TABLE OF CONTENTS

Features	1
Applications	1
Functional Block Diagram	1
General Description	1
Product Highlights	1
Revision History	2
Specifications	3
Dual Supply	3
5 V Single Supply	5
2.7 V to 3.6 V Single Supply	7

REVISION HISTORY

11/2016-Rev. C to Rev. D

Changes to Figure 3 and Table 7	11
Updated Outline Dimensions	19
Changes to Ordering Guide	20

9/2014—Rev. B to Rev. C

Moved Terminology Section	
Updated Outline Dimensions 19	
Changes to Ordering Guide 20	

Absolute Maximum Ratings	9
ESD Caution	9
Pin Configurations and Function Descriptions	1
Typical Performance Characteristics1	2
Terminology1	5
Test Circuits10	6
Outline Dimensions1	9
Ordering Guide	0
Automotive Products	0

2/2009—Rev. A to Rev. B

Changes to Ordering Guide 20	I
------------------------------	---

7/2004—Rev. 0 to Rev. A

Updated Format	Universal
Added QSOP Package Outline	
Changes to Ordering Guide	
3/03—Rev. 0: Initial Version	

SPECIFICATIONS

DUAL SUPPLY

 V_{DD} = +5 V \pm 10%, V_{SS} = –5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	+25°C	B Version -40°C	Y Version -40°C	Unit	Tast Conditions/Comments
Parameter	+25°C	to +85°C	to+125°C	Unit	Test Conditions/Comments
ANALOG SWITCH			V/ +- V/		
Analog Signal Range	45		Vss to VDD	V	$V_{DD} = +4.5 \text{ V}, \text{ V}_{SS} = -4.5 \text{ V}$
On Resistance (R _{ON})	45		100	Ω typ	$V_s = \pm 4.5 V$, $I_s = 1 mA$; see Figure 21
	75	90	100	Ωmax	
On Resistance Match between	1.3	2.2	2.5	Ω typ	
Channels (ΔR _{on})	3	3.2	3.5	Ωmax	$V_{s} = 3.5 V, I_{s} = 1 mA$
On Resistance Flatness (R _{FLAT(ON)})	10			Ω typ	$V_{DD} = +5 V, V_{SS} = -5 V;$
	16	17	18	Ωmax	$V_{s} = \pm 3 V, I_{s} = 1 mA$
LEAKAGE CURRENTS					$V_{DD} = +5.5 V, V_{SS} = -5.5 V$
Source OFF Leakage Is (OFF)	±0.005			nA typ	$V_D = \pm 4.5 \text{ V}, V_S = \mp 4.5 \text{ V};$ see Figure 22
	±0.2		±5	nA max	
Drain OFF Leakage I _D (OFF)	±0.005			nA typ	$V_D = \pm 4.5 \text{ V}, V_S = \mp 4.5 \text{ V};$ see Figure 23
ADG658	±0.2		±5	nA max	
ADG659	±0.1		±2.5	nA max	
Channel ON Leakage ID, Is (ON)	±0.005			nA typ	$V_D = V_S = \pm 4.5 V$; see Figure 24
ADG658	±0.2		±5	nA max	
ADG659	±0.1		±2.5	nA max	
DIGITAL INPUTS					
Input High Voltage, VINH			2.4	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current					
IINL OR INH	0.005			μA typ	$V_{IN} = V_{INL} \text{ or } V_{INH}$
			±1	µA max	
C _{IN} , Digital Input Capacitance	2			pF typ	
DYNAMIC CHARACTERISTICS ¹					
t transition	80			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	115	140	165	ns max	$V_s = 3 V$; see Figure 25
t _{on} (EN)	80			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	115	140	165	ns max	$V_s = 3 V$; see Figure 27
t _{off} (EN)	30			ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF$
	45	50	55	ns max	$V_s = 3 V$; see Figure 27
Break-Before-Make Time Delay, tBBM	50	50	55	ns typ	$R_L = 300 \Omega, C_L = 35 pF$
break before make time belay, them	50		10	ns min	$V_{s1} = V_{s2} = 3 V$; see Figure 26
Charge Injection	2		.0	pC typ	$V_{s1} = V_{s2} = SV$, see Figure 28 $V_s = 0 V$, $R_s = 0 \Omega$,
charge injection	4			pC typ pC max	$C_L = 1 \text{ nF}; \text{ see Figure 28}$
Off Isolation	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
Total Harmonic Distortion, THD + N	0.025			% typ	$R_L = 600 \Omega$, 2 V p-p, f = 20 Hz to 20 kHz
Channel-to-Channel Crosstalk	0.025			∕∘ cyp	$n_{\rm L} = 000.3272.4$ p p, $n = 20.112.00.20$ km/z
(ADG659)	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 31
–3 dB Bandwidth					,,
ADG658	210			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 30
ADG659	400			MHz typ	

Parameter	+25°C	B Version –40°C to +85°C	Y Version –40°C to+125°C	Unit	Test Conditions/Comments
C _s (OFF)	4			pF typ	f = 1 MHz
C _D (OFF)					
ADG658	23			pF typ	f = 1 MHz
ADG659	12			pF typ	f = 1 MHz
C _D , C _s (ON)					
ADG658	28			pF typ	f = 1 MHz
ADG659	16			pF typ	f = 1 MHz
POWER REQUIREMENTS					$V_{DD} = +5.5 V, V_{SS} = -5.5 V$
I _{DD}	0.01			μA typ	Digital Inputs = 0 V or 5.5 V
			1	μA max	
Iss	0.01			μA typ	Digital Inputs = 0 V or 5.5 V
			1	μA max	

¹ Guaranteed by design; not subject to production test.

5 V SINGLE SUPPLY

 V_{DD} = 5 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

		B Version –40°C	Y Version –40°C		
Parameter	+25°C	to +85°C	to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 \text{ to } V_{\text{DD}}$	V	$V_{DD} = 4.5 V, V_{SS} = 0 V$
On Resistance (R _{on})	85			Ωtyp	$V_s = 0 V$ to 4.5 V, $I_s = 1 mA$; see Figure 21
	150	160	200	Ωmax	
On Resistance Match between	4.5			Ωtyp	$V_{s} = 3.5 V$, $I_{s} = 1 mA$
Channels (ΔR _{ON})	8	9	10	Ωmax	
On Resistance Flatness (R _{FLAT(ON)})	13	14	16	Ωtyp	V_{DD} = 5 V, V_{SS} = 0 V, V_{S} = 1.5 V to 4 V, I_{S} = 1 mA
LEAKAGE CURRENTS					$V_{DD} = 5.5 V$
Source OFF Leakage Is (OFF)	±0.005			nA typ	$V_{\text{S}} = 1 \text{ V}/4.5 \text{ V}, V_{\text{D}} = 4.5 \text{ V}/1 \text{ V}$; see Figure 22
	±0.2		±5	nA max	
Drain OFF Leakage I _D (OFF)	±0.005			nA typ	$V_{s} = 1 V/4.5 V$, $V_{D} = 4.5 V/1 V$; see Figure 23
ADG658	±0.2		±5	nA max	
ADG659	±0.1		±2.5	nA max	
Channel ON Leakage ID, Is (ON)	±0.005			nA typ	$V_S = V_D = 1 V \text{ or } 4.5 V$, see Figure 24
ADG658	±0.2		±5	nA max	
ADG659	±0.1		±2.5	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.4	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current					
I _{INL} or I _{INH}	0.005			μA typ	$V_{IN} = V_{INL}$ or V_{INH}
			±1	µA max	
C _{IN} , Digital Input Capacitance	2			pF typ	
DYNAMIC CHARACTERISTICS ¹					
transition	120			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	200	270	300	ns max	$V_s = 3 V$; see Figure 25
ton (EN)	120			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	190	245	280	ns max	$V_s = 3 V$; see Figure 27
toff (EN)	35	215	200	ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	50	60	70	ns max	$V_s = 3 V$; see Figure 27
Break-Before-Make Time Delay, t	100	00	70	ns typ	$R_L = 300 \Omega, C_L = 35 pF$
Dieak-Deloie-Make Time Delay, IBBM	100		10	ns min	$V_{s1} = V_{s2} = 3 V$; see Figure 26
Charge Injection	0.5		10		$V_{s1} = V_{s2} = 3V$, see Figure 28 $V_s = 2.5 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 28
Charge injection	0.5			pC typ	$v_{s} = 2.3 v, R_{s} = 0.22, C_{L} = 1 Hr, see Figure 20$
Official				pC max	$\mathbf{P} = \mathbf{F} \mathbf{O} \mathbf{O} \mathbf{C} = \mathbf{F} \mathbf{p} \mathbf{E} \mathbf{f} = 1 \mathbf{M} \mathbf{H} \mathbf{r} \mathbf{r} \mathbf{c} \mathbf{c} \mathbf{n} \mathbf{F} \mathbf{r} \mathbf{r} \mathbf{r} \mathbf{c} \mathbf{n}$
Off Isolation Channel-to-Channel Crosstalk	-90 -90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29 $R_L = 50 \Omega$, $C_L = 5 pF$; $f = 1 MHz$; see Figure 31
	-90			dB typ	$n_L = 50.22$, $C_L = 5 \text{ pr}$; $I = 1 \text{ MHZ}$; see Figure 31
(ADG659) 2 dB Pandwidth					
-3 dB Bandwidth	100			NAL 1 +	
ADG658	180			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 30
ADG659	330			MHz typ	6 1 1 1 1
C _s (OFF)	5			pF typ	f = 1 MHz
C _D (OFF)				_	
ADG658	29			pF typ	f = 1 MHz
ADG659	15			pF typ	f = 1 MHz

Parameter	+25°C	B Version –40°C to +85°C	Y Version –40°C to +125°C	Unit	Test Conditions/Comments
C _D , C _S (ON)					
ADG658	30			pF typ	f = 1 MHz
ADG659	16			pF typ	f = 1 MHz
POWER REQUIREMENTS					$V_{DD} = 5.5 V$
I _{DD}	0.01			μA typ	Digital Inputs = 0 V or 5.5 V
			1	μA max	

¹ Guaranteed by design; not subject to production test.

2.7 V TO 3.6 V SINGLE SUPPLY

 V_{DD} = 2.7 to 3.6 V, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 3.

		B Version –40°C	Y Version –40°C		
Parameter	+25°C	to +85°C	to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 to V_{DD}	V	$V_{DD} = 2.7 V, V_{SS} = 0 V$
On Resistance (R _{on})	185			Ωtyp	$V_s = 0 V$ to 2.7 V, $I_s = 0.1 mA$; see Figure 21
	300	350	400	Ωmax	
On Resistance Match between	2			Ωtyp	$V_s = 1.5 V$, $I_s = 0.1 mA$
Channels (ΔR _{ON})	4.5	6	7	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = 3.3 V$
Source OFF Leakage Is (OFF)	±0.005			nA typ	$V_s = 1 \text{ V}/3 \text{ V}$, $V_D = 3 \text{ V}/1 \text{ V}$; see Figure 22
	±0.2		±5	nA max	
Drain OFF Leakage I _D (OFF)	±0.005			nA typ	$V_{s} = 1 V/3 V, V_{D} = 3 V/1 V$; see Figure 23
ADG658	±0.2		±5	nA max	
ADG659	±0.1		±2.5	nA max	
Channel ON Leakage ID, Is (ON)	±0.005			nA typ	$V_s = V_D = 1 V \text{ or } 3 V$, see Figure 24
ADG658	±0.2		±5	nA max	
ADG659	±0.1		±2.5	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINH			0.5	V max	
Input Current			0.5	VIIIUX	
	0.005			μA typ	$V_{IN} = V_{INI}$ or V_{INH}
	0.005		±1	μA typ μA max	
C _{IN} , Digital Input Capacitance	2		ΞI	pF typ	
	2			ргтур	
	200			in a fu un	
transition	200	440	100	ns typ	$R_{L} = 300 \Omega, C_{L} = 35 \text{ pF}$
	370	440	490	ns max	$V_s = 1.5 V$; see Figure 25
t _{on} (ĒN)	230			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	370	440	490	ns max	$V_s = 1.5 V$; see Figure 27
toff (EN)	50			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	80	90	110	ns max	$V_s = 1.5 V$; see Figure 27
Break-Before-Make Time Delay, tBBM	200			ns typ	$R_L = 300 \ \Omega, \ C_L = 35 \ pF$
			10	ns min	$V_{s1} = V_{s2} = 1.5 V$; see Figure 26
Charge Injection	1			pC typ	$V_s = 1.5 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 28
	2			pC max	
Off Isolation	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 29
Channel-to-Channel Crosstalk	-90			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$; $f = 1 MHz$; see Figure 31
(ADG659)					
–3 dB Bandwidth					
ADG658	160			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 30
ADG659	300			MHz typ	
C _s (OFF)	5			pF typ	f = 1 MHz
C_{D} (OFF)	-			1. 76	
ADG658	29			pF typ	f = 1 MHz
ADG659	15			pF typ	f = 1 MHz
ND0032	1.7			l hi rìh	

Parameter	+25°C	B Version –40°C to +85°C	Y Version –40°C to +125°C	Unit	Test Conditions/Comments
C _D , C _S (ON)					
ADG658	30			pF typ	f = 1 MHz
ADG659	16			pF typ	f = 1 MHz
POWER REQUIREMENTS					$V_{DD} = 3.6 V$
ldd	0.01			μA typ	Digital Inputs = 0 V or 3.6 V
			1	µA max	

¹ Guaranteed by design; not subject to production test.

ABSOLUTE MAXIMUM RATINGS

 $T_A = 25^{\circ}C$, unless otherwise noted.

Table 4.

Parameter	Rating
V _{DD} to V _{SS}	13 V
V _{DD} to GND	–0.3 V to +13 V
V _{ss} to GND	+0.3 V to -6.5 V
Analog Inputs ¹	V_{SS} – 0.3 V to V_{DD} + 0.3 V
Digital Inputs ¹	$GND - 0.3 V$ to $V_{DD} + 0.3 V$
	or 10 mA, whichever occurs first
Peak Current, S or D	40 mA
(Pulsed at 1 ms, 10% duty cycle max)	
	20 m 4
	2011/1
	-40°C to +125°C
5 1 5	
	150 C
•••• I	104°C/W
16-Lead TSSOP	150.4°C/W
16-Lead LFCSP (4-Laver Board)	70°C/W
Vapor Phase (60 sec)	215°C
Infrared (15 sec)	220°C
ESD	5.5 kV
16-Lead LFCSP (4-Layer Board) Lead Temperature, Soldering Vapor Phase (60 sec) Infrared (15 sec)	70°C/W 215°C 220°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

 1 Over voltages at A_x, EN, S, or D are clamped by internal diodes. Current must be limited to the maximum ratings.

Table 5. ADG658 Truth Table

A2	A1	A0	EN	Switch Condition	
X ¹	X ¹	X ¹	1	None	
0	0	0	0	1	
0	0	1	0	2	
0	1	0	0	3	
0	1	1	0	4	
1	0	0	0	5	
1	0	1	0	6	
1	1	0	0	7	
1	1	1	0	8	

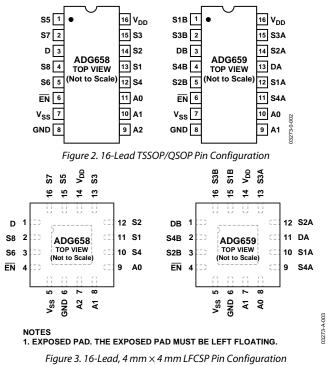

¹ X = Don't Care

Table 6. ADG659 Truth Table

A1	A0	EN	On Switch Pair
X ¹	X ¹	1	None
0	0	0	1
0	1	0	2
1	0	0	3
1	1	0	4

 1 X = Don't Care

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS

Table 7. Pin Function Descriptions

Parameter	Description
V _{DD}	Most Positive Power Supply Potential.
Vss	Most Negative Power Supply Potential.
IDD	Positive Supply Current.
I _{ss}	Negative Supply Current.
GND	Ground (0 V) Reference.
S	Source Terminal. Can be an input or output.
D	Drain Terminal. Can be an input or output.
A _x	Logic Control Input.
EN	Active Low Digital Input. When high, device is disabled and all switches are OFF. When low, A _x logic inputs determine ON switch.
EPAD (LFCSP Only)	Exposed Pad. The exposed pad must be left floating.

TYPICAL PERFORMANCE CHARACTERISTICS

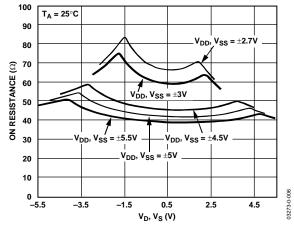


Figure 4. On Resistance vs. V_D (V_S) for Dual Supply

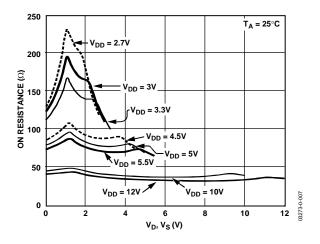


Figure 5. On Resistance vs. V_D (V_s) for Single Supply

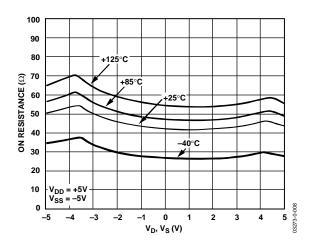


Figure 6. On Resistance vs. V_D (V_S) for Different Temperatures (Dual Supply)

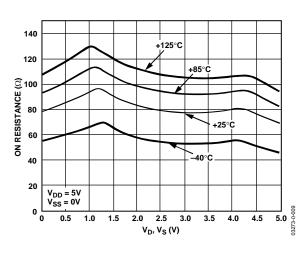


Figure 7. On Resistance vs. V_D (V_S) for Different Temperatures (Single Supply)

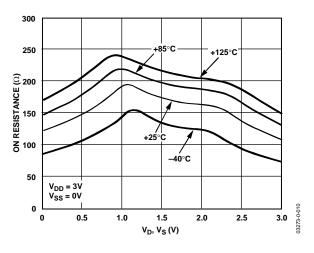


Figure 8. On Resistance vs. V_D (V_s) for Different Temperatures (Single Supply)

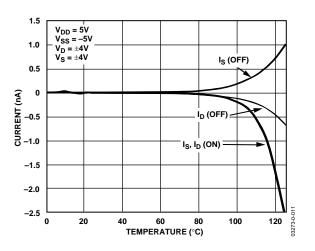
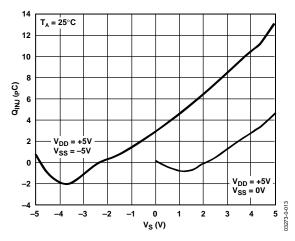



Figure 9. Leakage Current vs. Temperature (Dual Supply)

1.5 $V_{DD} = +5V$ $V_{SS} = 0V$ $V_{D} = \pm 4V$ $V_{S} = \mp 1V$ 1.0 I_S (OFF) 0.5 0 CURRENT (nA) 0.1-0.1-I_D (OFF) I_S, I_D (ON) -1.5 $V_{DD} = +3V$ $V_{SS} = 0V$ $V_D = \pm 2.4V$ -2.0 V_S = ∓1V -2.5 03273-0-012 0 20 40 60 80 100 120 TEMPERATURE (°C)

Figure 10. Leakage Current vs. Temperature (Single Supply)

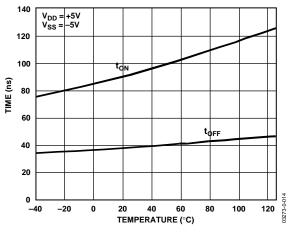


Figure 12. ton/toff Times vs. Temperature (Dual Supply)

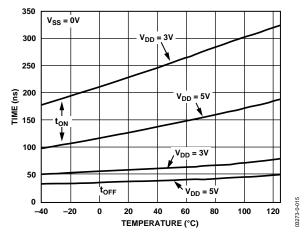
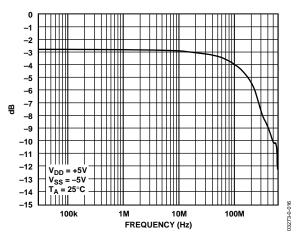
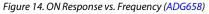
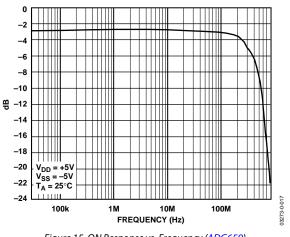
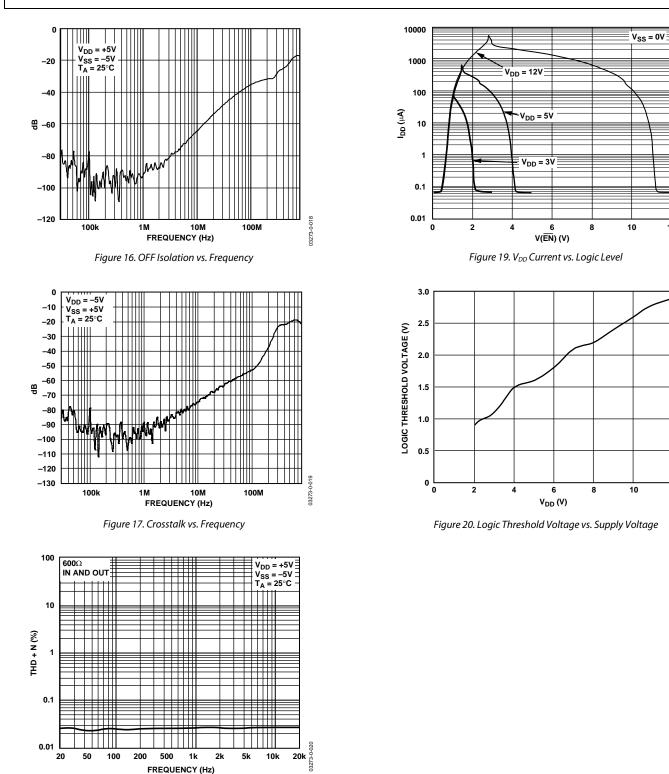





Figure 13. ton/toff Times vs. Temperature (Single Supply)



ADG658/ADG659

03273-0-021

12

12 ²²⁰⁻⁰⁻⁶²²⁸⁰

FREQUENCY (Hz) Figure 18. THD + Noise

5k 10k

200 500 1k 2k

Downloaded from Arrow.com.

20

50 100

TERMINOLOGY

V_D (V_s) Analog Voltage on Terminals D, S.

R_{ON} Ohmic Resistance between D and S.

 ΔR_{ON} On Resistance Match between Any Two Channels, i.e., $R_{ON}max - R_{ON}min$.

R_{FLAT(ON)}

Flatness is defined as the difference between the maximum and minimum value of ON Resistance as measured over the specified analog signal range.

Is (OFF) Source Leakage Current with the Switch OFF.

 I_D (OFF) Drain Leakage Current with the Switch OFF.

I_D, I_S (**ON**) Channel Leakage Current with the Switch ON.

V_{INL} Maximum Input Voltage for Logic 0.

V_{INH} Minimum Input Voltage for Logic 1.

I_{INL} (I_{INH}) Input Current of the Digital Input.

Cs (OFF) OFF Switch Source Capacitance. Measured with reference to ground.

C_D (OFF)

OFF Switch Drain Capacitance. Measured with reference to ground.

 $C_D, C_S(ON)$

ON Switch Capacitance. Measured with reference to ground.

Cin

Digital Input Capacitance.

ton

Delay between Applying the Digital Control Input and the Output Switching ON. See Figure 27.

t_{OFF} Delay between Applying the Digital Control Input and the Output Switching OFF.

 t_{BBM} ON Time. Measured between 80% points of both switches when switching from one address state to another.

Charge Injection

Measure of the Glitch Impulse Transferred from the Digital Input to the Analog Output during Switching.

Off Isolation Measure of Unwanted Signal Coupling through an OFF Switch.

Crosstalk

Measure of Unwanted Signal Coupled through from One Channel to Another as a Result of Parasitic Capacitance.

Bandwidth The Frequency at which the Output is Attenuated by 3 dB.

On Response The Frequency Response of the ON Switch.

Insertion Loss The Loss Due to the ON Resistance of the Switch.

TEST CIRCUITS

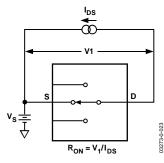
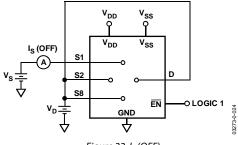
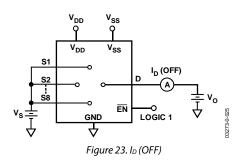
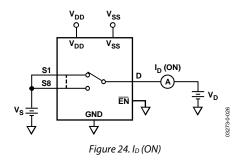
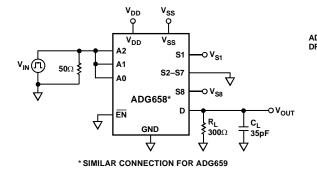
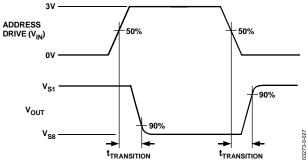
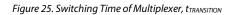


Figure 21. ON Resistance


Figure 22. Is (OFF)

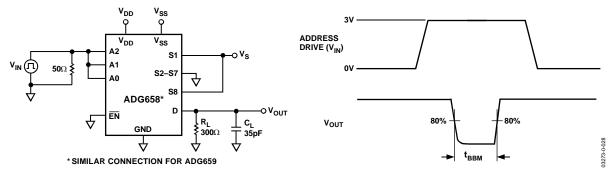


Figure 26. Break-Before-Make Delay, tBBM

Data Sheet

ADG658/ADG659

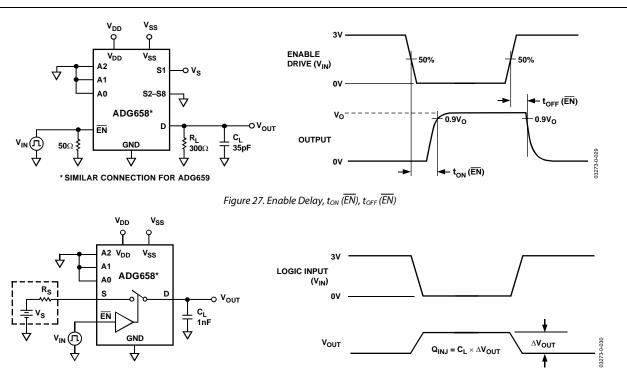
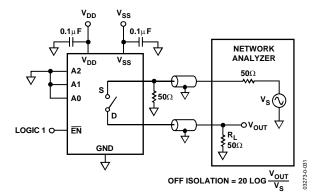
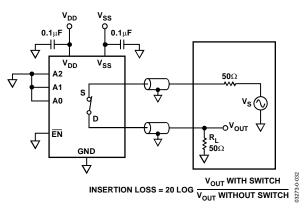
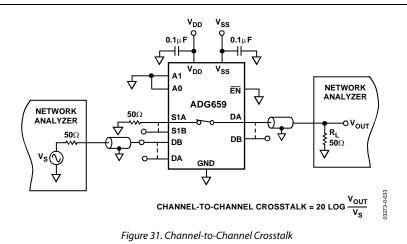
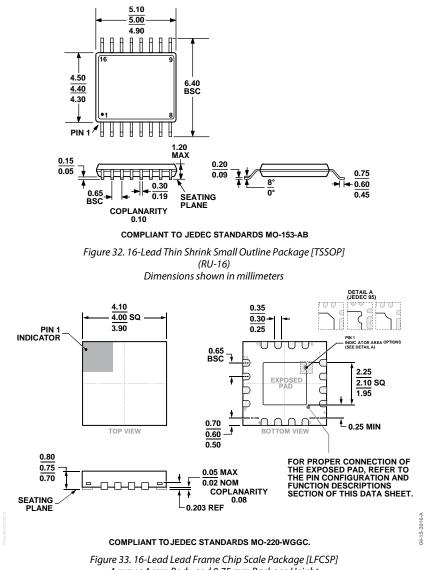
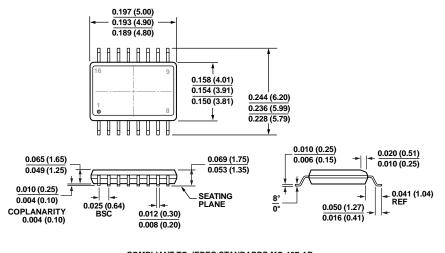



Figure 28. Charge Injection

* SIMILAR CONNECTION FOR ADG659

Figure 29. Off Isolation


Figure 30. Bandwidth

OUTLINE DIMENSIONS

-igure 33. To-Lead Lead Frame Chip Scale Package (LFCSP 4 mm × 4 mm Body and 0.75 mm Package Height (CP-16-23) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-137-AB CONTROLLING DIMENSIONS ARE IN INCHES; MILLIMETER DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF INCH EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

09-12-2014-A

Figure 34. 16-Lead Shrink Small Outline Package [QSOP] (RQ-16) Dimensions shown in inches and (millimeters)

ORDERING GUIDE

Model ^{1, 2}	Temperature Range	perature Range Package Description	
ADG658YRU	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG658YRU-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG658YRUZ	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG658YRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG658YCPZ	-40°C to +85°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23
ADG658YCPZ-REEL7	-40°C to +85°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23
ADG658YRQ	-40°C to +125°C	16-Lead Shrink Small Outline Package [QSOP]	RQ-16
ADG658YRQZ	-40°C to +125°C	16-Lead Shrink Small Outline Package [QSOP]	RQ-16
ADG658YRQZ-REEL7	-40°C to +125°C	16-Lead Shrink Small Outline Package [QSOP]	RQ-16
ADW54003-0	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADW54003-0RL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG659YRU	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG659YRUZ	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG659YRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG659WYRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	RU-16
ADG659YCPZ	-40°C to +85°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23
ADG659YCPZ-REEL7	-40°C to +85°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	CP-16-23
ADG659YRQZ	-40°C to +125°C	16-Lead Shrink Small Outline Package [QSOP]	RQ-16

 1 Z = RoHS Compliant Part.

² W = Qualified for Automotive Applications.

AUTOMOTIVE PRODUCTS

The ADW54003 models are available with controlled manufacturing to support the quality and reliability requirements of automotive applications. Note that these automotive models may have specifications that differ from the commercial models; therefore, designers should review the Specifications section of this data sheet carefully. Only the automotive grade products shown are available for use in automotive applications. Contact your local Analog Devices account representative for specific product ordering information and to obtain the specific Automotive Reliability reports for these models.

©2004–2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D03273-0-11/16(D) www.analog.com