

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	75			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.096		V/°C	Reference to 25°C, I _D = 5mA ②
R _{DS(on)}	Static Drain-to-Source On-Resistance		7.34	9.0	mΩ	V _{GS} = 10V, I _D = 46A ⑤
$V_{GS(th)}$	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 100 \mu A$
gfs	Forward Trans conductance	115			S	$V_{DS} = 50V, I_{D} = 46A$
	Drain-to-Source Leakage Current			20	μA	$V_{DS} = 75V, V_{GS} = 0V$
I _{DSS}	Diani-to-Source Leakage Current			250	μΑ	$V_{DS} = 60V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
llaaa	Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage			100	nA	$V_{GS} = 20V$
				-100		$V_{GS} = -20V$

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Q_g	Total Gate Charge	 56	84		I _D = 46A
Q_{gs}	Gate-to-Source Charge	 13		nC	$V_{DS} = 38V$
Q_{gd}	Gate-to-Drain Charge	16		110	V _{GS} = 10V⑤
Q _{sync}	Total Gate Charge Sync. (Q _g - Q _{gd})	40			
R_G	Gate Resistance	 0.55		Ω	
$t_{d(on)}$	Turn-On Delay Time	16			$V_{DD} = 49V$
t _r	Rise Time	110		20	I _D = 46A
$t_{d(off)}$	Turn-Off Delay Time	43		ns	$R_G = 6.8\Omega$
t_f	Fall Time	96			V _{GS} = 10V⑤
C_{iss}	Input Capacitance	3070			$V_{GS} = 0V$
Coss	Output Capacitance	280			$V_{DS} = 50V$
C_{rss}	Reverse Transfer Capacitance	130		pF	f = 1.0MHz
Coss eff. (ER)	Effective Output Capacitance (Energy Related)	 380			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 60V $ 8
C _{oss eff.} (TR)	Effective Output Capacitance (Time Related)	 610			$V_{GS} = 0V, V_{DS} = 0V \text{ to } 60V $

Diode Characteristics

Dioue C	blode Characteristics						
	Parameter	Min.	Тур.	Max.	Units	Conditions	
Is	Continuous Source Current (Body Diode)			80①		MOSFET symbol showing the	
I _{SM}	Pulsed Source Current (Body Diode) ①			310	A	integral reverse p-n junction diode.	
V_{SD}	Diode Forward Voltage			1.3	V	$T_J = 25^{\circ}C, I_S = 46A, V_{GS} = 0V $	
t _{rr}	Reverse Recovery Time		33	50	20	$T_J = 25^{\circ}C$ $V_R = 64V$,	
			39	59	ns	$T_J = 125^{\circ}C$ $I_F = 46A$	
Q_{rr}	Reverse Recovery Charge		32	48	nC	$T_J = 25^{\circ}C$ di/dt = 100A/µs \bigcirc	
			47	71	IIC	T _J = 125°C	
I _{RRM}	Reverse Recovery Current		1.9		Α	T _J = 25°C	
t _{on}	Forward Turn-On Time	Intrinsio	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)				

Notes:

- ① Calculated continuous current based on maximum allowable junction temperature. Bond wire current limit is 56A. Note that current limitations arising from heating of the device leads may occur with some lead mounting arrangements.
- ② Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)

- © Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- \odot C_{oss eff.} (TR) is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- \odot C_{oss eff.} (ER) is a fixed capacitance that gives the same energy as C_{oss} while V_{DS} is rising from 0 to 80% V_{DSS}.
- When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994
- $\ \ \,$ $\ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \,$ $\ \ \,$ $\ \,$ $\ \ \,$ $\ \ \,$ $\ \ \,$ $\ \,$ $\ \ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\ \,$ $\$

2017-10-03

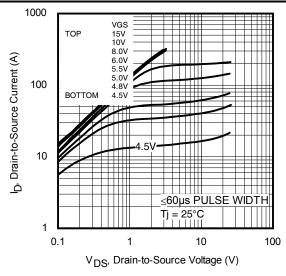


Fig. 1 Typical Output Characteristics

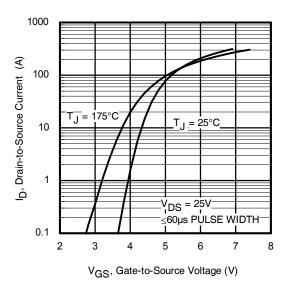


Fig. 3 Typical Transfer Characteristics

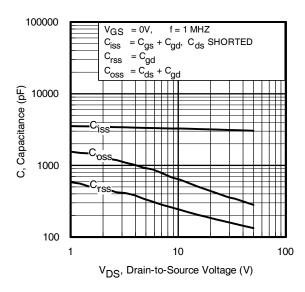


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

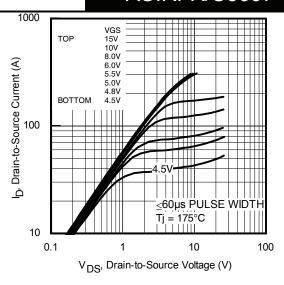


Fig. 2 Typical Output Characteristics

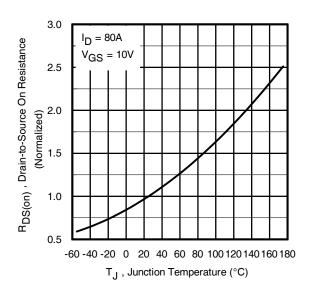


Fig. 4 Normalized On-Resistance vs. Temperature

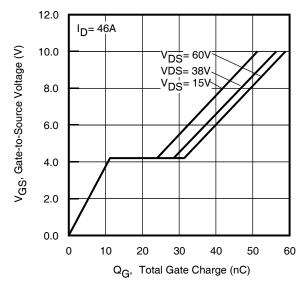


Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

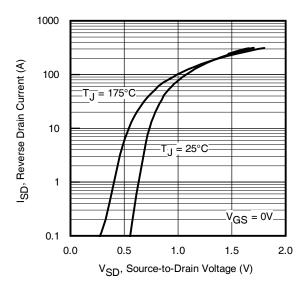


Fig. 7 Typical Source-to-Drain Diode Forward Voltage

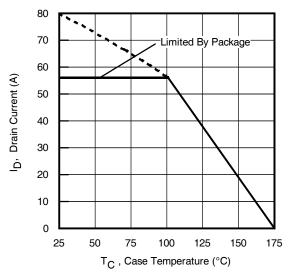


Fig. 9 Maximum Drain Current vs. Case Temperature

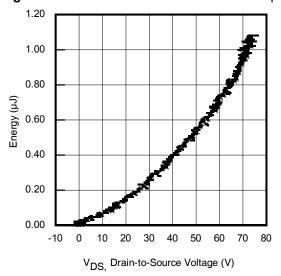


Fig. 11 Typical Coss Stored Energy

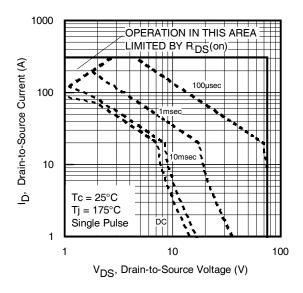


Fig 8. Maximum Safe Operating Area

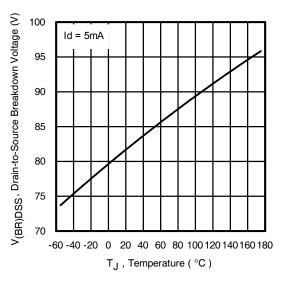


Fig 10. Drain-to-Source Breakdown Voltage

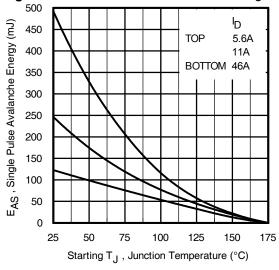


Fig 12. Maximum Avalanche Energy vs. Drain Current

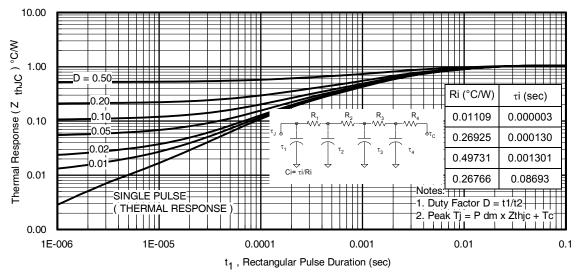


Fig 13. Maximum Effective Transient Thermal Impedance, Junction-to-Case

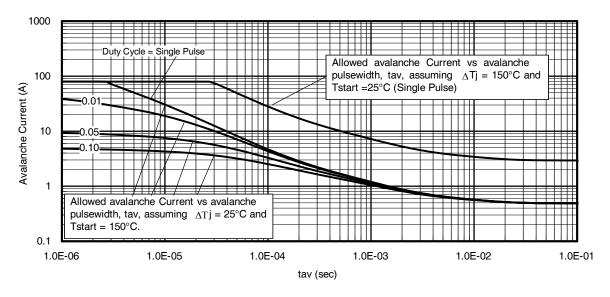


Fig 14. Typical Avalanche Current Vs. Pulse width

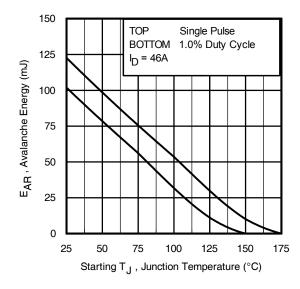


Fig 15. Maximum Avalanche Energy Vs. Temperature

Notes on Repetitive Avalanche Curves, Figures 14, 15: (For further info, see AN-1005 at www.infineon.com)

- (For further info, see AN-1005 at www.infineon.com)

 1. Avalanche failures assumption:
 - Purely a thermal phenomenon and failure occurs at a temperature far in excess of T_{jmax}. This is validated for every part type.
- 2. Safe operation in Avalanche is allowed as long as T_{jmax} is not exceeded.
- 3. Equation below based on circuit and waveforms shown in Figures 22a, 22b.
- 4. PD (ave) = Average power dissipation per single avalanche pulse.
- BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche).
- 6. lav = Allowable avalanche current.
- 7. ΔT = Allowable rise in junction temperature, not to exceed T_{jmax} (assumed as 25°C in Figure 13, 14).

tav = Average time in avalanche.

D = Duty cycle in avalanche = tav ·f

ZthJC(D, tav) = Transient thermal resistance, see Figures 13)

$$\begin{split} P_{D \text{ (ave)}} &= 1/2 \text{ (} 1.3 \cdot \text{BV} \cdot \text{I}_{av} \text{)} = \Delta \text{T} / \text{Z}_{thJC} \\ I_{av} &= 2\Delta \text{T} / \text{ [} 1.3 \cdot \text{BV} \cdot \text{Z}_{th} \text{]} \\ E_{AS \text{ (AR)}} &= P_{D \text{ (ave)}} \cdot t_{av} \end{split}$$

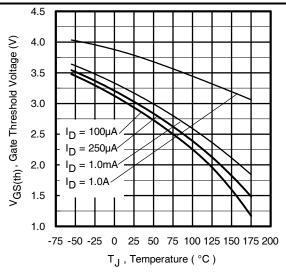


Fig 16. Threshold Voltage vs. Temperature

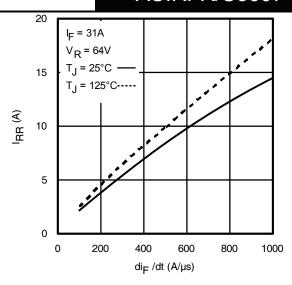


Fig. 17 - Typical Recovery Current vs. dif/dt

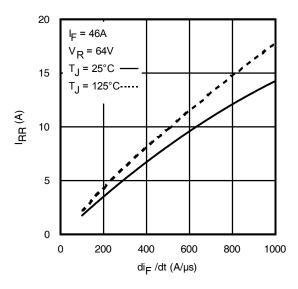


Fig. 18 - Typical Recovery Current vs. dif/dt

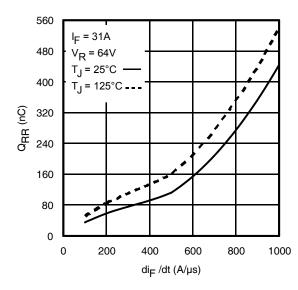


Fig. 19 - Typical Stored Charge vs. dif/dt

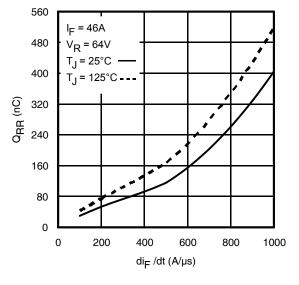


Fig. 20 - Typical Stored Charge vs. dif/dt

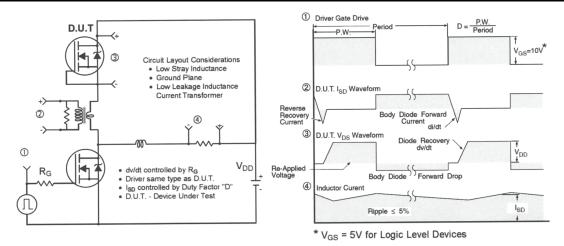


Fig 20. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

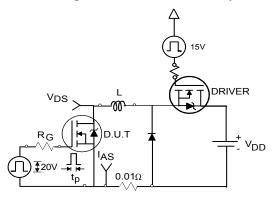


Fig 21a. Unclamped Inductive Test Circuit

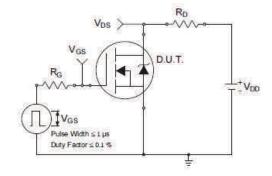


Fig 22a. Switching Time Test Circuit

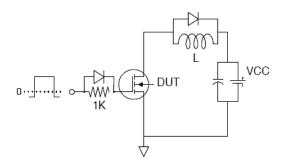


Fig 23a. Gate Charge Test Circuit

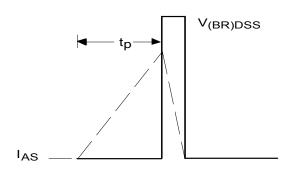


Fig 21b. Unclamped Inductive Waveforms

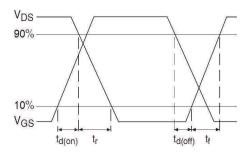


Fig 22b. Switching Time Waveforms

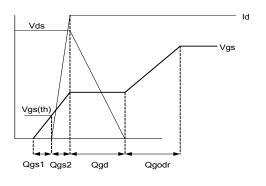
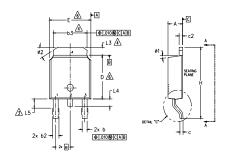
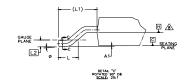
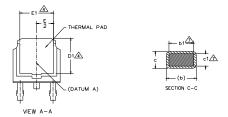



Fig 23b. Gate Charge Waveform


7



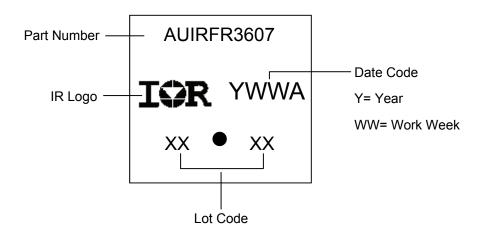
D-Pak (TO-252AA) Package Outline (Dimensions are shown in millimeters (inches))

NOTES:

- 1.- DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2.- DIMENSION ARE SHOWN IN INCHES [MILLIMETERS].
- LEAD DIMENSION UNCONTROLLED IN L5.
- A- DIMENSION D1, E1, L3 & b3 ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD.
- 5.— SECTION C-C DIMENSIONS APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN .005 AND 0.10 [0.13 AND 0.25] FROM THE LEAD TIP.
- bildension D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED .005 [0.13] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.
- A- DIMENSION b1 & c1 APPLIED TO BASE METAL ONLY.
- 9.- OUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA.

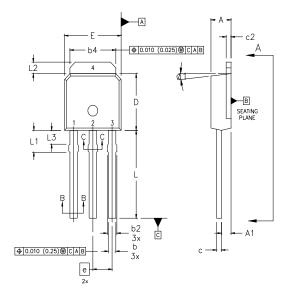
S	DIMENSIONS					
M B O	MILLIM	ETERS	INC	INCHES		
O L	MIN.	MAX.	MIN.	MAX.	E S	
Α	2.18	2.39	.086	.094		
A1	-	0.13	-	.005		
b	0.64	0.89	.025	.035		
ь1	0.65	0.79	.025	.031	7	
b2	0.76	1.14	.030	.045		
b3	4.95	5.46	.195	.215	4	
С	0.46	0.61	.018	.024		
c1	0.41	0.56	.016	.022	7	
c2	0.46	0.89	.018	.035		
D	5.97	6.22	.235	.245	6	
D1	5.21	-	.205	-	4	
Ε	6.35	6.73	.250	.265	6	
E1	4.32	-	.170	-	4	
е	2.29	BSC	.090	.090 BSC		
Н	9.40	10.41	.370	.410		
L	1.40	1.78	.055	.070		
L1	2.74	BSC	.108	REF.		
L2	0.51	BSC	.020 BSC			
L3	0.89	1.27	.035	.050	4	
L4	-	1.02	-	.040		
L5	1.14	1.52	.045	.060	3	
ø	0,	10*	0,	10°		
ø1	0.	15*	0,	15*		
ø2	25*	35*	25*	35*		

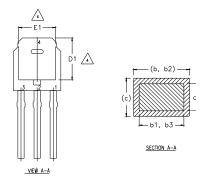
LEAD ASSIGNMENTS


HEXFET

- 1.- GATE
- 2.- DRAIN
- 3.- SOURCE
- 4.- DRAIN

IGBT & CoPAK


- 1.- GATE
- 2.- COLLECTOR 3.- EMITTER
- 4. COLLECTOR


D-Pak (TO-252AA) Part Marking Information

I-Pak (TO-251AA) Package Outline (Dimensions are shown in millimeters (inches)

NOTES:

SYMBOL

A1

b

ь1

b2

b4

c1

c2

D

D1

E1

е L

L1

L2

L3

- DIMENSIONING AND TOLERANCING PER ASME Y14.5 M- 1994.
- DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES]. 2
- DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED 0.005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
- THERMAL PAD CONTOUR OPTION WITHIN DIMENSION 64, L2, E1 & D1.

INCHES

.094

0.045

0.035

0.031

0.045

0.041

0.215

0.024

0.022

0.035

0.245

0.265

0.380

0.090

0.050

0.060

15*

0.086

0.035

0.025

0.025

0.030

0.030

0.195

0.018

0.016

0.018

0.235

0.205

0.250

0.170

0.350

0.075

0.035

0.045

0.090 BSC

NOTES

LEAD DIMENSION UNCONTROLLED IN L3.

2.39

1.14

0.89

0.79

1.14

1.04

5.46

0.61

0.56

0.86

6.22

6.73

9.60

2.29

1.27

1.52

- DIMENSION 61, 63 APPLY TO BASE METAL ONLY.
 - OUTLINE CONFORMS TO JEDEC OUTLINE TO-251AA.

DIMENSIONS

CONTROLLING DIMENSION: INCHES.

MILLIMETERS

MIN.

2.18

0.89

0.64

0.64

0.76

0.76

5.00

0.46

0.41

.046

5.97

5.21

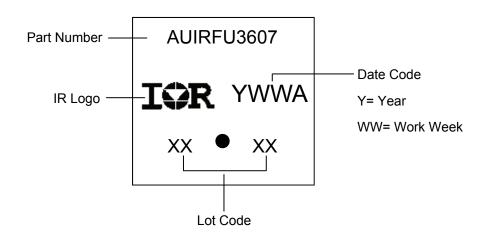
6.35

4.32

8.89

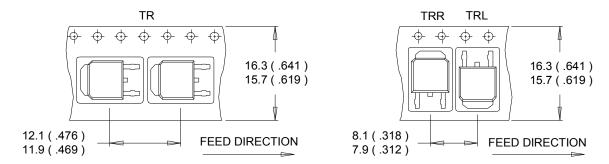
1.91

0.89

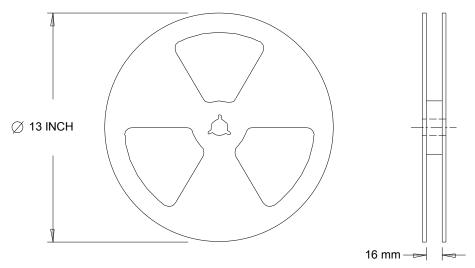

1.14

LEAD ASSIGNMENTS

HEXFET


- 1.- GATE
- 2.- DRAIN 3.- SOURCE
- 4.- DRAIN

I-Pak (TO-251AA) Part Marking Information



D-Pak (TO-252AA) Tape & Reel Information (Dimensions are shown in millimeters (inches))

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

1. OUTLINE CONFORMS TO EIA-481.

10 2017-10-03

Qualification Information

		Automotive					
		(per AEC-Q101)					
		Comments: This part number(s) passed Automotive qualification. Infineon's Industrial and Consumer qualification level is granted by extension of the higher Automotive level.					
Moisture Sensitivity Level		D-Pak	MOLA				
		I-Pak	MSL1				
	Machine Madel		Class M4 (+/- 600V) [†]				
	Machine Model	AEC-Q101-002					
ESD	I I was a se D a de Mardal	Class H1C (+/- 2000V) [†]					
	Human Body Model	AEC-Q101-001					
	Observed Davis a Madal	Class C4 (+/- 1000V) [†]					
	Charged Device Model	AEC-Q101-005					
RoHS Compliant		Yes					

[†] Highest passing voltage.

Revision History

Date	Comments			
10/12/2015	 Updated datasheet with corporate template Corrected ordering table on page 1. 			
10/30/2017	Corrected typo error on part marking on page 8 and 9.			

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

11 2017-10-03