

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
$V_{(BR)DSS}$	Drain-to-Source Breakdown Voltage	-150			V	$V_{GS} = 0V, I_{D} = -250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		-0.17		V/°C	Reference to 25 $^{\circ}$ C, I_D = -1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		120	150	mΩ	V _{GS} = -10V, I _D = -16A ④
$V_{GS(th)}$	Gate Threshold Voltage	-3.0		-5.0	V	$V_{DS} = V_{GS}, I_{D} = -250 \mu A$
9 fs	Forward Trans conductance	11			S	$V_{DS} = -50V, I_{D} = -16A$
	Danie to Course Lealings Courset			-25		$V_{DS} = -120V, V_{GS} = 0V$
IDSS	Drain-to-Source Leakage Current	_		-250	μA	$V_{DS} = -120V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
I _{GSS}	Gate-to-Source Forward Leakage			-100	- A	$V_{GS} = -20V$
	Gate-to-Source Reverse Leakage			100	nA	V _{GS} = 20V

Dynamic Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Q_{α}	Total Gate Charge	 71	110		I _D = -16A
Q_{gs}	Gate-to-Source Charge	 21			V _{DS} = -120V
Q_{gd}	Gate-to-Drain Charge	 32			V _{GS} = -10V4
$t_{d(on)}$	Turn-On Delay Time	 21			V _{DD} = -75V
t _r	Rise Time	 70		no	I _D = -16A
$t_{d(off)}$	Turn-Off Delay Time	 35		ns	$R_G = 3.9\Omega$,
t _f	Fall Time	 30			V _{GS} = -10V4
C_{iss}	Input Capacitance	 2210			$V_{GS} = 0V$
Coss	Output Capacitance	 370			V _{DS} = -25V
C _{rss}	Reverse Transfer Capacitance	 89		_	f = 1.0MHz
Coss	Output Capacitance	 2220		pF	$V_{GS} = 0V, V_{DS} = -1.0V, f = 1.0MHz$
Coss	Output Capacitance	 170			$V_{GS} = 0V, V_{DS} = -120V, f = 1.0MHz$
Coss eff.	Effective Output Capacitance	 340			$V_{GS} = 0V, V_{DS} = 0V \text{ to -120V}$

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions	
I _S	Continuous Source Current (Body Diode)			-27	_	MOSFET symbol showing the	
I _{SM}	Pulsed Source Current (Body Diode) ①			-110		integral reverse p-n junction diode.	
V_{SD}	Diode Forward Voltage			-1.6	V	$T_J = 25^{\circ}C, I_S = -16A, V_{GS} = 0V $ ④	
t _{rr}	Reverse Recovery Time		150		ns	$T_J = 25^{\circ}\text{C}, I_F = -16\text{A}, V_{DD} = -25\text{V}$	
Q_{rr}	Reverse Recovery Charge		860		nC	di/dt = 100A/μs ④	

Notes:

- $\ensuremath{\mathbb{O}}$ Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 1.6mH, $R_G = 25\Omega$, $I_{AS} = -17$ A.
- $\label{eq:local_spectrum} \mbox{3} \quad I_{SD} \leq -17A, \ di/dt \leq 520A/\mu s, \ V_{DD} \leq V_{(BR)DSS}, \ T_J \leq 175^{\circ}C.$
- 4 Pulse width $\leq 300 \mu s$; duty cycle $\leq 2\%$.
- © When mounted on 1" square PCB (FR-4 or G-10 Material). For recommended footprint and soldering techniques refer to application note #AN-994

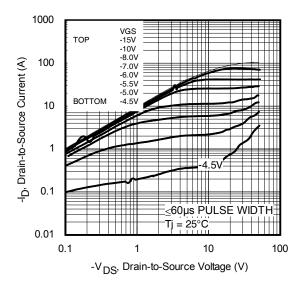


Fig. 1 Typical Output Characteristics

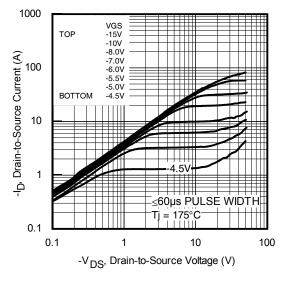


Fig. 2 Typical Output Characteristics

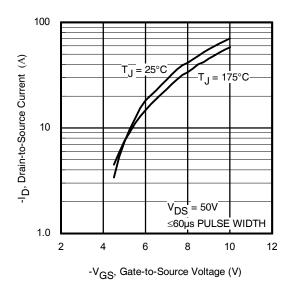
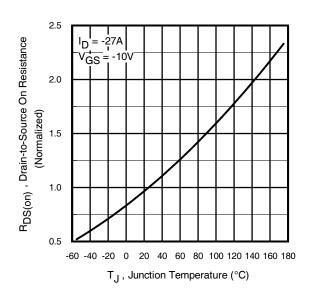



Fig. 3 Typical Transfer Characteristics

Fig. 4 Normalized On-Resistance vs. Temperature

2017-10-10

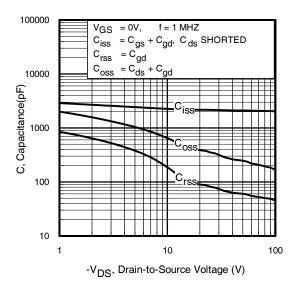


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

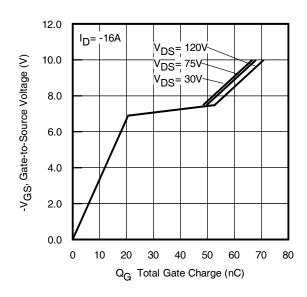
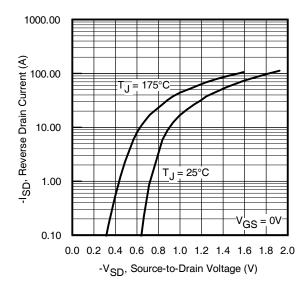



Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

Fig. 7 Typical Source-to-Drain Diode Forward Voltage

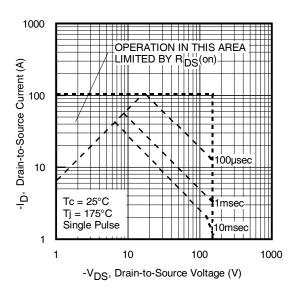
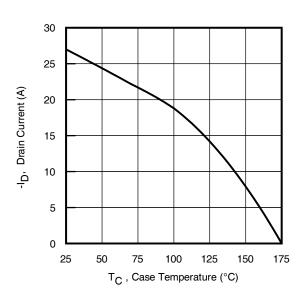



Fig 8. Maximum Safe Operating Area

Fig 9. Maximum Drain Current vs. Case Temperature

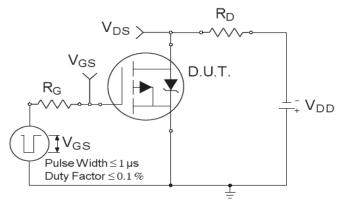


Fig 10a. Switching Time Test Circuit

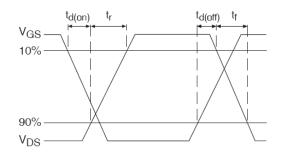


Fig 10b. Switching Time Waveforms

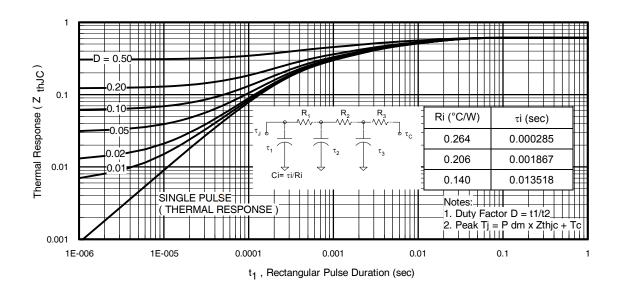


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

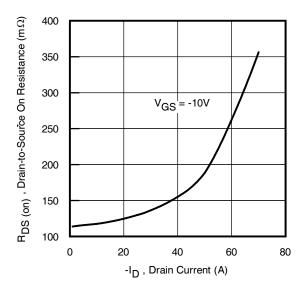


Fig 12. On-Resistance vs. Drain Current

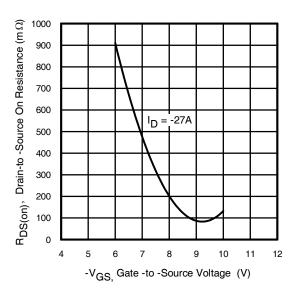
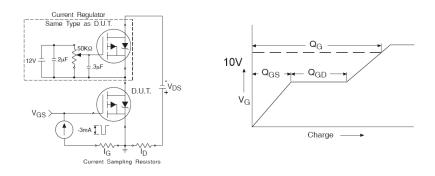
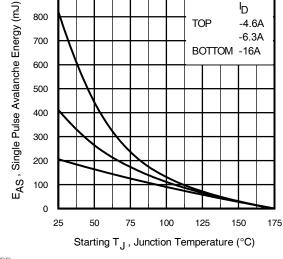
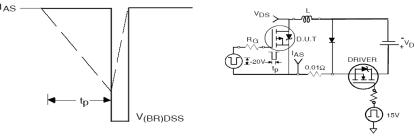
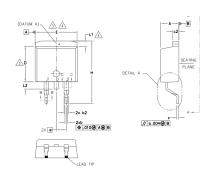




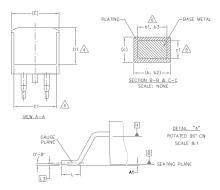
Fig 13. On-Resistance vs. Gate Voltage

Fig 14a&b. Basic Gate Charge Test Circuit and Waveform

900

Fig 15c. Maximum Avalanche Energy vs. Drain Current


Fig 15a&b. Unclamped Inductive Test circuit and Waveforms

2017-10-10

D²Pak (TO-263AB) Package Outline (Dimensions are shown in millimeters (inches))

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

AT THE OUTMOST EXTREMES OF THE PLASTIC BODY AT DATUM H.

5. DIMENSION 61, 63 AND c1 APPLY TO BASE METAL ONLY.

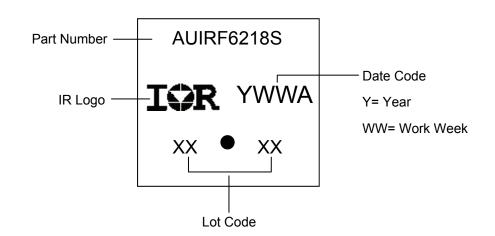
- 6. DATUM A & B TO BE DETERMINED AT DATUM PLANE H.
- 7. CONTROLLING DIMENSION: INCH.
- 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO-263AB.

	I				1
S Y M	DIMENSIONS				
В	MILLIM	ETERS	INC	0 T E S	
0 L	MIN.	MAX.	MIN.	MAX.	S
А	4.06	4.83	.160	.190	
A1	0.00	0.254	.000	.010	
ь	0.51	0.99	.020	.039	
Ь1	0.51	0.89	.020	.035	5
b2	1.14	1.78	.045	.070	
ь3	1.14	1.73	.045	.068	5
С	0.38	0.74	.015	.029	
с1	0.38	0.58	.015	.023	5
c2	1.14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	_	.270	_	4
E	9.65	10.67	.380	.420	3,4
E1	6.22	_	.245	_	4
е	2.54 BSC		.100	BSC	
Н	14.61	15.88	.575	.625	
L	1.78	2.79	.070	.110	
L1	_	1.68	_	.066	4
L2	_	1.78	_	.070	
L3	0.25	BSC	.010	BSC	

LEAD ASSIGNMENTS

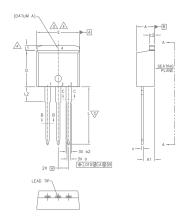
DIODES

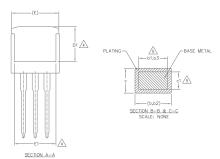
1.— ANODE (TWO DIE) / OPEN (ONE DIE) 2, 4.— CATHODE 3.— ANODE


HEXFET

IGBTs, CoPACK

1.- GATE 2, 4.- DRAIN 3.- SOURCE


1.- GATE 2, 4.- COLLECTOR 3.- EMITTER


D²Pak (TO-263AB) Part Marking Information

TO-262 Package Outline (Dimensions are shown in millimeters (inches)

- 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M-1994
- 2. DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].

3\Dimension D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED 0.127 [.005"] PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTMOST EXTREMES OF THE PLASTIC BODY.

4. THERMAL PAD CONTOUR OPTIONAL WITHIN DIMENSION E, L1, D1 & E1.

5. DIMENSION 61 AND c1 APPLY TO BASE METAL ONLY.

- 6. CONTROLLING DIMENSION: INCH.
- 7.- OUTLINE CONFORM TO JEDEC TO-262 EXCEPT A1(mox.), b(min.) AND D1(min.) WHERE DIMENSIONS DERIVED THE ACTUAL PACKAGE OUTLINE.

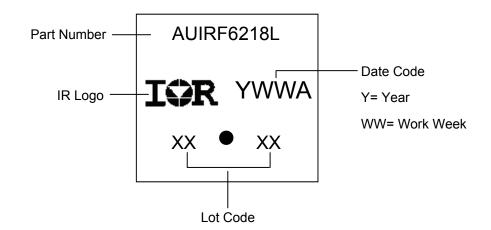
LEAD ASSIGNMENTS

IGBTs, CoPACK

- 1.- GATE 2.- COLLECTOR 3.- EMITTER
- 4.- COLLECTOR

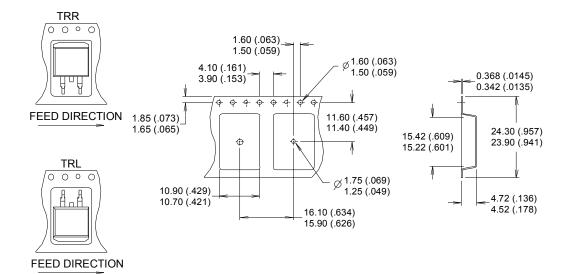
<u>HEXFET</u>

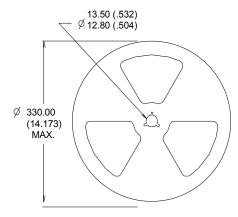
DIODES

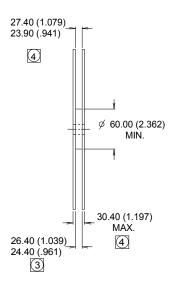

1.- GATE

1.- ANODE (TWO DIE) / OPEN (ONE DIE)
2, 4.- CATHODE
3.- ANODE 2.- DRAIN 3.- SOURCE

4 -	DRAI


S Y M		Ŋ			
В	MILLIM	ETERS	INC	0 1	
0 L	MIN.	MAX.	MIN.	MAX.	T E S
А	4.06	4.83	.160	.190	
A1	2.03	3.02	.080	.119	
b	0.51	0.99	.020	.039	
b1	0.51	0.89	.020	.035	5
b2	1.14	1.78	.045	.070	
b3	1.14	1.73	.045	.068	5
С	0.38	0.74	.015	.029	
c1	0.38	0.58	.015	.023	5
c2	1.14	1.65	.045	.065	
D	8.38	9.65	.330	.380	3
D1	6.86	_	.270	_	4
E	9.65	10.67	.380	.420	3,4
E1	6.22	_	.245		4
е	2.54	2.54 BSC		.100 BSC	
L	13.46	14.10	.530	.555	
L1	_	1.65	_	.065	4
L2	3.56	3.71	.140	.146	


TO-262 Part Marking Information


D²Pak (TO-263AB) Tape & Reel Information (Dimensions are shown in millimeters (inches))

- 1. COMFORMS TO EIA-418.
- 2. CONTROLLING DIMENSION: MILLIMETER.
- 3 DIMENSION MEASURED @ HUB.
- INCLUDES FLANGE DISTORTION @ OUTER EDGE.

9

Qualification Information

Qualification Level		Automotive (per AEC-Q101)					
		Comments: This part number(s) passed Automotive qualification. Infineon's					
		Industrial and Consumer qualification level is granted by extension of the higher					
			Automotive level.				
Moisture	Moisture Sensitivity Level		MSL1				
			WISET				
	Machine Madel		Class M4 (+/- 600V) [†]				
	Machine Model	AEC-Q101-002					
50 5	Liver on Dody Model	Class H2 (+/- 3000V) [†]					
ESD	Human Body Model	AEC-Q101-001					
	Observed Davis a Madal	Class C5 (+/- 2000V) [†]					
	Charged Device Model	AEC-Q101-005					
RoHS Compliant		Yes					

[†] Highest passing voltage.

Revision History

Date	Comments
11/16/2015	 Updated datasheet with corporate template Corrected ordering table on page 1.
10/10/2017	Corrected typo error on part marking on page 7,8.

Published by Infineon Technologies AG 81726 München, Germany © Infineon Technologies AG 2015 All Rights Reserved.

IMPORTANT NOTICE

The information given in this document shall in <u>no event</u> be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may <u>not</u> be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.