TABLE OF CONTENTS

Features	1
Applications	1
General Description	1
Functional Block Diagrams	1
Revision History	2
Specifications	3
±5 V Dual Supply	3
12 V Single Supply	4
5 V Single Supply	5
3.3 V Single Supply	6

REVISION HISTORY

8/2016—Rev. A to Rev. B

Changed CP-20-4 to CP-20-10	. Throughout
Changes to Figure 5	
Changes to Figure 7	
Updated Outline Dimensions	
Changes to Ordering Guide	

9/2014—Rev. 0 to Rev. A

Changes to Figure 26, Figure 27, Figure 28	14
Updated Outline Dimensions	17
Changes to Ordering Guide	19

7/2009—Revision 0: Initial Version

Continuous Current per Channel, S or D	7
Absolute Maximum Ratings	8
ESD Caution	8
Pin Configurations and Function Descriptions	9
Typical Performance Characteristics	11
Test Circuits	14
Terminology	16
Outline Dimensions	17
Ordering Guide	19

SPECIFICATIONS

±5 V DUAL SUPPLY

 V_{DD} = +5 V \pm 10%, V_{SS} = -5 V \pm 10%, GND = 0 V, unless otherwise noted.

Table 1.

Parameter	25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			V _{DD} to V _{SS}	V	
On Resistance (R _{ON})	4.5			Ωtyp	$V_{s} = \pm 4.5 V$, $I_{s} = -10 mA$; see Figure 26
	5	7	8	Ωmax	$V_{DD} = \pm 4.5 V, V_{SS} = \pm 4.5 V$
On-Resistance Match Between Channels (ΔR_{ON})	0.12			Ωtyp	$V_s = \pm 4.5 V$, $I_s = -10 mA$
	0.25	0.3	0.35	Ωmax	
On-Resistance Flatness (R _{FLAT(ON)})	1			Ωtyp	$V_{s} = \pm 4.5 V$, $I_{s} = -10 mA$
	1.3	1.7	2	Ωmax	- , - ,
LEAKAGE CURRENTS		-		-	$V_{DD} = +5.5 V, V_{SS} = -5.5 V$
Source Off Leakage, Is (Off)	±0.01			nA typ	$V_{\rm S} = \pm 4.5$ V, $V_{\rm D} = \pm 4.5$ V; see Figure 27
Source on Leanage, is (on)	±0.1	±1.5	±12	nA max	
Drain Off Leakage, I _D (Off)	±0.02	_1.5		nA typ	$V_{s} = \pm 4.5V, V_{D} = \pm 4.5V;$ see Figure 27
Drain on Leakage, in (on)	±0.02	±2	±20	nA max	
Channel On Leakage, I _D , I _s (On)	±0.13	÷Ζ	±20	nA typ	$V_s = V_D = \pm 4.5 V$; see Figure 28
Charmer on Leakage, 10, 15 (On)	±0.02 ±0.15	±2	±20	nA max	$v_5 = v_0 = \pm 4.5 v_7$ see Figure 20
DIGITAL INPUTS	±0.15	±Ζ	<u></u> 20	III/(IIIdx	
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINH			0.8	V max	
	. 1		0.8		$\lambda = \lambda = 2r \lambda$
Input Current, I _{INL} or I _{INH}	±1		±0.1	nA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
Digital Input Capacitance, C _{IN}	8		±0.1	µA max	
DIGITAL INPUT Capacitance, $C_{\mathbb{N}}$	0			pF typ	
	161				
	161	226	264	ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF$
	200	236	264	ns max	$V_s = 2.5 V$; see Figure 29
ton (EN)	61			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	79	88	98	ns max	V _s = 2.5 V; see Figure 31
t _{off} (EN)	162			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	199	232	259	ns max	$V_s = 2.5 V$; see Figure 31
Break-Before-Make Time Delay, t _D	44			ns typ	$R_L = 300 \ \Omega, C_L = 35 \ pF$
			30	ns min	$V_{s1} = V_{s2} = 2.5 V$; see Figure 30
Charge Injection	-12.5			pC typ	$V_s = 0 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 32
Off Isolation	-64			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 33
Channel-to-Channel Crosstalk	-64			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 35
Total Harmonic Distortion + Noise (THD + N)	0.3			% typ	$R_L = 110 \Omega$, $V_S = 5 V p$ -p, $f = 20 Hz$ to 20 kHz; see Figure 36
–3 dB Bandwidth	103			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 34
C _s (Off)	19			pF typ	$V_{s} = 0 V, f = 1 MHz$
C _D (Off)	33			pF typ	$V_{s} = 0 V, f = 1 MHz$
C _D , C _s (On)	57			pF typ	$V_{s} = 0 V, f = 1 MHz$
POWER REQUIREMENTS	1				$V_{DD} = +5.5 V, V_{SS} = -5.5 V$
lop	0.001			μA typ	Digital inputs = $0 \text{ V or } V_{DD}$
			1.0	µA max	
V _{DD} /V _{SS}			±3.3/±8	V min/max	

12 V SINGLE SUPPLY

 V_{DD} = 12 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 2.

Parameter	25°C	–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 V$ to V_{DD}	v	
On Resistance (R _{on})	4			Ωtyp	$V_s = 0 V$ to 10 V, $I_s = -10 mA$; see Figure 26
	4.5	6.5	7.5	Ωmax	$V_{DD} = 10.8 V, V_{SS} = 0 V$
On-Resistance Match Between Channels (ΔR_{ON})	0.12			Ωtyp	$V_s = 10 V, I_s = -10 mA$
	0.25	0.3	0.35	Ωmax	
On-Resistance Flatness (R _{FLAT(ON)})	0.9			Ωtyp	$V_s = 0 V$ to 10 V, $I_s = -10 mA$
	1.2	1.6	1.9	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = 13.2 \text{ V}, \text{V}_{SS} = 0 \text{ V}$
Source Off Leakage, Is (Off)	±0.01			nA typ	$V_s = 1 \text{ V}/10 \text{ V}, V_D = 10 \text{ V}/1 \text{ V}; \text{ see Figure 27}$
-	±0.1	±1.5	±12	nA max	
Drain Off Leakage, I₂ (Off)	±0.02			nA typ	$V_{s} = 1 \text{ V}/10 \text{ V}, V_{D} = 10 \text{ V}/1 \text{ V}; \text{ see Figure 27}$
	±0.15	±2	±20	nA max	
Channel On Leakage, I _D , Is (On)	±0.02			nA typ	$V_s = V_D = 1$ V or 10 V; see Figure 28
	±0.15	±2	±20	nA max	
DIGITAL INPUTS					
Input High Voltage, VINH			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current, line or line	±1			nA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	µA max	
Digital Input Capacitance, C _№	8		-0.1	pF typ	
				prop	
Transition Time, t _{TRANSITION}	127			ns typ	$R_{I} = 300 \Omega, C_{I} = 35 pF$
Hariston Hine, transmon	151	182	205	ns max	$V_{s} = 8 V$; see Figure 29
t _{on} (EN)	31	102	205	ns typ	$R_{L} = 300 \Omega, C_{L} = 35 \text{ pF}$
	38	43	47	ns max	$V_s = 8 V$; see Figure 31
t _{off} (EN)		45	47		•
toff (EIN)	128	100	202	ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	152	180	200	ns max	$V_s = 8 V$; see Figure 31
Break-Before-Make Time Delay, t_D	45		20	ns typ	$R_{L} = 300 \Omega, C_{L} = 35 pF$
-			30	ns min	$V_{s1} = V_{s2} = 8$ V; see Figure 30
Charge Injection	-12.4			pC typ	$V_s = 6 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 32
Off Isolation	-64			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 33
Channel-to-Channel Crosstalk	-64			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 1 MHz$; see Figure 35
Total Harmonic Distortion + Noise (THD + N)	0.3			% typ	R_{L} = 110 $\Omega,$ V_{s} = 5 V p-p, f = 20 Hz to 20 kHz; see Figure 36
–3 dB Bandwidth	109			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 34
C _s (Off)	19			pF typ	$V_{s} = 6 V, f = 1 MHz$
C_{D} (Off)	32			pF typ	$V_{s} = 6 V, f = 1 MHz$
C _D , C _s (On)	56			pF typ	$V_{s} = 6 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = 12 V$
lod	0.001		1.0	μA typ μA max	Digital inputs = $0 V \text{ or } V_{DD}$
TSSOP	300			µA typ	Digital inputs = 5 V
15000			480	µA max	
LFCSP	375			μA typ	Digital inputs = 5 V
			600	µA max	
V _{DD}			3.3/16	V min/max	

5 V SINGLE SUPPLY

 V_{DD} = 5 V \pm 10%, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 3.

Parameter		–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			0 V to V _{DD}	V	
On Resistance (R _{ON})				Ωtyp	$V_s = 0 V$ to 4.5 V, $I_s = -10 mA$; see Figure 26
	10	12.5	14	Ωmax	$V_{DD} = 4.5 V, V_{SS} = 0 V$
On-Resistance Match Between Channels (ΔR_{ON})	0.15			Ωtyp	$V_s = 0 V$ to 4.5 V, $I_s = -10 mA$
	0.3	0.35	0.4	Ωmax	
On-Resistance Flatness (R _{FLAT(ON)})	1.7			Ωtyp	$V_s = 0 V$ to 4.5 V, $I_s = -10 mA$
	2.3	2.7	3	Ωmax	
LEAKAGE CURRENTS					$V_{DD} = 5.5 V, V_{SS} = 0 V$
Source Off Leakage, Is (Off)	±0.01			nA typ	$V_{s} = 1 V/4.5 V$, $V_{D} = 4.5 V/1 V$; see Figure 27
	±0.1	±1.5	±12	nA max	
Drain Off Leakage, ID (Off)	±0.02			nA typ	$V_{s} = 1 V/4.5 V$, $V_{D} = 4.5 V/1 V$; see Figure 27
	±0.15	±2	±20	nA max	
Channel On Leakage, I _D , I _S (On)	±0.02			nA typ	$V_S = V_D = 1 V \text{ or } 4.5 V$; see Figure 28
	±0.15	±2	±20	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current, I _{INL} or I _{INH}	±1			nA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	8			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, transition	199			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	254	303	337	ns max	$V_s = 2.5 V$; see Figure 29
ton (EN)	68			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	90	102	110	ns max	$V_s = 2.5 V$; see Figure 31
t _{off} (EN)	201			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
	256	300	333	ns max	Vs = 2.5 V; see Figure 31
Break-Before-Make Time Delay, t _D	57			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			37	ns min	$V_{s1} = V_{s2} = 2.5 V$; see Figure 30
Charge Injection	-5			pC typ	$V_s = 2.5 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 32
Off Isolation	-64			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 33
Channel-to-Channel Crosstalk	-64			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 35
Total Harmonic Distortion + Noise (THD + N)	0.27			% typ	$R_L = 110 \Omega$, f = 20 Hz to 20 kHz, Vs = 3.5 V p-p; see Figure 36
–3 dB Bandwidth	104			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 34
Cs (Off)	21			pF typ	$V_s = 2.5 V, f = 1 MHz$
C_{D} (Off)	37			pF typ	$V_s = 2.5 V, f = 1 MHz$
C _D , C _s (On)	62			pF typ	$V_s = 2.5 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = 5.5 V$
lod	0.001			μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
			1.0	µA max	
V _{DD}			3.3/16	V min/max	

3.3 V SINGLE SUPPLY

 V_{DD} = 3.3 V, V_{SS} = 0 V, GND = 0 V, unless otherwise noted.

Table 4.

Parameter		–40°C to +85°C	–40°C to +125°C	Unit	Test Conditions/Comments
ANALOG SWITCH					
Analog Signal Range			$0 V to V_{\text{DD}}$	V	
On Resistance (R _{ON})	13.5	15	16.5	Ωtyp	$\label{eq:Vs} \begin{array}{l} V_{s}=0~V~to~V_{DD}, I_{s}=-10~mA; see~Figure~26,\\ V_{DD}=3.3~V, V_{SS}=0~V \end{array}$
On-Resistance Match Between Channels (ΔR_{ON})	0.25	0.28	0.3	Ωtyp	$V_s = 0 V$ to V_{DD} , $I_s = -10 \text{ mA}$
On-Resistance Flatness (R _{FLAT(ON)})	5	5.5	6.5	Ωtyp	$V_s = 0 V$ to V_{DD} , $I_s = -10 \text{ mA}$
LEAKAGE CURRENTS					$V_{DD} = 3.6 V, V_{SS} = 0 V$
Source Off Leakage, Is (Off)	±0.01			nA typ	$V_{\rm S} = 0.6 \text{V}/3 \text{V}, V_{\rm D} = 3 \text{V}/0.6 \text{V};$ see Figure 27
	±0.1	±1.5	±12	nA max	
Drain Off Leakage, I _D (Off)	±0.01			nA typ	$V_{s} = 0.6 \text{ V}/3 \text{ V}, V_{D} = 3 \text{ V}/0.6 \text{ V};$ see Figure 27
	±0.15	±2	±20	nA max	
Channel On Leakage, I _D , I _s (On)	±0.01			nA typ	$V_s = V_D = 0.6 V$ or 3 V; see Figure 28
	±0.15	±2	±20	nA max	
DIGITAL INPUTS					
Input High Voltage, V _{INH}			2.0	V min	
Input Low Voltage, VINL			0.8	V max	
Input Current, I _{INL} or I _{INH}	±1			nA typ	$V_{IN} = V_{GND} \text{ or } V_{DD}$
			±0.1	μA max	
Digital Input Capacitance, C _{IN}	8			pF typ	
DYNAMIC CHARACTERISTICS ¹					
Transition Time, transition	309			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	429	466	508	ns max	V _s = 1.5 V; see Figure 29
ton (EN)	132			ns typ	$R_L = 300 \Omega$, $C_L = 35 pF$
	184	201	210	ns max	$V_s = 1.5 V$; see Figure 31
t _{off} (EN)	313			ns typ	$R_L = 300 \ \Omega$, $C_L = 35 \ pF$
	416	470	509	ns max	$V_s = 1.5 V$; see Figure 31
Break-Before-Make Time Delay, t _D	81			ns typ	$R_L = 300 \Omega, C_L = 35 pF$
			48	ns min	$V_{S1} = V_{S2} = 1.5 V$; see Figure 30
Charge Injection	-10			pC typ	$V_s = 1.5 V$, $R_s = 0 \Omega$, $C_L = 1 nF$; see Figure 32
Off Isolation	-64			dB typ	R_L = 50 $\Omega,$ C_L = 5 pF, f = 100 kHz; see Figure 33
Channel-to-Channel Crosstalk	-64			dB typ	$R_L = 50 \Omega$, $C_L = 5 pF$, $f = 100 kHz$; see Figure 35
Total Harmonic Distortion + Noise (THD + N)	0.6			% typ	$R_L = 110 \Omega$, f = 20 Hz to 20 kHz, Vs = 2 V p-p; see Figure 36
–3 dB Bandwidth	117			MHz typ	$R_L = 50 \Omega$, $C_L = 5 pF$; see Figure 34
Cs (Off)	22			pF typ	$V_s = 1.5 V, f = 1 MHz$
C _D (Off)	39			pF typ	$V_s = 1.5 V, f = 1 MHz$
C _D , C _S (On)	64			pF typ	$V_s = 1.5 V, f = 1 MHz$
POWER REQUIREMENTS					$V_{DD} = 3.6 V$
ldd	0.001			μA typ	Digital inputs = $0 V \text{ or } V_{DD}$
			1.0	µA max	
V _{DD}			3.3/16	V min/max	

CONTINUOUS CURRENT PER CHANNEL, S OR D

Table 5. ADG1633

Parameter	25°C	85°C	125°C	Unit
CONTINUOUS CURRENT, S OR D				
$V_{DD} = +5 V, V_{SS} = -5 V$				
TSSOP ($\theta_{JA} = 112.6^{\circ}C/W$)	126	84	56	mA max
LFCSP ($\theta_{JA} = 48.7^{\circ}C/W$)	206	126	70	mA max
$V_{DD} = 12 V, V_{SS} = 0 V$				
TSSOP ($\theta_{JA} = 112.6^{\circ}C/W$)	133	87	56	mA max
LFCSP ($\theta_{JA} = 48.7^{\circ}C/W$)	213	133	73	mA max
$V_{DD} = 5 V, V_{SS} = 0 V$				
TSSOP ($\theta_{JA} = 112.6^{\circ}C/W$)	98	70	45	mA max
LFCSP ($\theta_{JA} = 48.7^{\circ}C/W$)	157	105	63	mA max
$V_{DD} = 3.3 V, V_{SS} = 0 V$				
TSSOP ($\theta_{JA} = 112.6^{\circ}C/W$)	77	56	38	mA max
LFCSP ($\theta_{JA} = 48.7^{\circ}C/W$)	129	87	56	mA max

Table 6. ADG1634

Parameter	25°C	85°C	125°C	Unit
CONTINUOUS CURRENT, S OR D				
$V_{DD} = +5 V, V_{SS} = -5 V$				
TSSOP ($\theta_{JA} = 95^{\circ}C/W$)	112	77	52	mA max
LFCSP ($\theta_{JA} = 30.4^{\circ}C/W$)	220	136	73	mA max
$V_{DD} = 12 V, V_{SS} = 0 V$				
TSSOP ($\theta_{JA} = 95^{\circ}C/W$)	119	80	52	mA max
LFCSP ($\theta_{JA} = 30.4^{\circ}C/W$)	234	140	73	mA max
$V_{DD} = 5 V, V_{SS} = 0 V$				
TSSOP ($\theta_{JA} = 95^{\circ}C/W$)	87	63	42	mA max
LFCSP ($\theta_{JA} = 30.4^{\circ}C/W$)	171	112	66	mA max
$V_{DD} = 3.3 V, V_{SS} = 0 V$				
TSSOP ($\theta_{JA} = 95^{\circ}C/W$)	70	52	35	mA max
LFCSP ($\theta_{JA} = 30.4^{\circ}C/W$)	140	94	59	mA max

ABSOLUTE MAXIMUM RATINGS

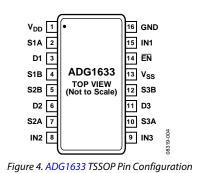
 $T_A = 25^{\circ}C$, unless otherwise noted.

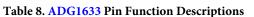
Table 7.

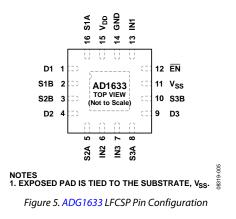
Tuble 7.	
Parameter	Rating
V _{DD} to V _{SS}	18 V
V _{DD} to GND	–0.3 V to +18 V
Vss to GND	+0.3 V to -18 V
Analog Inputs ¹	V _{ss} – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Digital Inputs ¹	GND – 0.3 V to V _{DD} + 0.3 V or 30 mA, whichever occurs first
Peak Current, S or D	450 mA (pulsed at 1 ms, 10% duty cycle maximum)
Continuous Current, S or D ²	Data + 15%
Operating Temperature Range	
Industrial (Y Version)	-40°C to +125°C
Storage Temperature Range	–65°C to +150°C
Junction Temperature	150°C
16-Lead TSSOP, θ _{JA} Thermal Impedance, 0 Airflow (4- Layer Board)	112.6°C/W
20-Lead TSSOP, θ _{JA} Thermal Impedance, 0 Airflow (4-Layer Board)	95°C/W
16-Lead LFCSP (3 mm \times 3 mm), θ_{JA} Thermal Impedance, 0 Airflow (4-Layer Board)	48.7°C/W
16-Lead LFCSP (4 mm \times 4 mm), θ_{JA} Thermal Impedance, 0 Airflow (4-Layer Board)	30.4°C/W
Reflow Soldering Peak Temperature, Pb free	260°C

¹ Overvoltages at IN, S, or D are clamped by internal diodes. Current should be limited to the maximum ratings given.

² See Table 5 and Table 6.

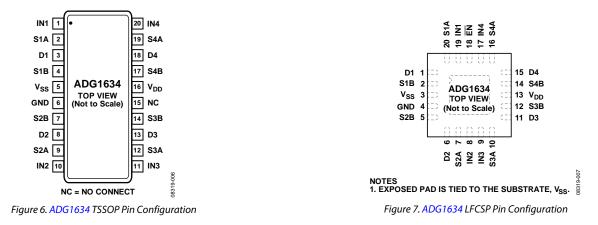

Stresses at or above those listed under Absolute Maximum Ratings may cause permanent damage to the product. This is a stress rating only; functional operation of the product at these or any other conditions above those indicated in the operational section of this specification is not implied. Operation beyond the maximum operating conditions for extended periods may affect product reliability.


ESD CAUTION



ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

PIN CONFIGURATIONS AND FUNCTION DESCRIPTIONS



Р	in No.		
TSSOP	LFCSP	Mnemonic	Description
1	15	V _{DD}	Most Positive Power Supply Potential.
2	16	S1A	Source Terminal 1A. Can be an input or an output.
3	1	D1	Drain Terminal 1. Can be an input or an output.
4	2	S1B	Source Terminal 1B. Can be an input or an output.
5	3	S2B	Source Terminal 2B. Can be an input or an output.
6	4	D2	Drain Terminal 2. Can be an input or an output.
7	5	S2A	Source Terminal 2A. Can be an input or an output.
8	6	IN2	Logic Control Input 2.
9	7	IN3	Logic Control Input 3.
10	8	S3A	Source Terminal 3A. Can be an input or an output.
11	9	D3	Drain Terminal 3. Can be an input or an output.
12	10	S3B	Source Terminal 3B. Can be an input or an output.
13	11	Vss	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.
14	12	EN	Active Low Digital Input. When this pin is high, the device is disabled and all switches are off. When this pin is low, INx logic inputs determine the on switches.
15	13	IN1	Logic Control Input 1.
16	14	GND	Ground (0 V) Reference.
N/A	17	EP	Exposed Pad. The exposed pad is tied to the substrate, Vss.

Table 9. ADG1633 Truth Table

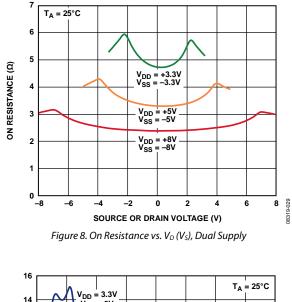
EN	INx	SxA	SxB
1	X ¹	Off	Off
0	0	Off	On
0	1	On	Off

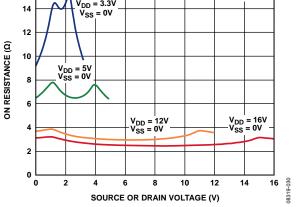
 1 X = don't care.

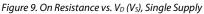
Table 10. ADG1634 Pin Function Descriptions

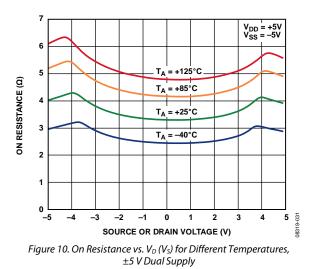
Pin No.			
TSSOP	LFCSP	Mnemonic	Description
1	19	IN1	Logic Control Input 1.
2	20	S1A	Source Terminal 1A. Can be an input or an output.
3	1	D1	Drain Terminal 1. Can be an input or an output.
4	2	S1B	Source Terminal 1B. Can be an input or an output.
5	3	Vss	Most Negative Power Supply Potential. In single-supply applications, this pin can be connected to ground.
6	4	GND	Ground (0 V) Reference.
7	5	S2B	Source Terminal 2B. Can be an input or an output.
8	6	D2	Drain Terminal 2. Can be an input or an output.
9	7	S2A	Source Terminal 2A. Can be an input or an output.
10	8	IN2	Logic Control Input 2.
11	9	IN3	Logic Control Input 3.
12	10	S3A	Source Terminal 3A. Can be an input or an output.
13	11	D3	Drain Terminal 3. Can be an input or an output.
14	12	S3B	Source Terminal 3B. Can be an input or an output.
15	N/A	NC	No Connect.
16	13	V _{DD}	Most Positive Power Supply Potential.
17	14	S4B	Source Terminal 4B. Can be an input or an output.
18	15	D4	Drain Terminal 4. Can be an input or an output.
19	16	S4A	Source Terminal 4A. Can be an input or an output.
20	17	IN4	Logic Control Input 4.
N/A	18	EN	Active Low Digital Input. When this pin is high, the device is disabled and all switches are off. When this pin is low, INx logic inputs determine the on switches.
N/A	21	EP	Exposed Pad. The exposed pad is tied to the substrate, V _{ss} .

Table 11. ADG1634 TSSOP Truth Table


INx	SxA	SxB
0	Off	On
_1	On	Off


Table 12. ADG1634 LFCSP Truth Table


EN	INx	SxA	SxB
1	X ¹	Off	Off
0	0	Off	On
0	1	On	Off


¹ X = don't care.

TYPICAL PERFORMANCE CHARACTERISTICS

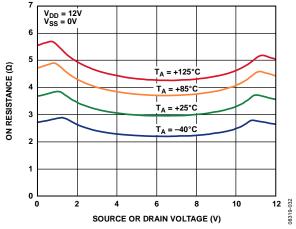


Figure 11. On Resistance vs. V_D (Vs) for Different Temperatures, 12 V Single Supply

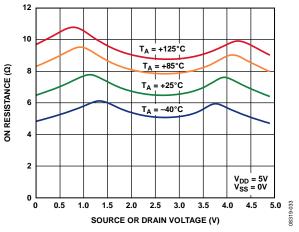


Figure 12. On Resistance vs. V_D (Vs) for Different Temperatures, 5 V Single Supply

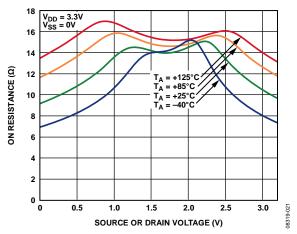
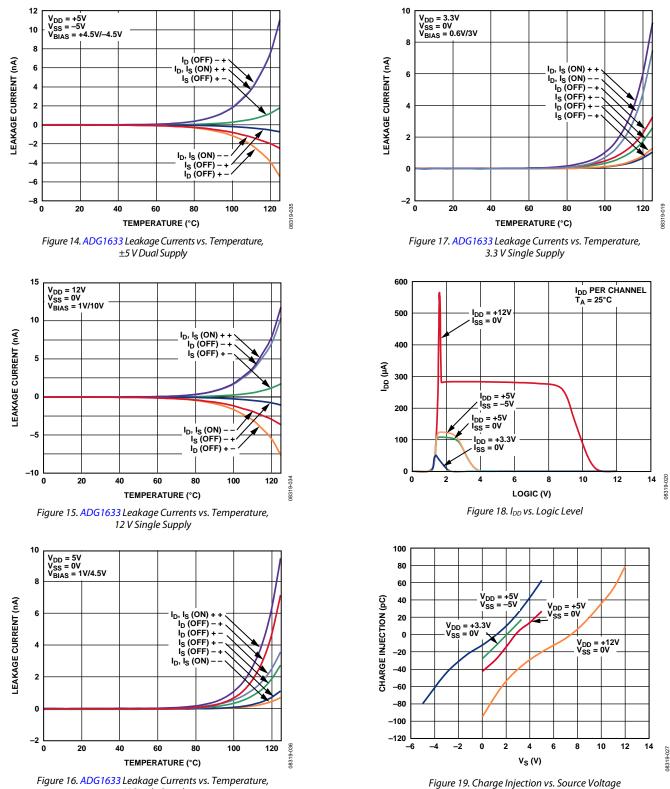
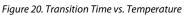



Figure 13. On Resistance vs. V_D (V_S) for Different Temperatures, 3.3 V Single Supply


08319-027

5 V Single Supply

Data Sheet

350 T_A = 25°C $V_{DD} = +3.3V, V_{SS} = 0V \\ V_{DD} = +5V, V_{SS} = 0V \\ V_{DD} = +5V, V_{SS} = -5V \\ V_{DD} = +12V, V_{SS} = 0V$ 300 250 (su) TRANSITION TIME 200 150 100 50 0 -20 100 120 -40 20 40 60 80 08319-025 0 **TEMPERATURE (°C)**

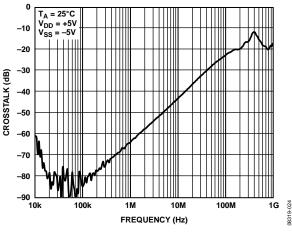
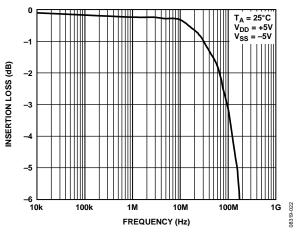
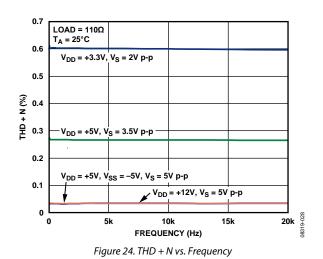
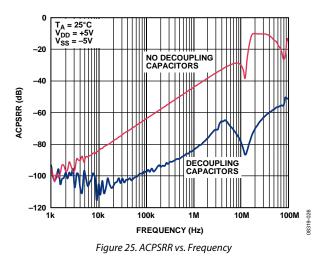
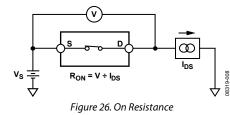
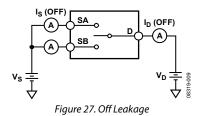


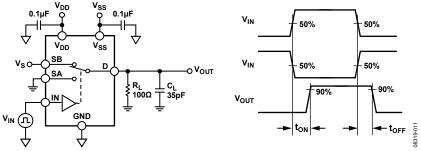
Figure 22. Crosstalk vs. Frequency

ADG1633/ADG1634

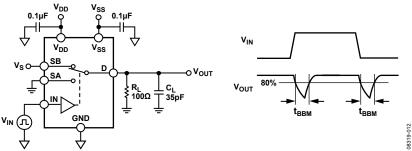





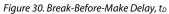

Figure 23. On Response vs. Frequency

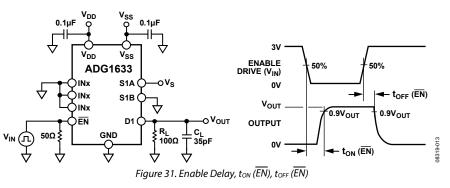


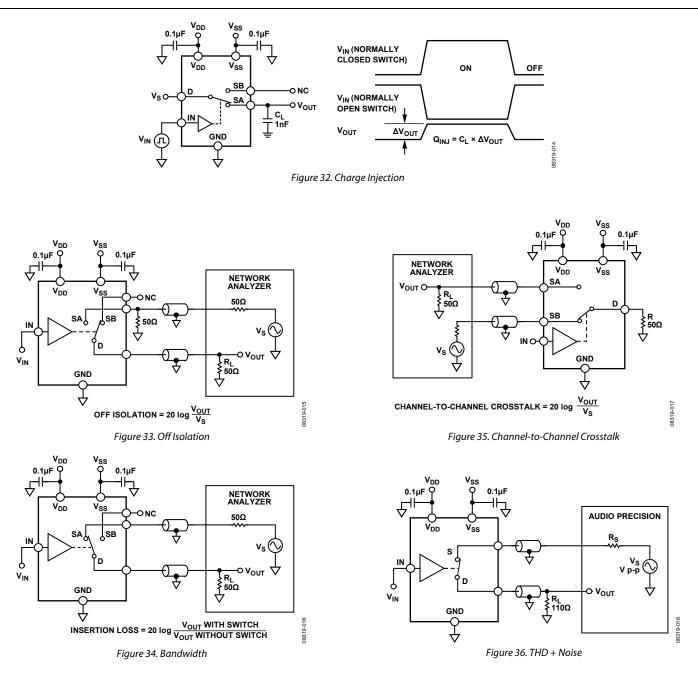


TEST CIRCUITS









Rev. B | Page 14 of 19

TERMINOLOGY

Ron

Ohmic resistance between Terminal D and Terminal S.

 ΔR_{ON} The difference between the R_{ON} of any two channels.

R_{FLAT(ON)} The difference between the maximum and minimum value of on resistance measured.

 $I_{s}\left(Off\right)$ Source leakage current when the switch is off.

I_D (Off) Drain leakage current when the switch is off.

 $I_{\rm D}, I_{\rm S}\left(On\right)$ Channel leakage current when the switch is on.

 $\mathbf{V}_{\mathrm{D}}\left(\mathbf{V}_{s}\right)$ Analog voltage on Terminal D and Terminal S.

Cs (Off) Channel input capacitance for off condition.

C_D (Off) Channel output capacitance for off condition.

C_D, C_s (On) On switch capacitance.

C_{IN} Digital input capacitance.

t_{ON} (\overline{EN})

Delay time between the 50% and 90% points of the digital input and switch on condition.

 t_{OFF} (\overline{EN}) Delay time between the 50% and 90% points of the digital input and switch off condition.

t_{TRANS}

Delay time between the 50% and 90% points of the digital inputs and the switch on condition when switching from one address state to another.

t_{BBM}

Off time measured between the 80% point of both switches when switching from one address state to another.

\mathbf{V}_{IL}

Maximum input voltage for Logic 0.

V_{IH} Minimum input voltage for Logic 1.

 $I_{\rm IL} \left(I_{\rm IH} \right) \label{eq:III}$ Input current of the digital input.

IDD Positive supply current.

Iss Negative supply current.

Off Isolation A measure of unwanted signal coupling through an off channel.

Charge Injection

A measure of the glitch impulse transferred from the digital input to the analog output during switching.

Bandwidth

The frequency at which the output is attenuated by 3 dB.

On Response The frequency response of the on switch.

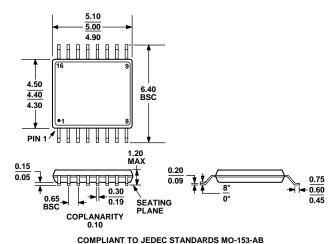
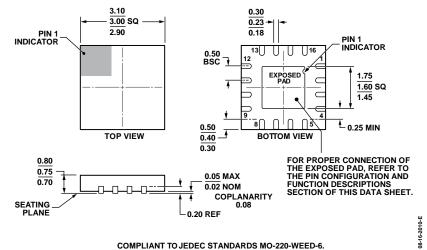
Total Harmonic Distortion + Noise (THD + N)

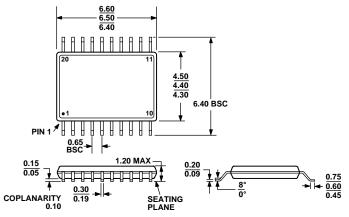
The ratio of the harmonic amplitude plus noise of the signal to the fundamental.

AC Power Supply Rejection Ratio (ACPSRR)

A measure of the ability of a part to avoid coupling noise and spurious signals that appear on the supply voltage pin to the output of the switch. The dc voltage on the device is modulated by a sine wave of 0.62 V p-p. The ratio of the amplitude of signal on the output to the amplitude of the modulation is the ACPSRR.

OUTLINE DIMENSIONS


Figure 37. 16-Lead Thin Shrink Small Outline Package [TSSOP] (RU-16)

Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-220-WEED-6.

Figure 38. 16-Lead Lead Frame Chip Scale Package [LFCSP] 3 mm \times 3 mm and 0.75 mm Package Height (CP-16-22) Dimensions shown in millimeters

COMPLIANT TO JEDEC STANDARDS MO-153-AC

Figure 39. 20-Lead Thin Shrink Small Outline Package [TSSOP] (RU-20) Dimensions shown in millimeters

Figure 40. 20-Lead Lead Frame Chip Scale Package [LFCSP] 4 mm × 4 mm Body and 0.75 mm Package Height (CP-20-10) Dimensions shown in millimeters 061609-B

ORDERING GUIDE

	Temperature			Package	
Model ¹	Range	Description	EN Pin	Option	Branding
ADG1633BRUZ	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	Yes	RU-16	
ADG1633BRUZ-REEL7	-40°C to +125°C	16-Lead Thin Shrink Small Outline Package [TSSOP]	Yes	RU-16	
ADG1633BCPZ-REEL7	-40°C to +125°C	16-Lead Lead Frame Chip Scale Package [LFCSP]	Yes	CP-16-22	SD3
ADG1634BRUZ	-40°C to +125°C	20-Lead Thin Shrink Small Outline Package [TSSOP]	No	RU-20	
ADG1634BRUZ-REEL7	-40°C to +125°C	20-Lead Thin Shrink Small Outline Package [TSSOP]	No	RU-20	
ADG1634BCPZ-REEL7	-40°C to +125°C	20-Lead Lead Frame Chip Scale Package [LFCSP]	Yes	CP-20-10	

¹ Z = RoHS Compliant Part.

www.analog.com

©2009–2016 Analog Devices, Inc. All rights reserved. Trademarks and registered trademarks are the property of their respective owners. D08319-0-8/16(B)