

Electrical Characteristics (T_J=25℃ unless otherwise noted)

Symbol	Parameter	Conditions	Min	Тур	Max	Units
STATIC PARAMETERS						
BV _{DSS}	Drain-Source Breakdown Voltage	$I_D = 250 \mu A, V_{GS} = 0 V$	20			V
I _{DSS}	Zero Gate Voltage Drain Current	V _{DS} =20V, V _{GS} =0V			1	μA
		T _J =5	5°C		5	μπ
I_{GSS}	Gate-Body leakage current	V_{DS} =0V, V_{GS} = ±12V			100	nA
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS} I_{D}=250\mu A$	0.5	1	1.6	V
$I_{D(ON)}$	On state drain current	V_{GS} =10V, V_{DS} =5V	140			Α
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =4.5V, I _D =20A		4.6	5.5	mΩ
		T _J =12	5℃	5.8	7	11122
		V_{GS} =2.5V, I_D =18A		5.5	7	mΩ
g _{FS}	Forward Transconductance	V_{DS} =5V, I_{D} =20A		105		S
V_{SD}	Diode Forward Voltage	I _S =1A,V _{GS} =0V		0.6	1	V
I _S	Maximum Body-Diode Continuous Current				4	Α
DYNAMIC	PARAMETERS					
C _{iss}	Input Capacitance		3080	3860	4630	pF
C _{oss}	Output Capacitance	V_{GS} =0V, V_{DS} =10V, f=1MHz	520	740	960	pF
C _{rss}	Reverse Transfer Capacitance		350	580	810	pF
R_g	Gate resistance	V_{GS} =0V, V_{DS} =0V, f=1MHz	0.6	1.4	2.1	Ω
SWITCHI	NG PARAMETERS					
Q _g (4.5V)	Total Gate Charge		28	36	43	nC
Q_{gs}	Gate Source Charge	V_{GS} =10V, V_{DS} =10V, I_{D} =20A	7	9	11	nC
Q_{gd}	Gate Drain Charge		7	12	17	nC
t _{D(on)}	Turn-On DelayTime			7		ns
t _r	Turn-On Rise Time	V_{GS} =10V, V_{DS} =10V, R_L =0.5 Ω	.,	8		ns
t _{D(off)}	Turn-Off DelayTime	R_{GEN} =3 Ω		70		ns
t _f	Turn-Off Fall Time]		18		ns
t _{rr}	Body Diode Reverse Recovery Time	I _F =20A, dI/dt=500A/μs	13	17	20	ns
Q _{rr}	Body Diode Reverse Recovery Charge	I _F =20A, dI/dt=500A/μs	29	36	43	nC

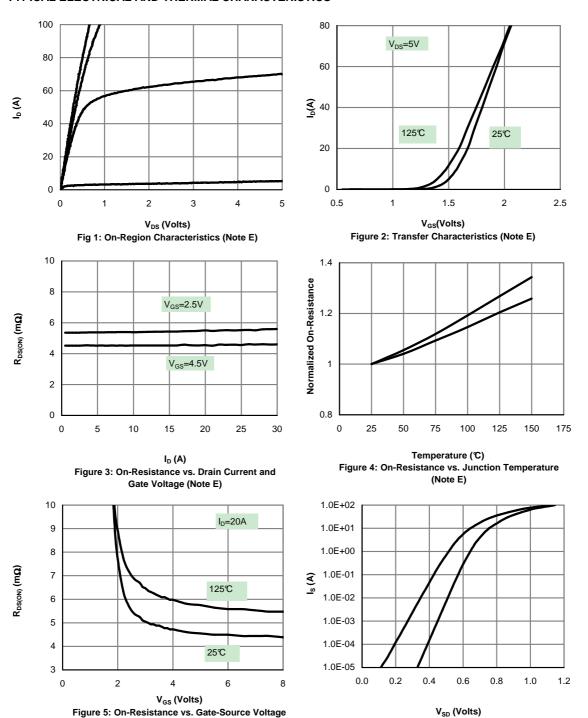
A. The value of $R_{\theta JA}$ is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, in a still air environment with T_A =25°C. The value in any given application depends on the user's specific board design.

THIS PRODUCT HAS BEEN DESIGNED AND QUALIFIED FOR THE CONSUMER MARKET. APPLICATIONS OR USES AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS ARE NOT AUTHORIZED. AOS DOES NOT ASSUME ANY LIABILITY ARISING OUT OF SUCH APPLICATIONS OR USES OF ITS PRODUCTS. AOS RESERVES THE RIGHT TO IMPROVE PRODUCT DESIGN, FUNCTIONS AND RELIABILITY WITHOUT NOTICE.

Rev 1: Nov 2010 **www.aosmd.com** Page 2 of 6

B. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using \leq 10s junction-to-ambient thermal resistance.

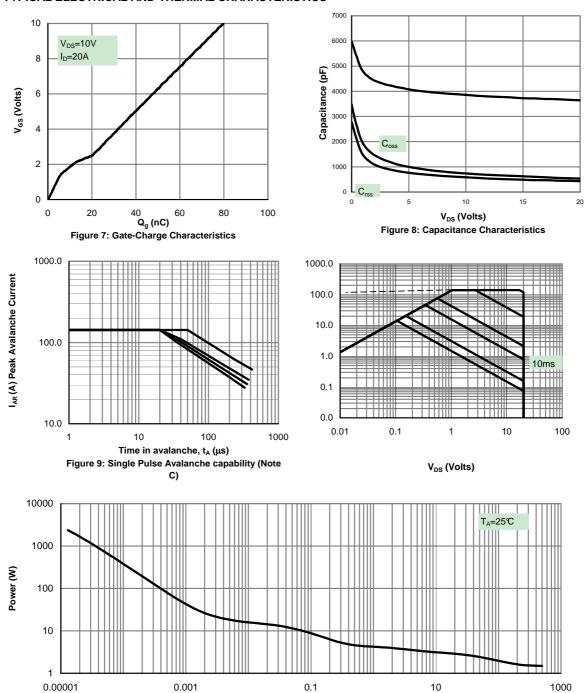
C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}=150$ °C. Ratings are based on low frequency and duty cycles to keep initial $T_J=25$ °C. Maximum avalanche current limited by tester capability.


D. The $R_{\theta JA}$ is the sum of the thermal impedence from junction to lead $R_{\theta JL}$ and lead to ambient.

E. The static characteristics in Figures 1 to 6 are obtained using <300μs pulses, duty cycle 0.5% max.

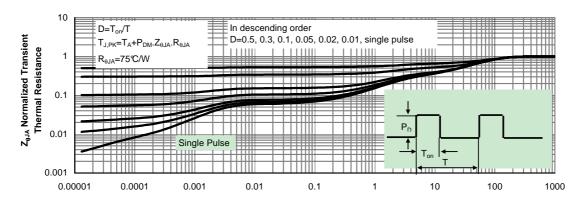
F. These curves are based on the junction-to-ambient thermal impedence which is measured with the device mounted on 1in² FR-4 board with 2oz. Copper, assuming a maximum junction temperature of T_{J(MAX)}=150°C. The SOA curve provides a single pulse ratin g.

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

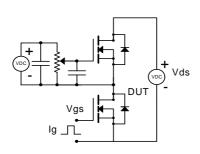


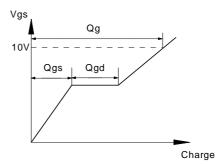
(Note E)

Figure 6: Body-Diode Characteristics (Note E)

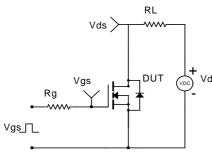

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

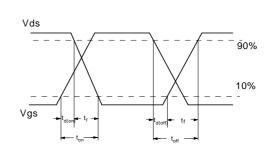
Pulse Width (s)
Figure 11: Single Pulse Power Rating Junction-to-Ambient (Note F)

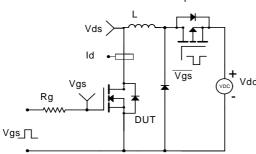

TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

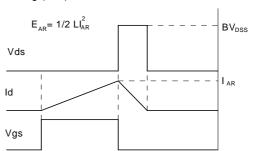


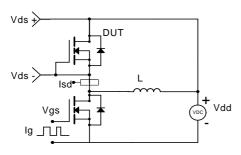
Pulse Width (s)
Figure 12: Normalized Maximum Transient Thermal Impedance (Note F)

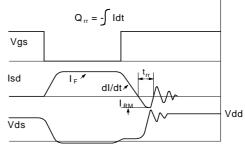



Gate Charge Test Circuit & Waveform




Resistive Switching Test Circuit & Waveforms




Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms

