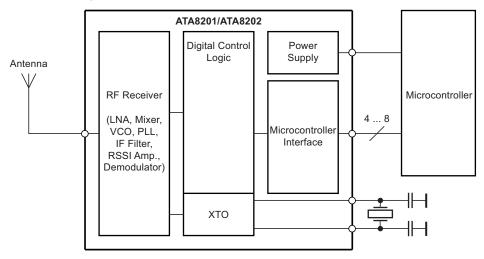
- Dual supply voltage range: 2.7V to 3.3V or 4.5V to 5.5V
- Temperature range: –40°C to +85°C
- Small 5mm × 5mm QFN24 package

Applications

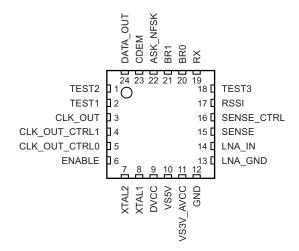
- Industrial/aftermarket keyless entry and tire pressure monitoring systems
- Alarm, telemetering and energy metering systems
- Remote control systems for consumer and industrial markets
- Access control systems
- Home automation
- Home entertainment
- Toys

Benefits


- Supports header and blanking periods of protocols common in RKE and TPM systems (up to 52ms in ASK Mode)
- All RF relevant functions are integrated. The single-ended RF input is suited for easy adaptation to λ / 4 or printed-loop antennas
- Allows a low-cost application with only 8 passive components
- Optimal bandwidth maximizes sensitivity while maintaining SAW transmitter compatibility
- Clock output provides an external microcontroller crystal-precision time reference
- Well suited for use with Atmel[®] PLL transmitter ATA8401/ATA8402/ATA8403/ATA8404/ATA8405

1. General Description

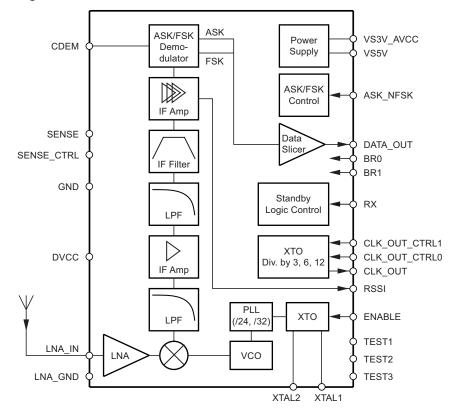
The Atmel[®] ATA8201/ATA8202 is a UHF ASK/FSK transparent receiver IC with low power consumption supplied in a small QFN24 package (body 5mm \times 5mm, pitch 0.65mm). Atmel ATA8202 is used in the 433MHz to 435MHz band of operation, and Atmel ATA8201 in 313MHz to 317MHz.


For improved image rejection and selectivity, the IF frequency is fixed to 440kHz. The IF block uses an 8th-order band pass yielding a receive bandwidth of 420kHz. This enables the use of the receiver in both SAW- and PLL-based transmitter systems utilizing various types of data-bit encoding such as pulse width modulation, Manchester modulation, variable pulse modulation, pulse position modulation, and NRZ. Prevailing encryption protocols such as Keeloq[®] are easily supported due to the receiver's ability to hold the current data slicer threshold for up to 52ms when incoming RF telegrams contain a blanking interval. This feature eliminates erroneous noise from appearing on the demodulated data output pin, and simplifies software decoding algorithms. The decoding of the data stream must be carried out by a connected microcontroller device. Because of the highly integrated design, the only required RF components are for the purpose of receiver antenna matching.

Atmel ATA8201 and Atmel ATA8202 support Manchester bit rates of 1Kbit/s to 10Kbits/s in ASK and 1Kbit/s to 20Kbits/s in FSK mode. The four discrete bit rate passbands are selectable and cover 1.0Kbit/s to 2.5Kbits/s, 2.0Kbits/s to 5.0Kbits/s, 4.0Kbits/s to 10.0Kbits/s to 10.0Kbits/s or 20.0Kbits/s (for ASK or FSK, respectively). The receiver contains an RSSI output to provide an indication of received signal strength and a SENSE input to allow the customer to select a threshold below which the DATA signal is gated off. ASK/FSK and bit rate ranges are selected by the connected microcontroller device via pins ASK NFSK, BR0, and BR1.

Figure 1-1. System Block Diagram

Figure 1-2. Pinning QFN24


Table 1-1. Pin Description

Pin	Symbol	Function
1	TEST2	Test pin, during operation at GND
2	TEST1	Test pin, during operation at GND
3	CLK_OUT	Output to clock a connected microcontroller
4	CLK_OUT_CTRL1	Input to control CLK_OUT (MSB)
5	CLK_OUT_CTRL0	Input to control CLK_OUT (LSB)
6	ENABLE	Input to enable the XTO
7	XTAL2	Reference crystal
8	XTAL1	Reference crystal
9	DVCC	Digital voltage supply blocking
10	VS5V	Power supply input for voltage range 4.5V to 5.5V
11	VS3V_AVCC	Power supply input for voltage range 2.7V to 3.3V
12	GND	Ground
13	LNA_GND	RF ground
14	LNA_IN	RF input
15	SENSE	Sensitivity control resistor
16	SENSE_CTRL	Sensitivity selection Low: Normal sensitivity, High: Reduced sensitivity
17	RSSI	Output of the RSSI amplifier
18	TEST3	Test pin, during operation at GND
19	RX	Input to activate the receiver
20	BR0	Bit rate selection, LSB
21	BR1	Bit rate selection, MSB
22	ASK_NFSK	FSK/ASK selection Low: FSK, High: ASK
23	CDEM	Capacitor to adjust the lower cut-off frequency data filter
24	DATA_OUT	Data output
	GND	Ground/backplane (exposed die pad)

ATA8201/ATA8202 [DATASHEET] 4971F–INDCO–07/14 Atmel

4

Figure 1-3. Block Diagram

2. RF Receiver

As seen in Figure 1-3 on page 5, the RF receiver consists of a low-noise amplifier (LNA), a local oscillator, and the signal processing part with mixer, IF filter, IF amplifier with analog RSSI, FSK/ASK demodulator, data filter, and data slicer.

In receive mode, the LNA pre-amplifies the received signal which is converted down to a 440-kHz intermediate frequency (IF), then filtered and amplified before it is fed into an FSK/ASK demodulator, data filter, and data slicer. The received signal strength indicator (RSSI) signal is available at the pin RSSI.

2.1 Low-IF Receiver

The receive path consists of a fully integrated low-IF receiver. It fulfills the sensitivity, blocking, selectivity, supply voltage, and supply current specification needed to design, e.g., an industrial/ aftermarket integrated receiver for RKE and TPM systems. A benefit of the integrated receive filter is that no external components needed.

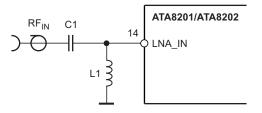
At 315MHz, the Atmel[®] ATA8201 receiver (433.92MHz for the Atmel ATA8202 receiver) has a typical system noise figure of 6.0dB (7.0dB), a system I1dBCP of –31dBm (–30dBm), and a system IIP3 of –24dBm (–23dBm). The signal path is linear for out-of-band disturbers up to the I1dBCP and hence there is no AGC or switching of the LNA needed, and a better blocking performance is achieved. This receiver uses an IF (intermediate frequency) of 440kHz, the typical image rejection is 30dB and the typical 3-dB IF filter bandwidth is 420kHz (f_{IF} = 440kHz ± 210kHz, $f_{Io_{.IF}}$ = 230kHz and $f_{hi_{.IF}}$ = 650kHz). The demodulator needs a signal-to-noise ratio of 8.5dB for 10Kbits/s Manchester with ±38kHz frequency deviation in FSK mode, thus, the resulting sensitivity at 315MHz (433.92MHz) is typically –105dBm (–104dBm).

Due to the low phase noise and spurs of the synthesizer together with the 8th-order integrated IF filter, the receiver has a better selectivity and blocking performance than more complex double superhet receivers, without using external components and without numerous spurious receiving frequencies.

A low-IF architecture is also less sensitive to second-order intermodulation (IIP2) than direct conversion receivers where every pulse or amplitude modulated signal (especially the signals from TDMA systems like GSM) demodulates to the receiving signal band at second-order non-linearities.

2.2 Input Matching at LNA_IN

Table 2-1.


The measured input impedances as well as the values of a parallel equivalent circuit of these impedances can be seen in Table 2-1. The highest sensitivity is achieved with power matching of these impedances to the source impedance.

Measured Input Impedances of the LNA IN Pin

	=	
f _{RF} [MHz]	Z _{in} (RF_IN) [Ω]	R _{in_p} //C _{in_p} [pF]
315	(72.4 – j298)	1300Ω//1.60
433.92	(55 – j216)Ω	900Ω//1.60

The matching of the LNA input to 50Ω is done using the circuit shown in Figure 2-1 and the values of the matching elements given in Table 2-2. The reflection coefficients were always ≤ -10 dB. Note that value changes of C1 and L1 may be necessary to compensate individual board layout parasitics. The measured typical FSK and ASK Manchester-code sensitivities with a bit error rate (BER) of 10^{-3} are shown in Table 2-3 and Table 2-4 on page 7. These measurements were done with wire-wound inductors having quality factors reported in Table 2-2, resulting in estimated matching losses of 0.8dB at 315MHz and 433.92MHz. These losses can be estimated when calculating the parallel equivalent resistance of the inductor with $R_{loss} = 2 \times \pi \times f \times L \times Q_{L}$ and the matching loss with 10 log(1+ $R_{ln p}$ / R_{loss}).

Figure 2-1. Input Matching to 50Ω

Table 2-2. Input Matching to 50Ω

f _{RF} [MHz]	С ₁ [рF]	L ₁ [nH]	Q _{L1}
315	2.2	68	20
433.92	2.2	36	15

Table 2-3. Measured Typical Sensitivity FSK, ±38 kHz, Manchester, BER = 10⁻³

RF Frequency	BR_Range_0 1.0Kbit/s	BR_Range_0 2.5Kbits/s	BR_Range_1 5Kbits/s	BR_Range_2 10Kbits/s	BR_Range_3 10Kbits/s	BR_Range_3 20Kbits/s
315MHz	-108dBm	–108dBm	–107dBm	-105dBm	-104dBm	–104dBm
433.92MHz	-107dBm	–107dBm	-106dBm	-104dBm	-103dBm	–103dBm

Table 2-4. Measured Typical Sensitivity 100% ASK, Manchester, BER = 10⁻³

RF Frequency	BR_Range_0 1.0Kbit/s	BR_Range_0 2.5Kbits/s	BR_Range_1 5Kbits/s	BR_Range_2 10Kbits/s	BR_Range_3 10Kbits/s
315MHz	–114dBm	–114dBm	–113dBm	–111dBm	-109dBm
433.92MHz	-113dBm	-113dBm	-112dBm	-110dBm	-108dBm

Conditions for the sensitivity measurement:

The given sensitivity values are valid for Manchester-modulated signals. For the sensitivity measurement the distance from edge to edge must be evaluated. As can be seen in Figure 6-1 on page 21, in a Manchester-modulated data stream, the time segments T_{EE} and $2 \times T_{EE}$ occur.

To reach the specified sensitivity for the evaluation of T_{EE} and $2 \times T_{EE}$ in the data stream, the following limits should be used (T_{EE} min, T_{EE} max, $2 \times T_{EE}$ min, $2 \times T_{EE}$ max).

Table 2-5. Limits for Sensitivity Measurements

Bit Rate	T _{EE} Min	Т _{ЕЕ} Тур	T _{EE} Max	$2 \times T_{EE}$ Min	$2 \times \mathbf{T}_{\mathbf{EE}}$ Typ	$2 \times \mathbf{T}_{\mathbf{EE}}$ Max
1.0Kbit/s	260µs	500µs	790µs	800µs	1000µs	1340µs
2.4Kbits/s	110µs	208µs	310µs	320µs	416µs	525µs
5.0Kbits/s	55µs	100µs	155µs	160µs	200µs	260µs
9.6Kbits/s	27µs	52µs	78µs	81µs	104µs	131µs

2.3 Sensitivity Versus Supply Voltage, Temperature and Frequency Offset

To calculate the behavior of a transmission system, it is important to know the reduction of the sensitivity due to several influences. The most important are frequency offset due to crystal oscillator (XTO) and crystal frequency (XTAL) errors, temperature and supply voltage dependency of the noise figure, and IF-filter bandwidth of the receiver. Figure 2-2 and Figure 2-3 on page 8 show the typical sensitivity at 315MHz, ASK, 2.4Kbits/s and 9.6Kbits/s, Manchester, Figure 2-4 and Figure 2-5 on page 9 show a typical sensitivity at 315MHz, FSK, 2.4Kbits/s and 9.6Kbits/s, ±38kHz, Manchester versus the frequency offset between transmitter and receiver at T_{amb} = +25°C and supply voltage VS = VS3V_AVCC = VS5V = 3.0V.

Figure 2-2. Measured Sensitivity (315MHz, ASK, 2.4Kbits/s, Manchester) Versus Frequency Offset

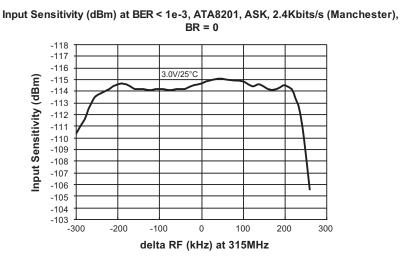
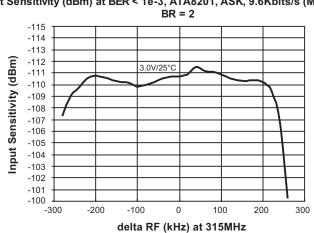



Figure 2-3. Measured Sensitivity (315MHz, ASK, 9.6Kbits/s, Manchester) Versus Frequency Offset

Input Sensitivity (dBm) at BER < 1e-3, ATA8201, ASK, 9.6Kbits/s (Manchester),

Figure 2-4. Measured Sensitivity (315MHz, FSK, 2.4Kbits/s, ±38kHz, Manchester) Versus Frequency Offset

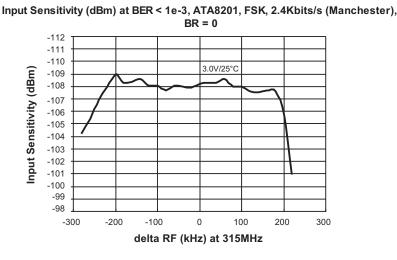
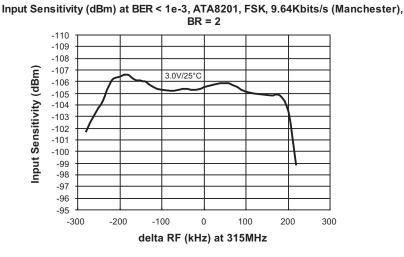



Figure 2-5. Measured Sensitivity (315MHz, FSK, 9.6Kbits/s, ±38kHz, Manchester) Versus Frequency Offset

As can be seen in Figure 2-5 on page 9, the supply voltage has almost no influence. The temperature has an influence of about ± 1.0 dB, and a frequency offset of ± 160 kHz also influences by about ± 1 dB. All these influences, combined with the sensitivity of a typical IC (-105dB), are then within a range of -103.0dBm and -107.0dBm over temperature, supply voltage, and frequency offset. The integrated IF filter has an additional production tolerance of ± 10 kHz, hence, a frequency offset between the receiver and the transmitter of ± 160 kHz can be accepted for XTAL and XTO tolerances.

Note: For the demodulator used in the Atmel[®] ATA8201/ATA8202, the tolerable frequency offset does not change with the data frequency. Hence, the value of ±160kHz is valid for 1Kbit/s to 10Kbits/s.

This small sensitivity change over supply voltage, frequency offset, and temperature is very unusual in such a receiver. It is achieved by an internal, very fast, and automatic frequency correction in the FSK demodulator after the IF filter, which leads to a higher system margin. This frequency correction tracks the input frequency very quickly. If, however, the input frequency makes a larger step (for example, if the system changes between different communication partners), the receiver has to be restarted. This can be done by switching back to Standby mode and then again to Active mode (pin RX 1 \rightarrow 0 \rightarrow 1) or by generating a positive pulse on pin ASK_NFSK (0 \rightarrow 1 \rightarrow 0).

2.4 RX Supply Current Versus Temperature and Supply Voltage

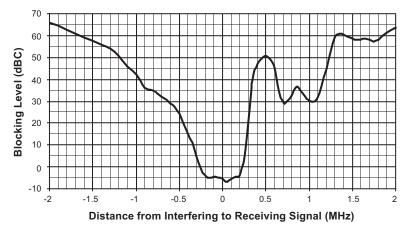
Table 2-7 shows the typical supply current of the receiver in Active mode versus supply voltage and temperature with $VS = VS3V_AVCC = VS5V$.

Table 2-6. Measured Current in Active Mode ASK

VS = VS3V_AVCC = VS5V	3.0V
T _{amb} = 25°C	6.5mA

Table 2-7. Measured Current in Active Mode FSK

VS = VS3V_AVCC = VS5V	3.0V
T _{amb} = 25°C	6.7mA


2.5 Blocking, Selectivity

As can be seen in Figure 2-6 on page 10, and Figure 2-7 and Figure 2-8 on page 11, the receiver can receive signals 3dB higher than the sensitivity level in the presence of large blockers of –34.5dBm or –28dBm with small frequency offsets of ±3MHz or ±20MHz.

Figure 2-6, and Figure 2-7 on page 11 show the narrow-band blocking, and Figure 2-8 on page 11 shows the wide-band blocking characteristic. The measurements were done with a useful signal of 315MHz, FSK, 10Kbits/s, \pm 38kHz, Manchester, BR_Range2 with a level of -105dBm + 3dB = -102dBm, which is 3dB above the sensitivity level. The figures show how much larger than -102dBm a continuous wave signal can be, until the BER is higher than 10^{-3} . The measurements were done at the 50 Ω input shown in Figure 2-1 on page 6. At 3 MHz, for example, the blocker can be 67.5dBC higher than -102dBm, or

-102dBm + 67.5dBC = -34.5dBm.

Figure 2-6. Close-in 3-dB Blocking Characteristic and Image Response at 315MHz

10 ATA8201/ATA8202 [DATASHEET] 4971F–INDCO–07/14

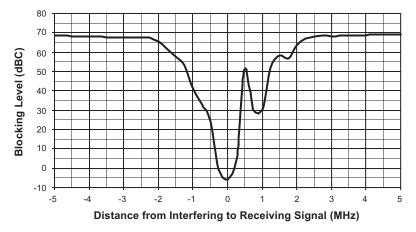


Figure 2-8. Wide-band 3-dB Blocking Characteristic at 315MHz

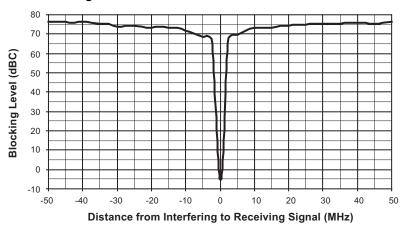


Table 2-8 shows the blocking performance measured relative to -102dBm for some frequencies. Note that sometimes the blocking is measured relative to the sensitivity level 104dBm (denoted dBS), instead of the carrier -102dBm (denoted dBC).

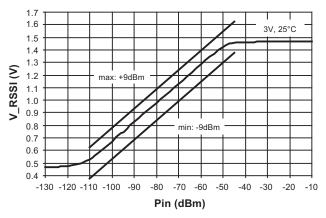
Table 2-8.	Blocking 3dB Above Sensitivity Level With BER < 10 ⁻³

Frequency Offset	Blocking Level	Blocking
+1.5MHz	-44.5dBm	57.5dBC, 60.5dBS
-1.5MHz	-44.5dBm	57.5dBC, 60.5dBS
+2MHz	–39.0dBm	63dBC, 66dBS
–2MHz	–36.0dBm	66dBC, 69dBS
+3MHz	-34.5dBm	67.5dBC, 70.5dBS
–3MHz	-34.5dBm	67.5dBC, 70.5dBS
+20MHz	–28.0dBm	74dBC, 77dBS
–20MHz	–28.0dBm	74dBC, 77dBS

The Atmel[®] ATA8201/ATA8202 can also receive FSK and ASK modulated signals if they are much higher than the I1dBCP. It can typically receive useful signals at –10dBm. This is often referred to as the nonlinear dynamic range (that is, the maximum to minimum receiving signal), and is 95dB for 10Kbits/s Manchester (FSK). This value is useful if the transmitter and receiver are very close to each other.

2.6 In-band Disturbers, Data Filter, Quasi-peak Detector, Data Slicer

If a disturbing signal falls into the received band, or if a blocker is not a continuous wave, the performance of a receiver strongly depends on the circuits after the IF filter. Hence, the demodulator, data filter, and data slicer are important.


The data filter of the Atmel[®] ATA8201/ATA8202 functions also as a quasi-peak detector. This results in a good suppression of above mentioned disturbers and exhibits a good carrier-to-noise performance. The required useful-signal-to-disturbing-signal ratio, at a BER of 10⁻³, is less than 14dB in ASK mode and less than 3dB (BR_Range_0 to BR_Range_2) and 6dB (BR_Range_3) in FSK mode. Due to the many different possible waveforms, these numbers are measured for the signal, as well as for disturbers, with peak amplitude values. Note that these values are worst-case values and are valid for any type of modulation and modulating frequency of the disturbing signal, as well as for the receiving signal. For many combinations, lower carrier-to-disturbing-signal ratios are needed.

2.7 RSSI Output

The output voltage of the pin RSSI is an analog voltage, proportional to the input power level. Using the RSSI output signal, the signal strength of different transmitters can be distinguished. The usable dynamic range of the RSSI amplifier is 65dB, the input power range $P(RF_{IN})$ is

-110dBm to -45dBm, and the gain is 15mV/dB. Figure 2-9 shows the RSSI characteristic of a typical device at 315MHz with VS3V_AVCC = VS5V = 3V and T_{amb} = 25°C with a matched input as shown in Table 2-2 and Figure 2-1 on page 6. At 433.92MHz, 1 dB more signal level is needed for the same RSSI results.

As can be seen in Figure 2-9 on page 12, for single devices there is a variance over temperature and supply voltage range of ±3dB. The total variance over production, temperature, and supply voltage range is ±9dB.

2.8 Frequency Synthesizer

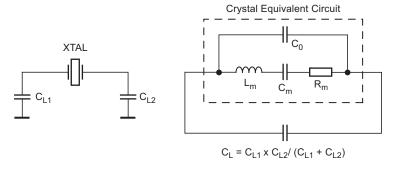
The LO generates the carrier frequency for the mixer via a PLL synthesizer. The XTO (crystal oscillator) generates the reference frequency f_{XTO} . The VCO (voltage-controlled oscillator) generates the drive voltage frequency f_{LO} for the mixer. f_{LO} is divided by the factor 24 (Atmel ATA8201) or 32 (Atmel ATA8202). The divided frequency is compared to f_{XTO} by the phase frequency detector. The current output of the phase frequency detector is connected to the fully integrated loop filter, and thereby generates the control voltage for the VCO. By means of that configuration, the VCO is controlled in a way, such that $f_{LO} / 24$ ($f_{LO} / 32$) is equal to f_{XTO} . If f_{LO} is determined, f_{XTO} can be calculated using the following formula: $f_{XTO} = f_{LO} / 24$ ($f_{XTO} = f_{LO} / 32$). The synthesizer has a phase noise of –130dBC/Hz at 3MHz and spurs of –75dBC.

Care must be taken with the harmonics of the CLK output signal, as well as with the harmonics produced by a microprocessor clocked using the signal, as these harmonics can disturb the reception of signals.

3. XTO

The XTO is an amplitude-regulated Pierce oscillator type with external load capacitances (2×16 pF). Due to additional internal and board parasitics (C_P) of approximately 2pF on each side, the load capacitance amounts to 2×18 pF (9pF total).

The XTO oscillation frequency f_{XTO} is the reference frequency for the integer-N synthesizer. When designing the system in terms of receiving and transmitting frequency offset, the accuracy of the crystal and XTO have to be considered.


The XTO's additional pulling (including the R_M tolerance) is only ±5ppm. The XTAL versus temperature, aging, and tolerances is then the main source of frequency error in the local oscillator.

The XTO frequency depends on XTAL properties and the load capacitances $C_{L1,2}$ at pin XTAL1 and XTAL2. The pulling (p) of f_{XTO} from the nominal f_{XTAL} is calculated using the following formula:

$$p = \frac{C_m}{2} \times \frac{C_{LN} - C_L}{(C_O + C_{LN}) \times (C_O + C_L)} \times 10^{-6} ppm$$

 C_m , the crystal's motional capacitance; C_0 , the shunt capacitance; and C_{LN} , the nominal load capacitance of the XTAL, are found in the datasheet. C_L is the total actual load capacitance of the crystal in the circuit, and consists of C_{L1} and C_{L2} connected in series.

Figure 3-1. Crystal Equivalent Circuit

With $C_m \le 10$ fF, $C_0 \ge 1.0$ pF, $C_{LN} = 9$ pF and $C_{L1,2} = 16$ pF ±1%, the pulling amounts to P $\le \pm 1$ ppm.

The C₀ of the XTAL has to be lower than $C_{Lmin} / 2 = 7.9 pF$ for a Pierce oscillator type in order to not enter the steep region of pulling versus load capacitance where there is risk of an unstable oscillation.

To ensure proper start-up behavior, the small signal gain and the negative resistance provided by this XTO at start is very large. For example, oscillation starts up even in the worst case with a crystal series resistance of $1.5k\Omega$ at C₀ $\leq 2.2pF$ with this XTO. The negative resistance is approximately given by

$$\operatorname{Re}\{\operatorname{Zxtocore}\} = \operatorname{Re}\left\{\frac{Z_1 \times Z_3 + Z_2 \times Z_3 + Z_1 \times Z_3 \times \operatorname{gm}}{Z_1 + Z_2 + Z_3 + Z_1 \times Z_2 \times \operatorname{gm}}\right\}$$

with Z₁ and Z₂ as complex impedances at pins XTAL1 and XTAL2, hence

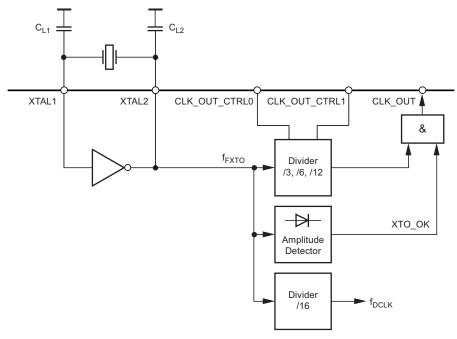
 $Z_1 = -j / (2 \times p \times f_{XTO} \times C_{L1}) + 5\Omega \text{ and } Z_2 = -j / (2 \times p \times f_{XTO} \times C_{L2}) + 5\Omega.$

 Z_3 consists of crystal C_0 in parallel with an internal 110-k Ω resistor, hence

 $Z_3 = -j / (2 \times p \times f_{XTO} \times C_0) / 110 \text{ k}\Omega$, gm is the internal transconductance between XTAL1 and XTAL2, with typically 20mS at 25°C.

With f_{XTO} = 13.5MHz, gm = 20mS, C_L = 9pF, and C_0 = 2.2pF, this results in a negative resistance of about 2k Ω . The worst case for technology, supply voltage, and temperature variations is then always higher than 1.4k Ω for $C_0 \le 2.2$ pF.

Due to the large gain at start, the XTO is able to meet a very low start-up time. The oscillation start-up time can be estimated with the time constant τ .


$$\tau = \frac{2}{4 \times \pi^{2} \times f_{\text{XTAL}}^{2} \times C_{\text{m}} \times (\text{Re}(Z_{\text{xtocore}}) + R_{\text{m}})}$$

After 10τ to 20τ , an amplitude detector detects the oscillation amplitude and sets XTO_OK to High if the amplitude is large enough; this activates the CLK_OUT output if it is enabled via the pins CLK_OUT_CTRL0 and CLK_OUT_CTRL1. Note that the necessary conditions of the DVCC voltage also have to be fulfilled.

It is recommended to use a crystal with C_m = 3.0fF to 10fF, C_{LN} = 9pF, R_m < 120 Ω and C₀ = 1.0pF to 2.2pF.

Lower values of C_m can be used, slightly increasing the start-up time. Lower values of C_0 or higher values of C_m (up to 15fF) can also be used, with only little influence on pulling.

Figure 3-2. XTO Block Diagram

The relationship between f_{XTO} and the f_{RF} is shown in Table 3-1.

Table 3-1. Calculation of f_{RF}

Frequency [MHz]	f _{xto} [MHz]	f _{RF}
433.92 (Atmel ATA8202)	13.57375	$f_{XTO} imes 32 - 440 kHz$
315.0 (Atmel ATA8201)	13.1433	$f_{XTO} imes 24 - 440 kHz$

Attention must be paid to the harmonics of the CLK_OUT output signal f_{CLK_OUT} as well as to the harmonics produced by an microprocessor clocked with it, since these harmonics can disturb the reception of signals if they get to the RF input. If the CLK_OUT signal is used, it must be carefully laid out on the application PCB. The supply voltage of the microcontroller must also be carefully blocked.

3.1 Pin CLK_OUT

Pin CLK_OUT is an output to clock a connected microcontroller. The clock is available in Standby and Active modes. The frequency $f_{CLK OUT}$ can be adjusted via the pins CLK_OUT_CTRL0 and CLK_OUT_CTRL1, and is calculated as follows:

CLK	_001	
CLK_OUT_CTRL1	CLK_OUT_CTRL0	Function
0	0	Clock on pin CLK_OUT is switched off (Low level on pin CLK_OUT)
0	1	$f_{CLK_OUT} = f_{XTO} / 3$
1	0	$f_{CLK_OUT} = f_{XTO} / 6$
1	1	$f_{CLK_OUT} = f_{XTO} / 12$

Table 3-2. Setting of f_{CLK OUT}

The signal at CLK_OUT output has a nominal 50% duty cycle. To save current, it is recommended that CLK_OUT be switched off during Standby mode.

3.2 Basic Clock Cycle of the Digital Circuitry

The complete timing of the digital circuitry is derived from one clock. As seen in Figure 3-2 on page 14, this clock cycle, T_{DCLK} , is derived from the crystal oscillator (XTO) in combination with a divider.

$$f_{DCLK} = \frac{f_{XTO}}{16}$$

T_{DCLK} controls the following application relevant parameters:

- Debouncing of the data signal stream

- Start-up time of the RX signal path

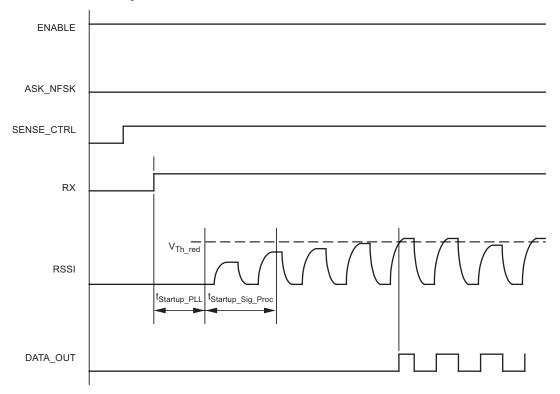
The start-up time and the debounce characteristic depend on the selected bit rate range (BR_Range) which is defined by pins BR0 and BR1. The clock cycle T_{XDCLK} is defined by the following formulas for further reference:

 $\mathsf{BR}_\mathsf{Range} \Rightarrow$

 $\begin{array}{l} BR_Range \ 0: \ T_{XDCLK} = 8 \times T_{DCLK} \\ BR_Range \ 1: \ T_{XDCLK} = 4 \times T_{DCLK} \\ BR_Range \ 2: \ T_{XDCLK} = 2 \times T_{DCLK} \\ BR_Range \ 3: \ T_{XDCLK} = 1 \times T_{DCLK} \end{array}$

4. Sensitivity Reduction

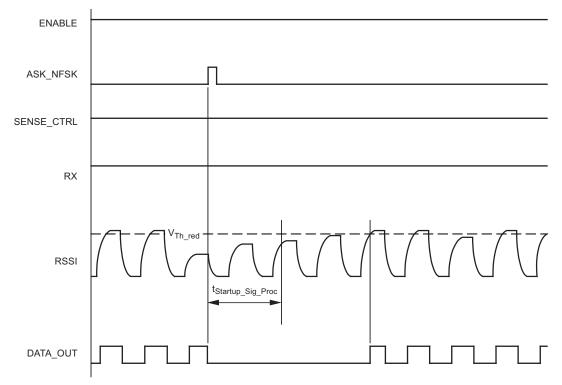
The output voltage of the RSSI amplifier is internally compared to a threshold voltage V_{Th_red} . V_{Th_red} is determined by the value of the external resistor R_{Sense} . R_{Sense} is connected between the pins SENSE and VS3V_AVCC (see Figure 10-1 on page 25). The output of the comparator is fed into the digital control logic. By this means, it is possible to operate the receiver at a lower sensitivity.

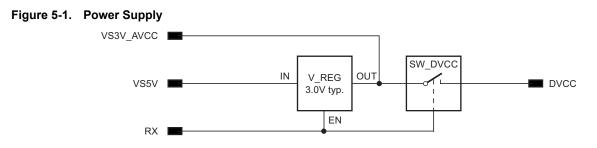

If the level on input pin SENSE_CTRL is low, the receiver operates at full sensitivity.

If the level on input pin SENSE_CTRL is high, the receiver operates at a lower sensitivity. The reduced sensitivity is defined by the value of R_{Sense}, the maximum sensitivity by the signal-to-noise ratio of the LNA input. The reduced sensitivity depends on the signal strength at the output of the RSSI amplifier.

Since different RF input networks may exhibit slightly different values for the LNA gain, the sensitivity values given in the electrical characteristics refer to a specific input matching. This matching is illustrated in Figure 2-1 on page 6 and exhibits the best possible sensitivity.

If the sensitivity reduction feature is not used, pin SENSE can be left open, pin SENSE_CTRL must be set to GND.


To operate with reduced sensitivity, pin SENSE_CTRL must be set to high before the RX signal path will be enabled by setting pin RX to high (see Figure 4-1 on page 16). As long as the RSSI level is lower than V_{Th_red} (defined by the external resistor R_{Sense}) no data stream is available on pin DATA_OUT (low level on pin DATA_OUT). An internal RS flip-flop will be set to high the first time the RSSI voltage crosses V_{Th_red} , and from then on the data stream will be available on pin DATA_OUT. From then on the receiver also works with full sensitivity. This makes sure that a telegram will not be interrupted if the RSSI level varies during the transmission. The RS flip-flop can be set back, and thus the receiver switched back to reduced sensitivity, by generating a positive pulse on pin ASK_NFSK (see Figure 4-2 on page 17). In FSK mode, operating with reduced sensitivity follows the same way.



16 ATA8201/ATA8202 [DATASHEET] 4971F–INDCO–07/14

5. Power Supply

The supply voltage range of the Atmel® ATA8201/ATA8202 is 2.7V to 3.3V or 4.5V to 5.5V.

Pin VS3V_AVCC is the supply voltage input for the range 2.7V to 3.3V, and is used in battery applications using a single lithium 3V cell. Pin VS5V is the voltage input for the range 4.5V to 5.5V (car applications) in this case the voltage regulator V_REG regulates VS3V_AVCC to typically 3.0V. If the voltage regulator is active, a blocking capacitor of 2.2 μ F has to be connected to VS3V_AVCC (see Figure 10-1 on page 25).

DVCC is the internal operating voltage of the digital control logic and is fed via the switch SW_DVCC by VS3V_AVCC. DVCC must be blocked on pin DVCC with 68nF (see Figure 9-1 on page 24 and Figure 10-1 on page 25).

Pin RX is the input to activate the RX signal processing and set the receiver to Active mode.

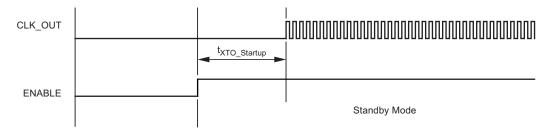
5.1 OFF Mode

A low level on pin RX and ENABLE will set the receiver to OFF mode (low power mode). In this mode, the crystal oscillator is shut down and no clock is available on pin CLK_OUT. The receiver is not sensitive to a transmitter signal in this mode.

RX	ENABLE	Function
0	0	OFF mode

5.2 Standby Mode

The receiver activates the Standby mode if pin ENABLE is set to "1".

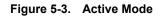

In Standby mode, the XTO is running and the clock on pin CLK_OUT is available after the start-up time of the XTO has elapsed (dependent on pin CLK_OUT_CTRL0 and CLK_OUT_CTRL1). During Standby mode, the receiver is not sensitive to a transmitter signal.

In Standby mode, the RX signal path is disabled and the power consumption $I_{Standby}$ is typically 50 µA (CLK_OUT output off, VS3V_AVCC = VS5V = 3V). The exact value of this current is strongly dependent on the application and the exact operation mode, therefore check the section "Electrical Characteristics: General" on page 26 for the appropriate application case.

Table 5-2. Standby Mode

RX	ENABLE	Function
0	1	Standby mode

Figure 5-2. Standby Mode (CLK_OUT_CTRL0 or CLK_OUT_CTRL1 = 1)


5.3 Active Mode

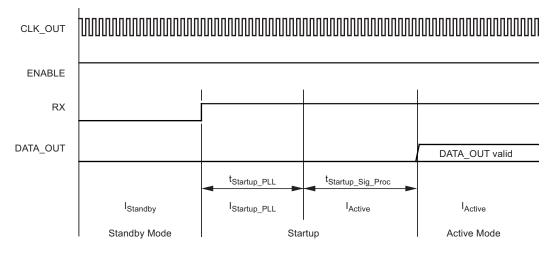

The Active mode is enabled by setting the level on pin RX to high. In Active mode, the RX signal path is enabled and if a valid signal is present it will be transferred to the connected microcontroller.

Table 5-3. Active Mode

RX	ENABLE	Function
1	1	Active mode

During $T_{Startup_PLL}$ the PLL is enabled and starts up. If the PLL is locked, the signal processing circuit starts up $(T_{Startup_Sig_Proc})$. After the start-up time, all circuits are in stable condition and ready to receive. The duration of the start-up sequence depends on the selected bit rate range.

Table 5-4. Start-up Time

		Atmel ATA8202 (433.92MHz)		Atmel ATA8201 (315MHz)			
BR1	BR0	T _{Startup_PLL}	T _{Startup_Sig_Proc}	T _{Startup_PLL}	T _{Startup_Sig_Proc}		
0	0	261µs	1096µs		1132µs		
0	1		644µs	260.00	665µs		
1	0		417µs	269µs	431µs		
1	1		304µs		324µs		

Table 5-5. Modulation Scheme

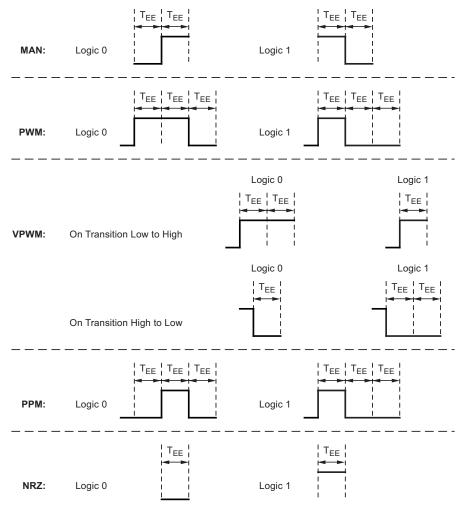
ASK_NFSK	RF _{IN} at Pin LNA_IN	Level at Pin DATA_OUT
0	f _{FSK_H}	1
0	f _{FSK_L}	0
1	f _{ASK} on	1
	f _{ASK} off	0

6. Bit Rate Ranges

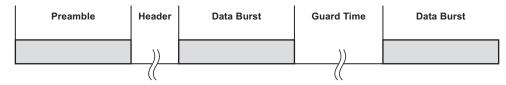
Configuration of the bit rate ranges is carried out via the two pins BR0 and BR1. The microcontroller uses these two interface lines to set the corner frequencies of the band-pass data filter. Switching the bit rate ranges while the RF front end is in Active mode can be done on the fly and will not take longer than 100 µs if done while remaining in either ASK or FSK mode. If the modulation scheme is changed at the same time, the switching time is (T_{Startup_Sig_Proc}, see Figure 7-1 on page 22). Each BR_Range is defined by a minimum edge-to-edge time. To maintain full sensitivity of the receiver, edge-to-edge transition times of incoming data should not be less than the minimum for the selected BR_Range.

BR1	BR0	BR_Range	Recommended Bit Rate (Manchester) ⁽¹⁾	Minimum Edge-to-edge Time Period T _{EE} of the Data Signal ⁽²⁾	Edge-to-edge Time Period T _{EE} of the Data Signal During the Start-up Period ⁽³⁾
0	0	BR_Range0	1.0Kbit/s to 2.5Kbits/s	200µs	200µs to 500µs
0	1	BR_Range1	2.0Kbits/s to 5.0Kbits/s	100µs	100µs to 250µs
1	0	BR_Range2	4.0Kbits/s to 10.0Kbits/s	50µs	50µs to 125µs
1	1	BR_Range3	8.0Kbits/s to 10.0Kbits/s	50µs	50µs to 62.5µs

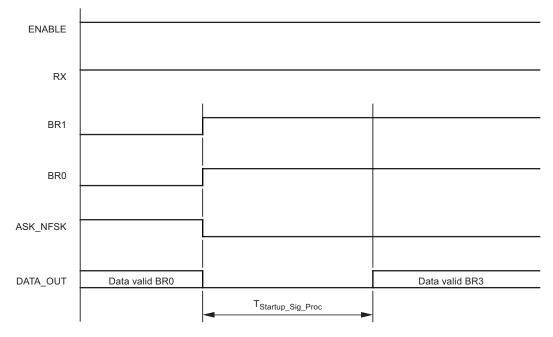
Table 6-1. BR Ranges ASK


Table 6-2. BR Ranges FSK

BR1	BR0	BR_Range	Recommended Bit Rate (Manchester) ⁽¹⁾	Minimum Edge-to-edge Time Period T _{EE} of the Data Signal ⁽²⁾	Edge-to-edge Time Period T _{EE} of the Data Signal During the Start-up Period ⁽³⁾
0	0	BR_Range0	1.0Kbit/s to 2.5Kbits/s	200µs	200µs to 500µs
0	1	BR_Range1	2.0Kbits/s to 5.0Kbits/s	100µs	100µs to 250µs
1	0	BR_Range2	4.0Kbits/s to 10.0Kbits/s	50µs	50µs to 125µs
1	1	BR_Range3	8.0Kbits/s to 20.0Kbits/s	25µs	25µs to 62.5µs

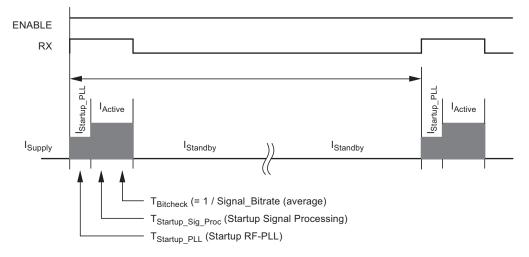

Note: If during the start-up period (T_{Startup_PLL} + T_{Startup_Sig_Proc}) there is no RF signal, the data filter settles to the noise floor, leading to noise on pin DATA_OUT.

- Notes: 1. As can be seen, a bit stream of, for example, 2.5Kbits/s can be received in BR_Range0 and BR_Range1 (overlapping BR_Ranges). To get the full sensitivity, always use the lowest possible BR_Range (here, BR_Range0). The advantage in the next higher BR_Range (BR_Range1) is the shorter start-up period, meaning lower current consumption during Polling mode. Thus, it is a decision between sensitivity and current consumption.
 - The receiver is also capable of receiving non-Manchester-modulated signals, such as PWM, PPM, VPWM, NRZ. In ASK mode, the header and blanking periods occurring in Keeloq-like protocols (up to 52ms) are supported.
 - 3. To ensure an accurate settling of the data filter during the start-up period ($T_{Startup_PLL} + T_{Startup_Sig_Proc}$), the edge-to-edge time T_{EE} of the data signal (preamble) must be inside the given limits during this period.


Figure 6-2. Supported Header and Blanking Periods

7. ASK_NFSK

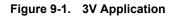
The ASK_NFSK pin allows the microcontroller to rapidly switch the RF front end between demodulation modes. A logic 1 on this pin selects ASK mode, and a logic 0 FSK mode. The time to change modes ($T_{Startup_Sig_Proc}$) depends on the bit rate range being selected (not current bit rate range) and is given in Table 5-4 on page 19. This response time is specified for applications that require an ASK preamble followed by FSK data (for typical TPM applications). During $T_{Startup_Sig_Proc}$, the level on pin DATA_OUT is low.



22 ATA8201/ATA8202 [DATASHEET] 4971F–INDCO–07/14

8. Polling Current Calculation

Figure 8-1. Polling Cycle


In an industrial or aftermarket RKE and TPM system, the average chip current in Polling mode, I_{Polling}, is an important parameter. The polling period must be controlled by the connected microcontroller via the pins ENABLE and RX. The polling current can be calculated as follows:

 $I_{\text{Polling}} = (T_{\text{Startup_PLL}} / T_{\text{Polling_Period}}) \times I_{\text{Startup_PLL}} + (T_{\text{Startup_Sig_Proc}} / T_{\text{Polling_Period}}) \times I_{\text{Active}} + (T_{\text{Distributes}} / T_{\text{Polling_Period}}) \times I_{\text{Active}} + (T_{\text{Polling_Period}} / T_{\text{Polling_Period}} / T_{\text{Polling_Period}}) \times I_{\text{Active}} + (T_{\text{Polling_Period}} / T_{\text{Polling_Period}} / T_{\text{Polling_Period}}) \times I_{\text{Active}} + (T_{\text{Polling_Period}} / T_{\text{Polling_Period}} / T_{\text{Polling_Period}}) \times I_{\text{Polling_Period}} \times I_{\text{Polling_P$

	$\times I_{\text{Active}} + (T_{\text{Polling}} \text{Period} - T_{\text{St}}$		T _{Startup_Sig_Proc} – T _{Bitcheck}) / T _{Polling_Period} × I _{Standby}			
T _{Startup_PLL} :	depends on 315MHz/433					
T _{Startup_Sig_Proc} :	depends on 315MHz/433 rate range.	.92MHz a	application and the selected bit			
T _{Bitcheck} :	depends on the signal bit	rate (1 /	Signal_Bit_Rate).			
T _{Polling_Period} :	depends on the transmitte	er telegra	m (preburst).			
I _{Startup PLL} :	depends on 3V or 5V app	olication a	nd the setting of pin CLK_OUT.			
I _{Active} :	depends on 3V or 5V app	lication, <i>I</i>	ASK or FSK mode and the setting of			
	pin CLK_OUT.					
I _{Standby} :	depends on 3V or 5V app	lication a	nd the setting of pin CLK_OUT.			
Example:-	315-MHz application (AT	A8201), b	it rate: 9.6Kbits/s, T _{Polling Period} = 8ms			
	> T _{Startup_PLL}	=	269µs			
	> T _{Startup_Sig_Proc}	=	324µs (Bit Rate Range 3)			
	> T _{Bitcheck}	=	104µs			
	3V application; ASK mod	e, CLK_C	OUT disabled			
	> I _{Startup_PLL}	=	4.5mA			
	$> I_{Active}$ = 6.5mA					
	> I _{Standby}	=	0.05mA			
	> I _{Polling} = 0.545mA					

9. 3V Application

Note: Paddle (backplane) must be connected to GND

24 ATA8201/ATA8202 [DATASHEET] 4971F-INDCO-07/14

10. 5V Application

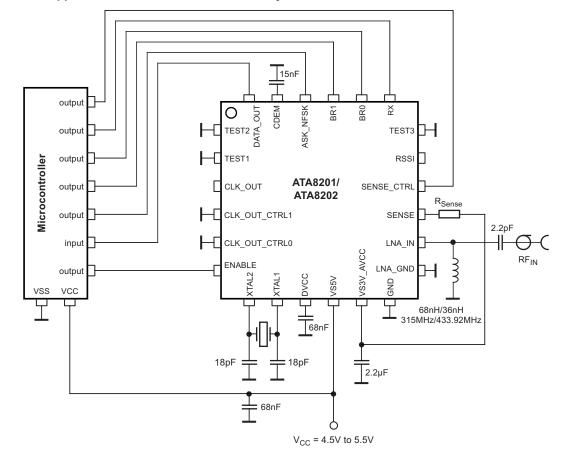


Figure 10-1. 5V Application with Reduced/Full Sensitivity

Note: Paddle (backplane) must be connected to GND

11. Absolute Maximum Ratings

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameters	Symbol	Min.	Max.	Unit
Junction temperature	Tj		+150	°C
Storage temperature	T _{stg}	-55	+125	°C
Ambient temperature	T _{amb}	-40	+85	°C
Supply voltage VS5V	V _S		+6	V
ESD (Human Body Model ESD S 5.1) every pin	HBM	-4	+4	kV
ESD (Machine Model JEDEC A115A) every pin	MM	-200	+200	V
ESD (Field Induced Charge Device Model ESD STM 5.3.1-1999) every pin	FCDM	-500	+500	V
Maximum input level, input matched to 50Ω	P _{in_max}		0	dBm

12. Thermal Resistance

Parameters	Symbol	Value	Unit
Junction ambient	R _{thJA}	25	K/W

13. Electrical Characteristics: General

All parameters refer to GND and are valid for $T_{amb} = 25^{\circ}C$, $V_{VS3V_AVCC} = V_{VS5V} = 3V$, and $V_{VS5V} = 5V$. Typical values are given at $f_{RF} = 315MHz$ unless otherwise specified. Details about current consumption, timing, and digital pin properties can be found in the specific sections of the "Electrical Characteristics".

No.	Parameters	Test Conditions	Pin ⁽¹⁾	Symbol	Min.	Тур.	Max.	Unit	Type*
1	OFF Mode								
1.1	Supply current in OFF mode	$V_{VS3V_AVCC} = V_{VS5V} \le 3V$ $V_{VS5V} = 5V$ CLK_OUT disabled	10, 11 10	I _{SOFF}			4 4	μΑ μΑ	A A
2	Standby Mode								
	Supply current	XTO running V _{VS3V_AVCC} = V _{VS5V} ≤ 3V CLK_OUT disabled	10,11	I _{Standby}		50	100	μA	A
2.1	Standby mode	XTO running V _{VS5V} = 5V CLK_OUT disabled	10,11	I _{Standby}		50	100	μA	A
2.2	System start-up time	XTO startup XTAL: $C_m = 5fF$, $C_0 = 1.8pF$, $R_m = 15\Omega$		T _{XTO_Startup}		0.3		ms	A

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Note: 1. Pin numbers in parenthesis were measured with RF_IN matched to 50Ω according to Figure 2-1 on page 6 with component values as in Table 2-2 on page 7 (RF_{IN}).

All parameters refer to GND and are valid for $T_{amb} = 25^{\circ}$ C, $V_{VS3V_AVCC} = V_{VS5V} = 3$ V, and $V_{VS5V} = 5$ V. Typical values are given at $f_{RF} = 315$ MHz unless otherwise specified. Details about current consumption, timing, and digital pin properties can be found in the specific sections of the "Electrical Characteristics".

No.	Parameters	Test Conditions	Pin ⁽¹⁾	Symbol	Min.	Тур.	Max.	Unit	Type*
2.3	Active mode start-up time	From Standby mode to Active mode BR_Range_3 Atmel ATA5745 Atmel ATA5746		T _{Startup_PLL} + T _{Startup_Sig_Proc}			565 593	hs hs	A
3	Active Mode								
3.1	RF operating frequency	Atmel ATA8201	14	f _{RF}	313		317	MHz	А
3.1	range	Atmel ATA8202	14	f _{RF}	433		435	MHz	А
		$V_{VS3V_AVCC} = V_{VS5V} = 3V$ ASK mode CLK_OUT disabled SENSE_CTRL = 0	10,11	I _{Active}		6.5		mA	A
3.2	Supply current Active	V _{VS3V_AVCC} = V _{VS5V} = 3V FSK mode CLK_OUT disabled SENSE_CTRL = 0	10,11	I _{Active}		6.7		mA	A
3.2	mode	V _{VS5V} = 5V ASK mode CLK_OUT disabled SENSE_CTRL = 0	10	I _{Active}		6.7		mA	A
		V _{VS5V} = 5V FSK mode CLK_OUT disabled SENSE_CTRL = 0	10	I _{Active}		6.9		mA	A
3.3	Supply current Polling mode	$V_{VS3V_AVCC} = V_{VS5V} = 3V$ $T_{Polling_Period} = 8ms$ BR_Range_3, ASK mode, CLK_OUT disabled Data rate = 9.6Kbits/s	10,11	I _{Polling}		545		μΑ	с
		FSK deviation $f_{DEV} = \pm 38 \text{ kHz}$ BER = 10^{-3} $T_{amb} = 25^{\circ}\text{C}$							
•	Input sensitivity FSK	Bit rate 9.6Kbits/s BR2	(14)	P_{REF}_FSK	-103	-105	-106.5	dBm	В
3.4	f _{RF} = 315MHz	Bit rate 2.4Kbits/s BR0	(14)	P _{REF_FSK}	-106	-108	-109.5	dBm	В
		FSK deviation ±18kHz to ±50kHz							
		Bit rate 9.6Kbits/s BR2	(14)	P _{REF_FSK}	-101			dBm	В
		Bit rate 2.4Kbits/s BR0	(14)	P _{REF_FSK}	-104			dBm	В

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Note: 1. Pin numbers in parenthesis were measured with RF_IN matched to 50Ω according to Figure 2-1 on page 6 with component values as in Table 2-2 on page 7 (RF_{IN}).

All parameters refer to GND and are valid for $T_{amb} = 25^{\circ}$ C, $V_{VS3V_AVCC} = V_{VS5V} = 3$ V, and $V_{VS5V} = 5$ V. Typical values are given at $f_{RF} = 315$ MHz unless otherwise specified. Details about current consumption, timing, and digital pin properties can be found in the specific sections of the "Electrical Characteristics".

No.	Parameters	Test Conditions	Pin ⁽¹⁾	Symbol	Min.	Тур.	Max.	Unit	Type*
3.5	Input sensitivity ASK	ASK 100% level of carrier, BER = 10^{-3} T _{amb} = 25°C							
	f _{RF} = 315MHz	Bit rate 9.6Kbits/s BR2	(14)	P _{REF_ASK}	-109	-111	-112.5	dBm	В
		Bit rate 2.4Kbits/s BR0	(14)	P _{REF_ASK}	-112	-114	-115.5	dBm	В
3.6	Sensitivity change at f_{RF} = 433.92MHz compared to f_{RF} = 315MHz	$ f_{RF} = 315 MHz \text{ to} \\ f_{RF} = 433.92 MHz \\ P = P_{REF_ASK} + \Delta P_{REF1} \\ P = P_{REF_FSK} + \Delta P_{REF1} $	(14)	ΔP_{REF1}		+1		dB	В
3.7	Sensitivity change versus temperature, supply voltage and frequency offset	$\begin{split} & FSK \ f_{DEV} = \pm 38KHz \\ & \Delta f_{OFFSET} \leq \pm 160KHz \\ & ASK \ 100\% \\ & \Delta f_{OFFSET} \leq \pm 160KHz \\ & P = P_{REF_ASK} + \Delta P_{REF1} + \\ & \Delta P_{REF2} \\ & P = P_{REF_FSK} + \Delta P_{REF1} + \\ & \Delta P_{REF2} \end{split}$	(14)	ΔP_{REF2}	+4.5		-1.5		В
		R _{Sense} connected from pin SENSE to pin VS3V_AVCC		P_{Ref_Red}				dBm (peak level)	
		$R_{Sense} = 62k\Omega$ f _{in} = 433.92MHz				-76		dBm	С
3.8	Reduced sensitivity	R _{Sense} = 82kΩ f _{in} = 433.92MHz				-88		dBm	С
5.0		R _{Sense} = 62kΩ f _{in} = 315MHz				-76		dBm	С
		R _{Sense} = 82kΩ f _{in} = 315MHz				-88		dBm	С
	Reduced sensitivity variation over full operating range	$\begin{array}{l} R_{Sense} = 62k\Omega \\ R_{Sense} = 82k\Omega \\ P_{Red} = P_{Ref_Red} + P_{\DeltaRed} \end{array}$		ΔP_{Red}	-10		+10	dB	
3.9	Maximum frequency offset in FSK mode	Maximum frequency difference of f_{RF} between receiver and transmitter in FSK mode (f_{RF} is the center frequency of the FSK signal with f_{BIT} = 10Kbits/s f_{DEV} = ±38kHz	(14)	$\Delta f_{ m OFFSET}$	-160		+160	kHz	В

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Note: 1. Pin numbers in parenthesis were measured with RF_IN matched to 50Ω according to Figure 2-1 on page 6 with component values as in Table 2-2 on page 7 (RF_{IN}).

28 ATA8201/ATA8202 [DATASHEET] 4971F–INDCO–07/14

All parameters refer to GND and are valid for $T_{amb} = 25^{\circ}$ C, $V_{VS3V_AVCC} = V_{VS5V} = 3$ V, and $V_{VS5V} = 5$ V. Typical values are given at $f_{RF} = 315$ MHz unless otherwise specified. Details about current consumption, timing, and digital pin properties can be found in the specific sections of the "Electrical Characteristics".

No.	Parameters	Test Conditions	Pin ⁽¹⁾	Symbol	Min.	Тур.	Max.	Unit	Type*
3.10	Supported FSK frequency deviation	With up to 2dB loss of sensitivity. Note that the tolerable frequency offset is 12kHz lower for $f_{DEV} = \pm 50$ kHz than for $f_{DEV} = \pm 38$ kHz, hence, $\Delta f_{OFFSET} \le \pm 148$ kHz	(14)	f _{DEV}	±18	±38	±50	kHz	В
0.44	Quatam naisa finuna	f _{RF} = 315MHz	(14)	NF		6.0	9	dB	В
3.11	System noise figure	f _{RF} = 433.92MHz	(14)	NF		7.0	10	dB	В
2 1 2	Intermediate frequency	f _{RF} = 433.92MHz		f _{IF}		440		kHz	А
3.12	Intermediate frequency	f _{RF} = 315MHz		f _{IF}		440		kHz	А
3.13	System bandwidth	3dB bandwidth This value is for information only! Note that for crystal and system frequency offset calculations, Δf_{OFFSET} must be used.	(14)	SBW		435		kHz	A
3.14	System out-band 3rd-order input intercept	$\Delta f_{meas1} = 1.8MHz$ $\Delta f_{meas2} = 3.6MHz$ $f_{RF} = 315MHz$	(14)	IIP3		-24		dBm	С
	point	f _{RF} = 433.92MHz	(14)	IIP3		-23		dBm	С
3.15	System outband input 1- dB compression point	∆f _{meas1} = 1MHz f _{RF} = 315MHz	(14)	I1dBCP		-31	-36	dBm	С
	ub compression point	f _{RF} = 433.92MHz	(14)	I1dBCP		-30	-35	dBm	С
3 16	LNA input impedance	f _{RF} = 315MHz	14	Z_{in_LNA}		(72.4 – j298)		Ω	С
5.10		f _{RF} = 433.92MHz	14	Z_{in_LNA}		(55 – j216)		Ω	С
3.17	Maximum peak RF input	BER < 10 ^{−3} , ASK: 100%	(14)	P _{IN_max}		+5	-10	dBm	С
5.17	level, ASK and FSK	FSK: f_{DEV} = ±38kHz	(14)	P_{IN_max}		+5	-10	dBm	С
		f < 1GHz	(14)				-57	dBm	С
		f >1GHz	(14)				-47	dBm	С
3.18	LO spurs at LNA_IN	$ f_{LO} = 315.44 MHz $	(14)			-90 -94 -68		dBm	С
			(14)			-92 -88 -58		dBm	С
3.19	Image rejection	With the complete image band f _{RF} = 315MHz	(14)		24	30		dB	A
		f _{RF} = 433.92MHz	(14)		24	30		dB	А

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Note: 1. Pin numbers in parenthesis were measured with RF_IN matched to 50Ω according to Figure 2-1 on page 6 with component values as in Table 2-2 on page 7 (RF_{IN}).

All parameters refer to GND and are valid for $T_{amb} = 25^{\circ}$ C, $V_{VS3V_AVCC} = V_{VS5V} = 3$ V, and $V_{VS5V} = 5$ V. Typical values are given at $f_{RF} = 315$ MHz unless otherwise specified. Details about current consumption, timing, and digital pin properties can be found in the specific sections of the "Electrical Characteristics".

3 20	Parameters Useful signal to interferer ratio	Test Conditions Peak level of useful signal to peak level of interferer for BER < 10 ⁻³ with any modulation scheme of interferer FSK BR_Ranges 0, 1, 2 FSK BR_Range_3	Pin ⁽¹⁾ (14)	Symbol	Min.	Тур.	Max.	Unit	Type*
	rauo	FSK BR_Range_3	(14)						
				SNR _{FSK0-2}		2	3	dB	В
		ASK (D < D)	(14)	SNR _{FSK3}		4	6	dB	В
		$ASK (P_{RF} < P_{RFIN_{High}})$	(14)	SNR _{ASK}		10	14	dB	В
		Dynamic range	(14),17	D _{RSSI}		65		dB	А
		Lower level of range $f_{RF} = 315MHz$ $f_{RF} = 433.92MHz$	(14),17	P_{RFIN_Low}		-110		dBm	A
3.21	RSSI output	Upper level of range $f_{RF} = 315MHz$ $f_{RF} = 433.92MHz$	(14),17	P_{RFIN_High}		-45		dBm	A
		Gain	(14),17			15		mV/dB	А
		Output voltage range	(14),17	V _{RSSI}	350		1675	mV	А
	Output resistance RSSI pin		17	R _{RSSI}	8	10	12.5	kΩ	С
		Sensitivity (BER = 10^{-3}) is reduced by 3dB if a continuous wave blocking signal at $\pm \Delta f$ is ΔP_{Block} higher than the useful signal level (Bit rate = 10 Kbits/s, FSK, f _{DEV} \pm 38kHz, Manchester code, BR_Range2)							
3.23	Blocking	$f_{RF} = 315MHz$ $\Delta f \pm 1.5MHz$ $\Delta f \pm 2MHz$ $\Delta f \pm 3MHz$ $\Delta f \pm 10MHz$ $\Delta f \pm 20MHz$	(14)	ΔP_{Block}		57.5 63.0 67.5 72.0 74.0		dBC	С
		$f_{RF} = 433.92MHz$ $\Delta f \pm 1.5MHz$ $\Delta f \pm 2MHz$ $\Delta f \pm 3MHz$ $\Delta f \pm 10MHz$ $\Delta f \pm 20MHz$	(14)	ΔP_{Block}		56.5 62.0 66.5 71.0 73.0		dBC	С
3.24	CDEM	Capacitor connected to pin 23 (CDEM)	23		-5%	15	+5%	nF	D

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Note: 1. Pin numbers in parenthesis were measured with RF_IN matched to 50Ω according to Figure 2-1 on page 6 with component values as in Table 2-2 on page 7 (RF_{IN}).

30 ATA8201/ATA8202 [DATASHEET] 4971F–INDCO–07/14

All parameters refer to GND and are valid for $T_{amb} = 25^{\circ}$ C, $V_{VS3V_AVCC} = V_{VS5V} = 3$ V, and $V_{VS5V} = 5$ V. Typical values are given at $f_{RF} = 315$ MHz unless otherwise specified. Details about current consumption, timing, and digital pin properties can be found in the specific sections of the "Electrical Characteristics".

XTO Transconductance XTO								
Transconductance XTO								
at start	At startup; after startup the amplitude is regulated to V_{PPXTAL}	7,8	g _{m, XTO}		20		mS	В
XTO start-up time	$C_0 \le 2.2 \text{pF}$ $C_m < 14 \text{fF}$ $R_m \le 120 \Omega$	7,8	T _{XTO_Startup}		300		μs	A
Maximum C ₀ of XTAL		7,8	C _{0max}			3.8	pF	D
Pulling of LO frequency f_{LO} due to XTO, C_{L1} and C_{L2} versus temperature and supply changes	$\begin{array}{l} 1.0 \text{pF} \leq \text{C}_0 \leq 2.2 \text{pF} \\ \text{C}_\text{m} = 4.0 \text{fF} \text{ to } 7.0 \text{fF} \\ \text{R}_\text{m} \leq 120 \Omega \end{array}$	3	Δf_{XTO}	-5		+5	ppm	С
	$C_m = 5 fF, C_0 = 1.8 pF$ $R_m = 15 \Omega$							
Amplitude XTAL after startup	V(XTAL1, XTAL2) peak-to-peak value	7,8	V _{PPXTAL}		700		mVpp	С
	V(XTAL1) peak-to-peak value	7,8	V _{PPXTAL}		350		mVpp	С
Maximum series resistance R _m of XTAL at startup	$C_0 \le 2.2 pF$, small signal start impedance, this value is important for crystal oscillator startup	7,8	Z _{XTAL12_START}	-1400	-2000		Ω	В
Maximum series resistance R _m of XTAL after startup	$C_0 \le 2.2 pF$ $C_m < 14 fF$	7,8	R _{m_max}		15	120	Ω	В
Nominal XTAL load resonant frequency	f _{RF} = 433.92MHz f _{RF} = 315MHz	7,8	f _{XTAL}		13.57375 13.1433		MHz	D
	CLK_OUT_CRTL1 = 0 CLK_OUT_CTRL0 = 0 > CLK_OUT disabled			f _{CLK} disa	ibled (low leve CLK_OUT)	l on pin		
External CLK_OUT	CLK_OUT_CRTL1 = 0 CLK_OUT_CTRL0 = 1 > division ratio = 3	2	f		$f_{CLK} = \frac{f_{XTO}}{3}$			٨
frequency	CLK_OUT_CRTL1 = 1 CLK_OUT_CTRL0 = 0 > division ratio = 6	5	^I CLK_OUT		$f_{CLK} = \frac{f_{XTO}}{6}$		IVITIZ	A
	CLK_OUT_CRTL1 = 1 CLK_OUT_CTRL0 = 1 > division ratio = 12				$f_{CLK} = \frac{f_{XTO}}{12}$			
	Maximum C ₀ of XTAL Pulling of LO frequency f _{LO} due to XTO, C _{L1} and C _{L2} versus temperature and supply changes Amplitude XTAL after startup Maximum series resistance R _m of XTAL at startup Maximum series resistance R _m of XTAL after startup Nominal XTAL load resonant frequency	Rm \leq 120 Ω Maximum C0 of XTALPulling of LO frequency fLO due to XTO, CL1 and CL2 versus temperature and supply changes1.0pF \leq C0 \leq 2.2pF Cm $=$ 4.0fF to 7.0fF Rm \leq 120 Ω Amplitude XTAL after startupCm $=$ 5fF, C0 $=$ 1.8pF Rm $=$ 15 Ω Amplitude XTAL after startupV(XTAL1, XTAL2) peak-to-peak value V(XTAL1) peak-to-peak valueMaximum series resistance Rm of XTAL after startupC0 \leq 2.2pF, small signal start impedance, this value is important for crystal oscillator startupMaximum series resistance Rm of XTAL after startupC0 \leq 2.2pF Cm $<$ 14fFNominal XTAL load resonant frequencyfRF = 433.92MHz fRF = 315MHzExternal CLK_OUT frequencyCLK_OUT_CRTL1 = 0 CLK_OUT_CTRL0 = 1 > division ratio = 3External CLK_OUT frequencyCLK_OUT_CRTL1 = 1 CLK_OUT_CRTL1 = 1 CLK_OUT_CRTL1 = 1	Rm ≤ 120ΩRm ≤ 120ΩMaximum C0 of XTAL7,8Pulling of LO frequency fLo due to XTO, CL1 and CL2 versus temperature and supply changes $1.0pF \le C_0 \le 2.2pF$ Cm = 4.0fF to 7.0fF Rm ≤ 120Ω3Amplitude XTAL after startup $C_m = 5fF, C_0 = 1.8pF$ Rm = 15Ω7,8Maximum series resistance Rm of XTAL at startup $V(XTAL1, XTAL2)$ peak-to-peak value7,8Maximum series resistance Rm of XTAL at after startup $C_0 \le 2.2pF$, small signal start impedance, this value is important for crystal oscillator startup7,8Maximum series resistance Rm of XTAL at after startup $C_0 \le 2.2pF$ Cm < 14fF	$\begin{split} & R_m^m \leq 120\Omega & R_m^m \leq R$	$\begin{split} & R_{m}^{m} \leq 120\Omega & M N^{n} C_{Omax} & M^{n} C_{n} & M^{n} C_{n} & M^{n} M^{n} & \mathsf$	$\begin{split} & R_{m}^{r} \leq 120\Omega & R_{m}^{r} \otimes C_{0} & C_{0} & R_{m}^{r} & C_{0} & R_{m}^{r} & C_{0} & R_{m}^{r} & R_{m}^$	$\begin{split} & R_{m}^{m} \leq 12\Omega\Omega & R_{m}^{m} Meq_Output & Meq_OUt$	$\begin{split} & R_{m}^{m} \leq 120\Omega & R_{m}^{m} \leq 120\Omega & R_{m}^{m} \leq 120\Omega & R_{m}^{m} \otimes R_{m}^{m} & R_{m}^{m} \otimes R_{m}^{m} & R_{m} & R_{m$

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Note: 1. Pin numbers in parenthesis were measured with RF_IN matched to 50Ω according to Figure 2-1 on page 6 with component values as in Table 2-2 on page 7 (RF_{IN}).

All parameters refer to GND and are valid for $T_{amb} = 25^{\circ}$ C, $V_{VS3V_AVCC} = V_{VS5V} = 3$ V, and $V_{VS5V} = 5$ V. Typical values are given at $f_{RF} = 315$ MHz unless otherwise specified. Details about current consumption, timing, and digital pin properties can be found in the specific sections of the "Electrical Characteristics".

No.	Parameters	Test Conditions	Pin ⁽¹⁾	Symbol	Min.	Тур.	Max.	Unit	Type*
		f _{RF} = 433.92MHz CLK_OUT division ratio = 3 = 6 = 12 CLK_OUT has nominal 50% duty cycle	3	f _{CLK_OUT}		4.52458 2.26229 1.13114		MHz	D
		f _{RF} = 315MHz CLK_OUT division ratio = 3 = 6 = 12 CLK_OUT has nominal 50% duty cycle	3	f _{clk_out}		4.3811 2.190 1.0952		MHz	D
4.10	DC voltage after startup	V _{DC} (XTAL1, XTAL2) XTO running (Standby mode, Active mode)	7,8	V _{DCXTO}	-250	-45		mV	С
5	Synthesizer								
5.1	Spurs in Active mode	At $\pm f_{CLK_OUT}$, CLK_OUT enabled (division ratio = 3) f_{RF} = 315MHz f_{RF} = 433.92MHz		SP _{RX}		-75	-70	dBC	С
		at ±f _{XTO} f _{RF} = 315MHz f _{RF} = 433.92MHz		SP _{RX}		-75	-70	dBC	A
5.2	Phase noise at 3 MHz Active mode	f _{RF} = 315MHz f _{RF} = 433.92MHz		L _{RX3M}		-130	-127	dBC/Hz	А
5.3	Phase noise at 20 MHz Active mode	Noise floor		L _{RX20M}		-135	-132	dBC/Hz	В
6	Microcontroller Interface								
6.1	CLK_OUT output rise and fall time	$eq:started_st$	3	t _{rise} t _{fall}		20 20	30 30	ns ns	С
6.2	Internal equivalent capacitance	Used for current calculation	3	C _{CLK_OUT}		8		pF	С

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

Note: 1. Pin numbers in parenthesis were measured with RF_IN matched to 50Ω according to Figure 2-1 on page 6 with component values as in Table 2-2 on page 7 (RF_{IN}).

32 ATA8201/ATA8202 [DATASHEET] 4971F–INDCO–07/14

14. Electrical Characteristic: 3V Application

All parameters refer to GND and are valid for $T_{amb} = 25^{\circ}$ C, $V_{VS3V_AVCC} = V_{VS5V} = 3$ V and $V_{VS5V} = 5$ V. Typical values are given at $f_{RF} = 433.92$ MHz unless otherwise specified. Details about current consumption, timing, and digital pin properties can be found in the specific sections of the "Electrical Characteristics".

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
7	3V Application								
7.1	Supply current in OFF mode	$V_{VS3V_AVCC} = V_{VS5V} \le 3V$ CLK_OUT disabled	10, 11	I _{SOFF}			2	μA	А
7.2	Current in Standby mode (XTO is running)	$V_{VS3V_AVCC} = V_{VS5V} \le 3V$ external load C on pin CLK_OUT = 12pF CLK enabled (division ratio 3) CLK enabled (division ratio 6) CLK enabled (division ratio 12) CLK disabled	10, 11	I _{Standby}		420 290 220 50		μΑ	C C C A
7.3	Current during T _{Startup_PLL}	$V_{VS3V_AVCC} = V_{VS5V} \le 3V$ CLK disabled	10, 11	I _{Startup_PLL}		4.5		mA	С
7.4	Current in Active mode ASK	$V_{VS3V_AVCC} = V_{VS5V} \le 3V$ CLK disabled SENSE_CTRL = 0	10, 11	I _{Active}		6.5		mA	A
7.5	Current in Active mode FSK	$V_{VS3V_AVCC} = V_{VS5V} \le 3V$ CLK disabled SENSE_CTRL = 0	10, 11	I _{Active}		6.7		mA	A

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

15. Electrical Characteristics: 5V Application

All parameters refer to GND and are valid for $T_{amb} = 25^{\circ}$ C, $V_{VS3V_{AVCC}} = V_{VS5V} = 3$ V and $V_{VS5V} = 5$ V. Typical values are given at $f_{RF} = 433.92$ MHz unless otherwise specified. Details about current consumption, timing, and digital pin properties can be found in the specific sections of the "Electrical Characteristics".

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
8	5V Application								
8.1	Supply current in OFF mode	V _{VS5V} = 5V CLK_OUT disabled	10	I _{SOFF}			2	μA	А
8.2	Current in Standby mode (XTO is running)	$V_{VS5V} \le 5V$ external load C on pin CLK_OUT = 12pF CLK enabled (division ratio 3) CLK enabled (division ratio 6) CLK enabled (division ratio 12) CLK disabled	10	I _{Standby}		700 490 370 50		μΑ	C C C A
8.3	Current during T _{Startup_PLL}	V _{VS5V} = 5V CLK disabled	10	I _{Startup_PLL}		4.7		mA	С
8.4	Current in Active mode ASK	V _{VS5V} = 5V CLK disabled SENSE_CTRL = 0	10	I _{Active}		6.7		mA	A
8.5	Current in Active mode FSK	V _{VS5V} = 5V CLK disabled SENSE_CTRL = 0	10	I _{Active}		6.9		mA	A

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

34 ATA8201/ATA8202 [DATASHEET] 4971F–INDCO–07/14

16. Digital Timing Characteristics

All parameters refer to GND and are valid for $T_{amb} = 25^{\circ}$ C, $V_{VS3V_{AVCC}} = V_{VS5V} = 3$ V, and $V_{VS5V} = 5$ V. Typical values are given at $f_{RF} = 433.92$ MHz unless otherwise specified. Details about current consumption, timing, and digital pin properties can be found in the specific sections of the "Electrical Characteristics"

		Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
Basic Clock Cycle of the	Digital Circuitry							
Basic clock cycle			T _{DCLK}	16 / f _{XTO}		16 / f _{XTO}	μs	А
Extended basic clock cycle	BR_Range_0 BR_Range_1 BR_Range_2 BR_Range_3		T _{XDCLK}	8 4 2 1 × T _{DCLK}		8 4 2 1 × T _{DCLK}	μs	A
Active Mode								
Startup PLL			T _{Startup_PLL}			15 μs + 208 × Τ _{DCLK}	μs	А
Startup signal processing	BR_Range_0 BR_Range_1 BR_Range_2 BR_Range_3		T _{Startup_Sig_Proc}	929.5 545.5 353.5 257.5 × T _{DCLK}		929.5 545.5 353.5 257.5 × T _{DCLK}		A
Bit rate range	ASK BR_Range = BR_Range0 BR_Range1 BR_Range2 BR_Range3 FSK BR_Range = BR_Range0 BR_Range1 BR_Range2 BR_Range3		BR_Range	1.0 2.0 4.0 8.0 1.0 2.0 4.0 8.0		2.5 5.0 10.0 10.0 2.5 5.0 10.0 20.0	Kbits/s	A
Minimum time period between edges at pin DATA_OUT	BR_Range_0 BR_Range_1 BR_Range_2 BR_Range_3	24	T _{DATA_OUT_min}	$10 imes T_{XDCLK}$			μs	A
Edge-to-edge time period of the data signal for full sensitivity in Active mode	BR_Range_0 BR_Range_1 BR_Range_2 BR_Range_3		T _{DATA_OUT}	200 100 50 25		500 250 125 62.5	μs	В
	Extended basic clock cycle Active Mode Startup PLL Startup signal processing Bit rate range Minimum time period between edges at pin DATA_OUT Edge-to-edge time period of the data signal for full sensitivity in	Extended basic clock cycleBR_Range_0 BR_Range_2 BR_Range_3Active ModeStartup PLLImage 1 BR_Range_1 BR_Range_2 BR_Range_3Startup signal processingBR_Range_0 BR_Range_1 BR_Range_3Bit rate rangeASK BR_Range1 BR_Range2 BR_Range1 BR_Range2 BR_Range1 BR_Range2 BR_Range1 BR_Range2 BR_Range1 BR_Range3 FSK BR_Range1 BR_Range1 BR_Range1 BR_Range2 BR_Range1 BR_Range2 BR_Range3Minimum time period between edges at pin DATA_OUTBR_Range_0 BR_Range_1 BR_Range_3 BR_Range_3Edge-to-edge time period of the data signal for full sensitivity inBR_Range_0 BR_Range_1 BR_Range_1 BR_Range_1 BR_Range_2	Extended basic clock cycleBR_Range_0 BR_Range_2 BR_Range_3Active ModeActive ModeStartup PLLImage Comparing the second s	Extended basic clock cycleBR_Range_0 BR_Range_2 BR_Range_3TxDCLKActive ModeTActive ModeTStartup PLLTStartup PLLTStartup signal processingBR_Range_0 BR_Range_1 BR_Range_3Image: Comparison BR_Range_2 BR_Range_3TStartup signal processingBR_Range_2 BR_Range_3Image: Comparison Startup_Sig_ProcBit rate rangeBR_Range = BR_Range_3BR_Range = BR_Range_3BR_Range BR_RangeBit rate rangeBR_Range = BR_Range = BR_Range_3BR_Range BR_Range = BR_Range = BR_Range_3Image: Comparison Startup_Sig_ProcMinimum time period between edges at pin DATA_OUTBR_Range_0 BR_Range_324T_DATA_OUT_min TDATA_OUTEdge-to-edge time period of the data signal for full sensitivity inBR_Range_0 BR_Range_1 BR_Range_224T_DATA_OUT_min TDATA_OUT	Extended basic clock cycleBR_Range_0 BR_Range_1 BR_Range_2 BR_Range_3Txock8 4 2 1 xTockActive ModeTT10Startup PLLBR_Range_0 BR_Range_1 BR_Range_3R10Startup signal processingBR_Range_0 BR_Range_3T929.5 545.5 353.5 257.5 × T cckStartup signal processingBR_Range_0 BR_Range_3R10929.5 545.5 353.5 257.5 × TocckBit rate rangeBR_Range = BR_Range1 BR_Range3 FSK BR_Range3 	Extended basic clock cycleBR_Range_0 BR_Range_1 BR_Range_2 BR_Range_3TAUKNo RA AActive Mode T_{xDCLK} A_{2} 1 x T_{DCLK}Active Mode $T_{startup_PLL}$ $T_{startup_PLL}$ Startup PLL $T_{startup_PLL}$ $P29.5$ S45.5 S35.5 S257.5 x T_{DCLK}Startup signal processingBR_Range_1 BR_Range_3 $T_{startup_Sig_Proc}$ 929.5 S45.5 S35.5 S257.5 x T_{DCLK}Startup signal processingBR_Range = BR_Range_3 $T_{startup_Sig_Proc}$ 929.5 S45.5 S35.5 S45.5 <b< td=""><td>Extended basic clock cycle BR_Range_0 BR_Range_2 BR_Range_3 BR_Tange_0 PR_Range_2 BR_Range_3 BR_Top Processing BR_Range_1 PR_Range_1 BR_Range_2 BR_Range_3 Top Processing BR_Range_0 BR_Range_1 BR_Range_2 BR_Range_3 BR_SARGE PR_RANGE PSENTING PRANCE PSENTING PRANCE PSEN</td><td>Extended basic clock cycle BR_Range_0 BR_Range_2 BR_Range_3 BR_Tange_0 Range_2 BR_Range_2 Range_1 Range_2 BR_Range_3 Range_1 Range_1 Range_1 Range_1 Range_1 Range_2 Range_1 Range_1 Range_1 Range_2 Range_1 Range_2 Range_1 Range_2 Range_1 Range_2 Range_1 Range_2 Range_2 Range_2 Range_1 Range_2 Range_2 Range_2 Range_2 Range_2 Range_1 Range_2 Range_2 Range_2 <thrange_2 Range_2 Range_2 Range_2</thrange_2 </td></b<>	Extended basic clock cycle BR_Range_0 BR_Range_2 BR_Range_3 BR_Tange_0 PR_Range_2 BR_Range_3 BR_Top Processing BR_Range_1 PR_Range_1 BR_Range_2 BR_Range_3 Top Processing BR_Range_0 BR_Range_1 BR_Range_2 BR_Range_3 BR_SARGE PR_RANGE PSENTING PRANCE PSENTING PRANCE PSEN	Extended basic clock cycle BR_Range_0 BR_Range_2 BR_Range_3 BR_Tange_0 Range_2 BR_Range_2 Range_1 Range_2 BR_Range_3 Range_1 Range_1 Range_1 Range_1 Range_1 Range_2 Range_1 Range_1 Range_1 Range_2 Range_1 Range_2 Range_1 Range_2 Range_1 Range_2 Range_1 Range_2 Range_2 Range_2 Range_1 Range_2 Range_2 Range_2 Range_2 Range_2 Range_1 Range_2 Range_2 Range_2 Range_2 Range_2 <thrange_2 Range_2 Range_2 Range_2</thrange_2

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

17. **Digital Port Characteristics**

All parameters refer to GND and are valid for $T_{amb} = 25^{\circ}$ C, $V_{VS3V_AVCC} = V_{VS5V} = 3$ V, and $V_{VS5V} = 5$ V. Typical values are given at $f_{RF} = 433.92$ MHz unless otherwise specified. Details about current consumption, timing, and digital pin properties can be found in the specific sections of the "Electrical Characteristics"

Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
Digital Ports								
ENABLE input - Low level input voltage	$V_{S} = V_{VS3V_AVCC} =$ $V_{VS5V} = 2.7V \text{ to } 3.3V$ $V_{S} = V_{VS5V} =$ 4.5V to 5.5V	6	V _{II}			$0.2 \times V_{S}$ $0.12 \times V_{S}$	V	A
- High level input voltage	$V_{S} = V_{VS3V_AVCC} =$ $V_{VS5V} = 2.7V \text{ to } 3.3V$ $V_{S} = V_{VS5V} = 4.5V \text{ to}$ 5.5V	6	V _{lh}	$0.8 imes V_S$			V	A
RX input - Low level input voltage	$V_{S} = V_{VS3V_{AVCC}} =$ $V_{VS5V} = 2.7V \text{ to } 3.3V$ $V_{S} = V_{VS5V} =$ 4.5V to 5.5V	19	V _{II}			$0.2 \times V_{S}$ $0.12 \times V_{S}$	V	A
- High level input voltage	$V_{S} = V_{VS3V_{AVCC}} = V_{VS5V} = 2.7V \text{ to } 3.3V$ $V_{S} = V_{VS5V} = 4.5V \text{ to } 5.5V$	19	V _{lh}	$0.8 imes V_S$			V	A
BR0 input - Low level input voltage	$V_{S} = V_{VS3V_{AVCC}} = V_{VS5V} = 2.7V \text{ to } 3.3V$ $V_{S} = V_{VS5V} = 4.5V \text{ to } 5.5V$	20	V _{II}			$0.2 \times V_{S}$ $0.12 \times V_{S}$	V	A
- High level input voltage	$V_{S} = V_{VS3V_{AVCC}} = V_{VS5V} = 2.7V \text{ to } 3.3V$ $V_{S} = V_{VS5V} = 4.5V \text{ to } 5.5V$	20	V _{lh}	$0.8 imes V_S$			V	A
BR1 input - Low level input voltage	$V_{S} = V_{VS3V_AVCC} =$ $V_{VS5V} = 2.7V \text{ to } 3.3V$ $V_{S} = V_{VS5V} =$ 4.5V to 5.5V	21	V _{II}			$\begin{array}{c} 0.2 \times V_S \\ 0.12 \times \\ V_S \end{array}$	V	A
- High level input voltage	$V_{S} = V_{VS3V_{AVCC}} = V_{VS5V} = 2.7V \text{ to } 3.3V$ $V_{S} = V_{VS5V} = 4.5V \text{ to } 5.5V$	21	V _{lh}	$0.8 imes V_S$			V	A
ASK_NFSK input - Low level input voltage	$V_{S} = V_{VS3V_{AVCC}} = V_{VS5V} = 2.7V \text{ to } 3.3V$ $V_{S} = V_{VS5V} = 4.5V \text{ to } 5.5V$	22	V _{II}			$\begin{array}{c} 0.2 \times V_S \\ 0.12 \times \\ V_S \end{array}$	V	A
- High level input voltage	$V_{S} = V_{VS3V_{AVCC}} = V_{VS5V} = 2.7V \text{ to } 3.3V$ $V_{S} = V_{VS5V} = 4.5V \text{ to } 5.5V$	22	V _{lh}	$0.8 imes V_S$			V	A
	Digital Ports ENABLE input - Low level input voltage RX input - Low level input voltage BR0 input - Low level input voltage BR0 input - Low level input voltage BR1 input - Low level input voltage BR1 input - Low level input voltage	Digital PortsENABLE input - Low level input voltage $V_S = V_{VS3V_AVCC} = V_{VS5V} = 2.7V$ to $3.3V$ $V_S = V_{VS5V} = 2.7V$ to 3.3	Digital PortsVS = $V_{VSSV} = 2.7V$ to $3.3V$ $V_S = V_{VSSV} = 2.7V$ to $3.3V$ $V_S = V_{VSSV} = 2.7V$ to $3.3V$ $V_S = V_{VSSV} = 4.5V$ to $5.5V$ 6- High level input voltage $V_S = V_{VSSV} = 2.7V$ to $3.3V$ $V_S = V_{VSSV} = 2.7V$ to $3.3V$ $V_S = V_{VSSV} = 4.5V$ to $5.5V$ 6RX input - Low level input voltage $V_S = V_{VSSV} = 2.7V$ to $3.3V$ $V_S = V_{VSSV$	Digital Ports $V_{S} = V_{VSSV} AVCC = V_{VSSV} 2.7V to 3.3V V_{S} = V.7V to 3.3V V_{S} = V.7V to 5.5V V_{S} = 2.7V to 5.5V V_{S} = 2.7V to 5.5V V_{S} = 2.7V to 5.5V 0_{S} = 2.7V to 3.3V V_{S} = V.7SV = 2.7V to 3.3V V_{S} =$	Digital PortsENABLE input - Low level input voltage $V_S = V_{VSSV} = 2.7V$ to $3.3V$ $V_S = V_{VSSV} = 2.7V$ to $3.3V$ <b< td=""><td>Digital PortsENABLE input - Low level input voltage V_SEV 2.7V to 3.3V V_S = V_USSV 2.7V to 3.3V - Low level input voltage V_S = V_USSV 2.7V to 3.3V V_S = V_USSV 2.7V to 3.3V V_SSV 2.7V to 3.3V V_SSV 2.7V to 3.3V V_SSV 2.7V to 3.3V V_SSV 2.7V to 3.3V V_USSV 2.7V to 3.3V V_SSV 2.7V to 3.3V </td><td>Digital PortsENABLE input$V_S = V_{VSSV} = 2.7V to 3.3V$ $V_{SSV} = V_{VSSV} = 2.7V to 3.3V$ $V_S = V_{VSSV} =$</td><td>Digital PortsUNABLE input$V_S = V_{VSSV_AUCC} = V_{VSSV_AUCC} = V_{VSSV_SV} = 2.77 to 3.3V \\ V_SSV = 2V_{SSV} = 2.7V to 3.3V \\ A 5V to 5.5V \\ V_{SSV} = 2.7V to 3.3V$</td></b<>	Digital PortsENABLE input - Low level input voltage V_SEV 2.7V to 3.3V V_S = V_USSV 2.7V to 3.3V - Low level input voltage V_S = V_USSV 2.7V to 3.3V V_S = V_USSV 2.7V to 3.3V V_SSV 2.7V to 3.3V V_SSV 2.7V to 3.3V V_SSV 2.7V to 3.3V V_SSV 2.7V to 3.3V V_USSV 2.7V to 3.3V V_SSV 2.7V to 3.3V 	Digital PortsENABLE input $V_S = V_{VSSV} = 2.7V to 3.3V$ $V_{SSV} = V_{VSSV} = 2.7V to 3.3V$ $V_S = V_{VSSV} =$	Digital PortsUNABLE input $V_S = V_{VSSV_AUCC} = V_{VSSV_AUCC} = V_{VSSV_SV} = 2.77 to 3.3V \\ V_SSV = 2V_{SSV} = 2.7V to 3.3V \\ A 5V to 5.5V \\ V_{SSV} = 2.7V to 3.3V $

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

36 ATA8201/ATA8202 [DATASHEET] 4971F-INDCO-07/14

17. Digital Port Characteristics (Continued)

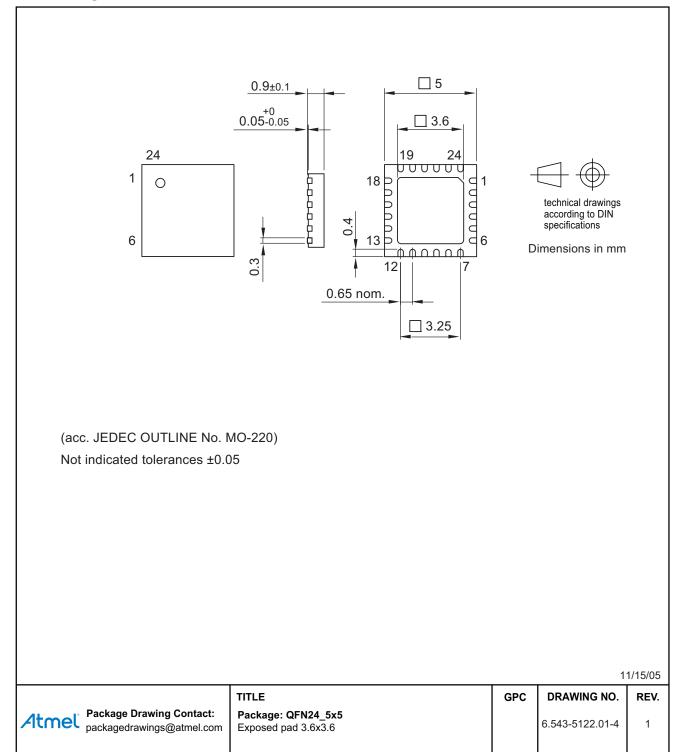
All parameters refer to GND and are valid for $T_{amb} = 25^{\circ}$ C, $V_{VS3V_AVCC} = V_{VS5V} = 3$ V, and $V_{VS5V} = 5$ V. Typical values are given at $f_{RF} = 433.92$ MHz unless otherwise specified. Details about current consumption, timing, and digital pin properties can be found in the specific sections of the "Electrical Characteristics"

No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Туре*
11.6	SENSE_CTRL input - Low level input voltage	$V_{S} = V_{VS3V_{AVCC}} = V_{VS5V} = 2.7V \text{ to } 3.3V$ $V_{S} = V_{VS5V} = 4.5V \text{ to } 5.5V$	16	V _{II}			$\begin{array}{c} 0.2 \times V_{S} \\ 0.12 \times \\ V_{S} \end{array}$	V	A
11.0	- High level input voltage	$V_{S} = V_{VS3V_{AVCC}} = V_{VS5V} = 2.7V \text{ to } 3.3V$ $V_{S} = V_{VS5V} = 4.5V \text{ to } 5.5V$	16	V _{lh}	$0.8 imes V_S$			V	A
11.7	CLK_OUT_CTRL0 input - Low level input voltage	$V_{S} = V_{VS3V_{AVCC}} = V_{VS5V} = 2.7V \text{ to } 3.3V$ $V_{S} = V_{VS5V} = 4.5V \text{ to } 5.5V$	5	V _{II}			$\begin{array}{c} 0.2 \times V_S \\ 0.12 \times \\ V_S \end{array}$	V	A
11.7	- High level input voltage	$V_{S} = V_{VS3V_{AVCC}} = V_{VS5V} = 2.7V \text{ to } 3.3V$ $V_{S} = V_{VS5V} = 4.5V \text{ to } 5.5V$	5	V _{lh}	$0.8 imes V_S$			V	A
11.8	CLK_OUT_CTRL1 input - Low level input voltage	$V_{S} = V_{VS3V_{AVCC}} = V_{VS5V} = 2.7V \text{ to } 3.3V$ $V_{S} = V_{VS5V} = 4.5V \text{ to } 5.5V$	4	V _{II}			$\begin{array}{c} 0.2 \times V_{S} \\ 0.12 \times \\ V_{S} \end{array}$	V	A
11.0	- High level input voltage	$V_{S} = V_{VS3V_{AVCC}} = V_{VS5V} = 2.7V \text{ to } 3.3V$ $V_{S} = V_{VS5V} = 4.5V \text{ to } 5.5V$	4	V _{lh}	$0.8 imes V_S$			V	A
11.9	TEST1 input	TEST1 input must always be connected directly to GND	2		0		0	V	D
11.10	TEST2 output	TEST2 output must always be connected directly to GND	1		0		0	V	D
11.11	TEST3 input	TEST3 input must always be connected directly to GND	18		0		0	V	D

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

17. Digital Port Characteristics (Continued)

All parameters refer to GND and are valid for $T_{amb} = 25^{\circ}$ C, $V_{VS3V_{AVCC}} = V_{VS5V} = 3$ V, and $V_{VS5V} = 5$ V. Typical values are given at $f_{RF} = 433.92$ MHz unless otherwise specified. Details about current consumption, timing, and digital pin properties can be found in the specific sections of the "Electrical Characteristics"


No.	Parameters	Test Conditions	Pin	Symbol	Min.	Тур.	Max.	Unit	Type*
11.12	DATA_OUT output - Saturation voltage low	$V_{S} = V_{VS3V_AVCC} =$ $V_{VS5V} = 2.7V \text{ to } 3.3V$ $V_{S} = V_{VS5V} =$ $4.5V \text{ to } 5.5V$ $I_{DATA_OUT} = 250\mu\text{A}$	24	V _{ol}		0.15	0.4	V	В
11.12	- Saturation voltage high	$V_{S} = V_{VS3V_{AVCC}} = V_{VS5V} = 2.7V \text{ to } 3.3V$ $V_{S} = V_{VS5V} = 4.5V \text{ to } 5.5V$ $I_{DATA_{OUT}} = -250\mu\text{A}$	24	V _{oh}	V _{VS} - 0.4	V _{VS} – 0.15		V	В
11.13	CLK_OUT output - Saturation voltage low	$V_{S} = V_{VS3V_AVCC} =$ $V_{VS5V} = 2.7V \text{ to } 3.3V$ $V_{S} = V_{VS5V} =$ $4.5V \text{ to } 5.5V$ $I_{DATA_OUT} = 100\mu\text{A}$	3	V _{ol}		0.15	0.4	V	В
11.13	- Saturation voltage high	$V_{S} = V_{VS3V_{AVCC}} = V_{VS5V} = 2.7V \text{ to } 3.3V$ $V_{S} = V_{VS5V} = 4.5V \text{ to } 5.5V$ $I_{DATA_{OUT}} = -100\mu\text{A}$	3	V _{oh}	V _{VS} – 0.4	V _{VS} – 0.15		V	В

*) Type means: A = 100% tested, B = 100% correlation tested, C = Characterized on samples, D = Design parameter

18. Ordering Information

Extended Type Number	Package	MOQ	Remarks
ATA8202C-PXQW	QFN24	6000pcs	5mm \times 5mm, Pb-free, 433.92MHz
ATA8201C-PXQW	QFN24	6000pcs	5mm \times 5mm, Pb-free, 315MHz

19. Package Information

20. Revision History

Please note that the following page numbers referred to in this section refer to the specific revision mentioned, not to this document.

Revision No.	History		
4971F-INDCO-07/14	Put datasheet in the latest template		
4971E-INDCO-12/12	 Section 18 "Ordering Information" on page 39 changed 		
4971D-INDCO-07/12	 Section 13 "Electrical Characteristics: General" on pages 26 to 32 changed 		
	 Section 14 "Electrical Characteristic: 3V Application" on page 33 changed 		
	 Section 15 "Electrical Characteristic: 5V Application" on page 34 changed 		
	 Section 18 "Ordering Information" on page 39 changed 		
4971C-INDCO-04/09	Put datasheet in the newest template		
	Benefits changed (page 2)		
4971B-INDCO-10/07	Put datasheet in the newest template		

Atmel Enabling Unlimited Possibilities[®]

1600 Technology Drive, San Jose, CA 95110 USA

Т

www.atmel.com

F: (+1)(408) 436.4200

© 2014 Atmel Corporation. / Rev.: Rev.: 4971F–INDCO–07/14

Atmel[®], Atmel logo and combinations thereof, Enabling Unlimited Possibilities[®], and others are registered trademarks or trademarks of Atmel Corporation in U.S. and other countries. Other terms and product names may be trademarks of others.

T: (+1)(408) 441.0311

DISCLAIMER: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN THE ATMEL TERMS AND CONDITIONS OF SALES LOCATED ON THE ATMEL WEBSITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to specifications and products descriptions at any time without notice. Atmel does not make any commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in, automotive applications. Atmel products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

SAFETY-CRITICAL, MILITARY, AND AUTOMOTIVE APPLICATIONS DISCLAIMER: Atmel products are not designed for and will not be used in connection with any applications where the failure of such products would reasonably be expected to result in significant personal injury or death ("Safety-Critical Applications") without an Atmel officer's specific written consent. Safety-Critical Applications include, without limitation, life support devices and systems, equipment or systems for the operation of nuclear facilities and weapons systems. Atmel products are not designed nor intended for use in military or aerospace applications or environments unless specifically designated by Atmel as automotive-grade.

Atmel Corporation