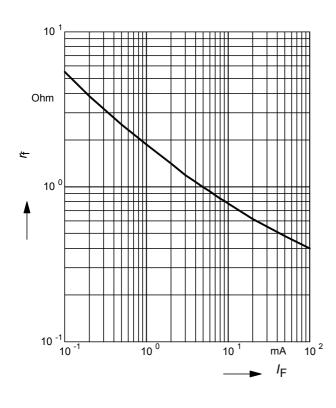
Parameter	Symbol	Values			Unit
		min.	typ.	max.	
AC Characteristics	_		_		_
Diode capacitance	C _T				pF
$V_{R} = 1 \text{ V}, f = 1 \text{ MHz}$		-	0.25	0.35	
V_{R} = 0 V, f = 100 MHz		-	0.3	-	
$V_{R} = 0 \text{ V}, f = 1 \text{ GHz}$		-	0.19	-	
$V_{R} = 0 \text{ V}, f = 1.8 \text{ GHz}$		-	0.18	-	
Reverse parallel resistance	R_{P}				kΩ
$V_{R} = 0 \text{ V}, f = 100 \text{ MHz}$		-	35	-	
$V_{R} = 0 \text{ V}, f = 1 \text{ GHz}$		-	5	-	
$V_{R} = 0 \text{ V}, f = 1.8 \text{ GHz}$		-	4	-	
Forward resistance	r_{f}				Ω
$I_{\rm F}$ = 1 mA, f = 100 MHz		-	2	_	
$I_{\rm F}$ = 3 mA, f = 100 MHz		-	1.3	2.3	
$I_{\rm F}$ = 10 mA, f = 100 MHz		-	0.8	-	
Charge carrier life time	τ _{rr}	-	750	-	ns
$I_{\rm F}$ = 10 mA, $I_{\rm R}$ = 6 mA, measured at $I_{\rm R}$ = 3 mA,					
R_{L} = 100 Ω					
I-region width	W _I	-	20	-	μm
Insertion loss ¹⁾	<i>I</i> L				dB
$I_{\rm F}$ = 1 mA, f = 1.8 GHz		-	0.16	-	
$I_{\rm F}$ = 3 mA, f = 1.8 GHz		-	0.11	-	
$I_{\rm F}$ = 10 mA, f = 1.8 GHz		-	0.08	_	
Isolation ¹⁾	I _{SO}				1
$V_{R} = 0 \text{ V}, f = 0.9 \text{ GHz}$		-	18.5	_	
V _R = 0 V, f = 1.8 GHz		_	13.5	_	
V _R = 0 V, f = 2.45 GHz		_	11.5	_	


3

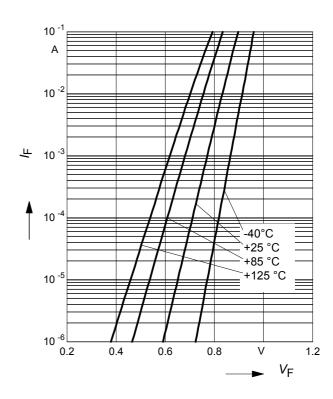
¹BAR90-02LRH in series configuration, Z = 50 Ω


Diode capacitance $C_T = f(V_R)$

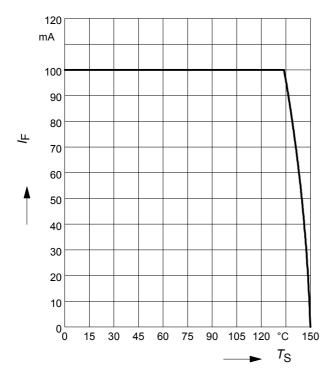
f = Parameter


Reverse parallel resistance $R_P = f(V_R)$

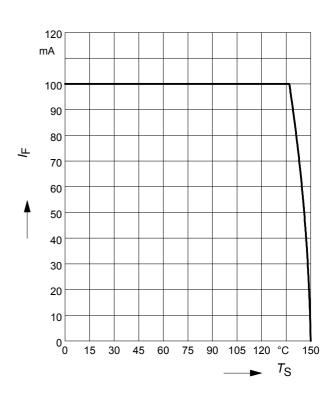
f = Parameter

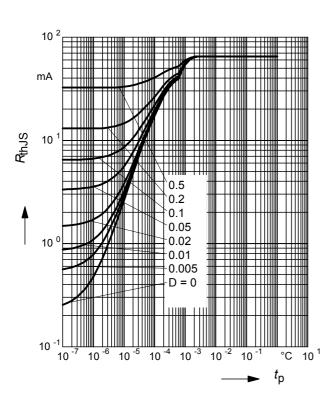

Forward resistance $r_f = f(I_F)$

f = 100 MHz

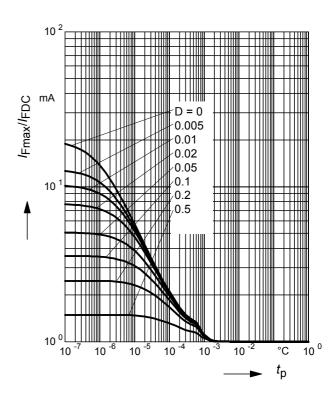

Forward current $I_F = f(V_F)$

 T_A = Parameter

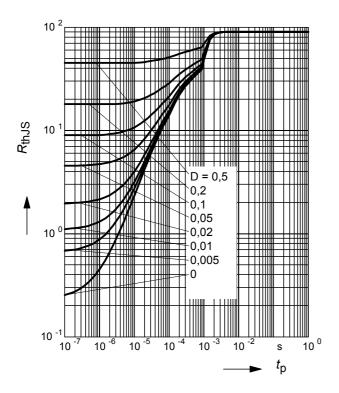



Forward current $I_F = f(T_S)$ BAR90-02LRH / -098LRH

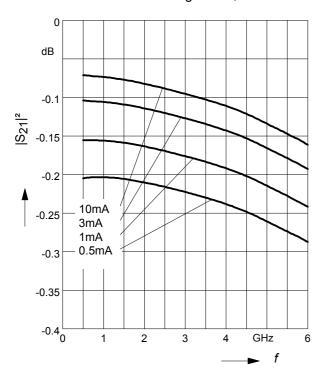
Forward current $I_F = f(T_S)$ BAR90-02LS



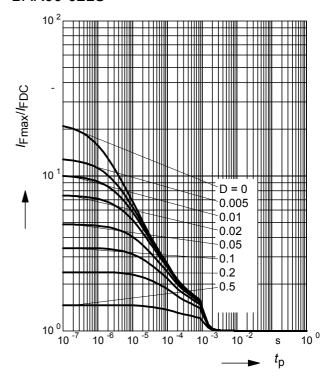
Permissible Puls Load $R_{thJS} = f(t_p)$ BAR90-02LRH / -098LRH


Permissible Pulse Load

 $I_{\text{Fmax}}/I_{\text{FDC}} = f(t_{\text{p}}) \text{ BAR90-02LRH }/\text{-098LRH}$

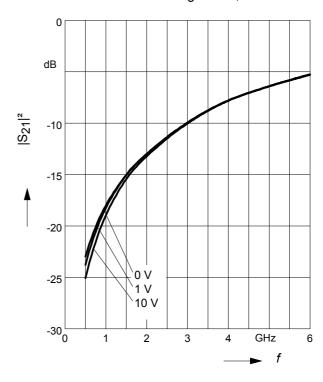

Permissible Puls Load $R_{thJS} = f(t_p)$ BAR90-02LS

Insertion loss $I_{L} = -|S_{21}|^2 = f(f)$

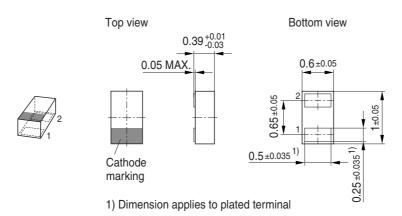

 $I_{\rm F}$ = Parameter

BAR90-02LRH in series configuration, $Z = 50\Omega$

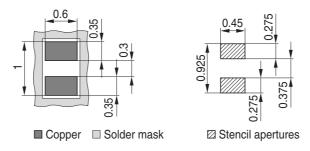
Permissible Pulse Load


 $I_{\text{Fmax}}/I_{\text{FDC}} = f(t_{\text{p}})$ BAR90-02LS

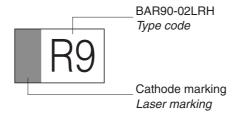
Isolation
$$I_{SO} = -|S_{21}|^2 = f(f)$$


 V_{R} = Parameter

BAR90-02LRH in series configuration, $Z = 50\Omega$

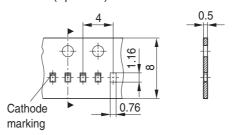


Package Outline

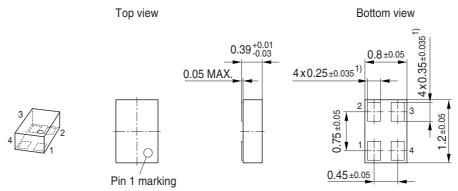


Foot Print

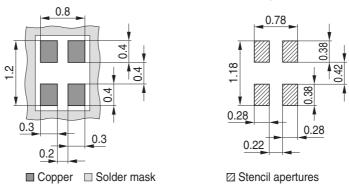
For board assembly information please refer to Infineon website "Packages"

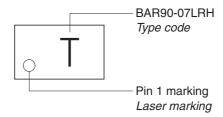


Marking Layout (Example)


Standard Packing

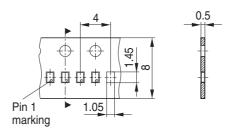
Reel ø180 mm = 15.000 Pieces/Reel Reel ø330 mm = 50.000 Pieces/Reel (optional)


Package Outline


1) Dimension applies to plated terminal

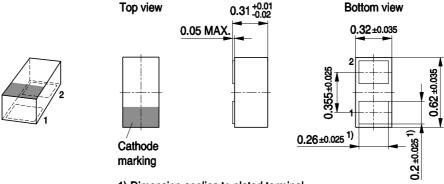
Foot Print

For board assembly information please refer to Infineon website "Packages"

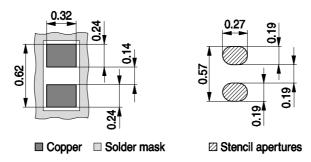


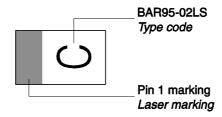
Marking Layout (Example)

Standard Packing


Reel ø180 mm = 15.000 Pieces/Reel

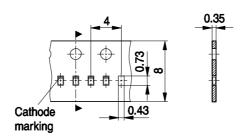
8


Package Outline


1) Dimension applies to plated terminal

Foot Print

For board assembly information please refer to Infineon website "Packages"



Marking Layout (Example)

Standard Packing

Reel ø180 mm = 15.000 Pieces/Reel

Edition 2009-11-16

Published by Infineon Technologies AG 81726 Munich, Germany

© 2009 Infineon Technologies AG All Rights Reserved.

Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (<www.infineon.com>).

Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.

10