December 2013

74LCX126 — Low Voltage Quad Buffer with 5V Tolerant Inputs and Outputs

74LCX126 Low Voltage Quad Buffer with 5V Tolerant Inputs and Outputs

Features

- 5V tolerant inputs and outputs
- 2.3V–3.6V V_{CC} specifications provided
- 5.5ns t_{PD} max. (V_{CC} = 3.3V), 10µA I_{CC} max.
- Power down high impedance inputs and outputs
- Supports live insertion/withdrawal⁽¹⁾
- ± 24 mA output drive (V_{CC} = 3.0V)
- Implements proprietary noise/EMI reduction circuitry
- Latch-up performance exceeds JEDEC 78 conditions
- ESD performance:
 - Human body model > 2000V
 - Machine model > 100V
- Leadless DQFN package

Note:

1. To ensure the high-impedance state during power up or down, OE should be tied to V_{CC} through a pull-up resistor: the minimum value of the resistor is determined by the current-sourcing capability of the driver.

General Description

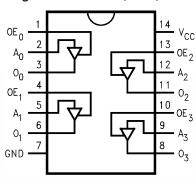
The LCX126 contains four independent non-inverting buffers with 3-STATE outputs. Each output is disabled when the associated output-enable (OE) input is LOW. The inputs tolerate voltages up to 7V allowing the interface of 5V systems to 3V systems.

The 74LCX126 is fabricated with an advanced CMOS technology to achieve high speed operation while maintaining CMOS low power dissipation.

Ordering Information

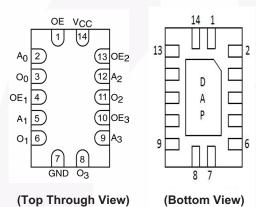
Order Number	Package Number	Package Description
74LCX126M	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74LCX126SJ	M14D	14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74LCX126BQX ⁽²⁾	MLP14A	14-Terminal Depopulated Quad Very-Thin Flat Pack No Leads (DQFN), JEDEC MO-241, 2.5 x 3.0mm
74LCX126MTC	MTC14	14-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide

Note:


2. DQFN package available in Tape and Reel only.

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering number.

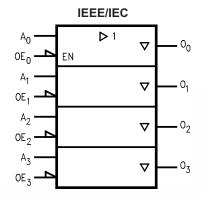
All packages are lead free per JEDEC: J-STD-020B standard.


©2000 Fairchild Semiconductor Corporation 74LCX126 Rev. 1.5.1

Connection Diagrams Pin Assignments for SOIC, SOP, and TSSOP

(Top View)

Pad Assignments for DQFN



Pin Description

Pin Names	Description
A _n	Inputs
OE _n	Output Enable Inputs
O _n	Outputs
DAP	No Connect

Note: DAP (Die Attach Pad)

Logic Symbol

Truth Table

Inp	Output	
OE _n	A _n	O _n
Н	L	L
Н	Н	Н
L	Х	Z

H = HIGH Voltage Level

L = LOW Voltage Level

Z = High Impedance

X = Immaterial

Absolute Maximum Ratings

Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol	Parameter	Rating
V _{CC}	Supply Voltage	-0.5V to +7.0V
VI	DC Input Voltage	-0.5V to +7.0V
Vo	DC Output Voltage,	
	Output in 3-STATE	-0.5V to +7.0V
	Output in HIGH or LOW State ⁽³⁾	-0.5V to V _{CC} + 0.5V
I _{IK}	DC Input Diode Current, V _I < GND	–50mA
I _{OK}	DC Output Diode Current	
	V _O < GND	–50mA
	V _O > V _{CC}	+50mA
Ι _Ο	DC Output Source/Sink Current	±50mA
I _{CC}	DC Supply Current per Supply Pin	±100mA
I _{GND}	DC Ground Current per Ground Pin	±100mA
T _{STG}	Storage Temperature	–65°C to +150°C

Note:

3. I_O Absolute Maximum Rating must be observed.

Recommended Operating Conditions⁽⁴⁾

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to absolute maximum ratings.

Symbol	Parameter	Min.	Max.	Units
V _{CC}	Supply Voltage			
	Operating	2.0	3.6	V
	Data Retention	1.5	3.6	
VI	Input Voltage	0	5.5	V
Vo	Output Voltage			
	HIGH or LOW State		V _{CC}	V
	3-STATE	0	5.5	
I _{OH} / I _{OL}	Output Current			
	$V_{CC} = 3.0V - 3.6V$		±24	mA
	V _{CC} = 2.7V–3.0V		±12	
	V _{CC} = 2.3V–2.7V		±8	
T _A	Free-Air Operating Temperature	-40	85	°C
$\Delta t / \Delta V$	Input Edge Rate, V _{IN} = 0.8V–2.0V, V _{CC} = 3.0V	0	10	ns/V

Note:

4. Unused inputs must be held HIGH or LOW. They may not float.

DC Electrical Characteristics

				$T_A = -40^{\circ}C$	to +85°C	
Symbol	Parameter	V _{CC} (V)	Conditions	Min.	Max.	Units
V _{IH}	HIGH Level Input Voltage	2.3–2.7		1.7		V
		2.7–3.6		2.0		
V _{IL}	LOW Level Input Voltage	2.3–2.7			0.7	V
		2.7–3.6			0.8	
V _{OH}	HIGH Level Output Voltage	2.3–3.6	$I_{OH} = -100 \mu A$	V _{CC} – 0.2		V
		2.3	$I_{OH} = -8mA$	1.8		
		2.7	$I_{OH} = -12mA$	2.2		
		3.0	$I_{OH} = -18mA$	2.4		
			$I_{OH} = -24mA$	2.2		
V _{OL}	LOW Level Output Voltage	2.3–3.6	$I_{OL} = 100 \mu A$		0.2	V
		2.3	$I_{OL} = 8mA$		0.6	
		2.7	$I_{OL} = 12mA$		0.4	
		3.0	$I_{OL} = 16 \text{mA}$		0.4	
			$I_{OL} = 24 \text{mA}$		0.55	
l _l	Input Leakage Current	2.3–3.6	$0 \le V_I \le 5.5V$		±5.0	μA
I _{OZ}	3-STATE Output Leakage	2.3–3.6	$\begin{array}{l} 0 \leq V_O \leq 5.5V, \\ V_I = V_{IH} \text{ or } V_{IL} \end{array}$		±5.0	μA
I _{OFF}	Power-Off Leakage Current	0	$V_{\rm I}$ or $V_{\rm O} = 5.5 V$		10	μA
I _{CC}	Quiescent Supply Current	2.3–3.6	$V_{I} = V_{CC}$ or GND		10	μA
			$3.6V \le V_I, V_O \le 5.5V^{(5)}$		±10	
ΔI_{CC}	Increase in I _{CC} per Input	2.3–3.6	$V_{IH} = V_{CC} - 0.6V$		500	μA

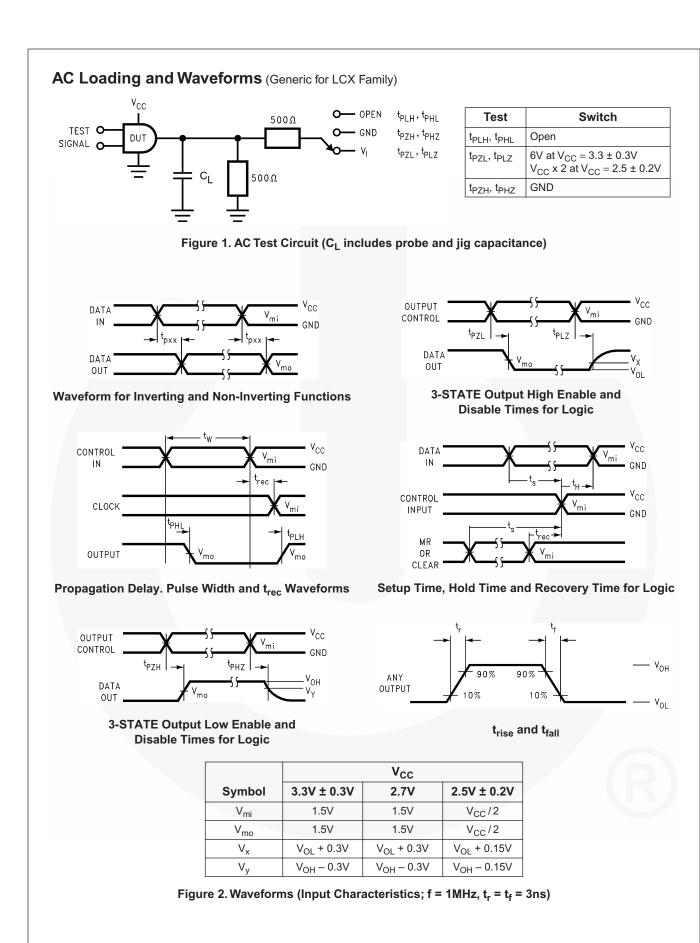
Note:

5. Outputs disabled or 3-STATE only.

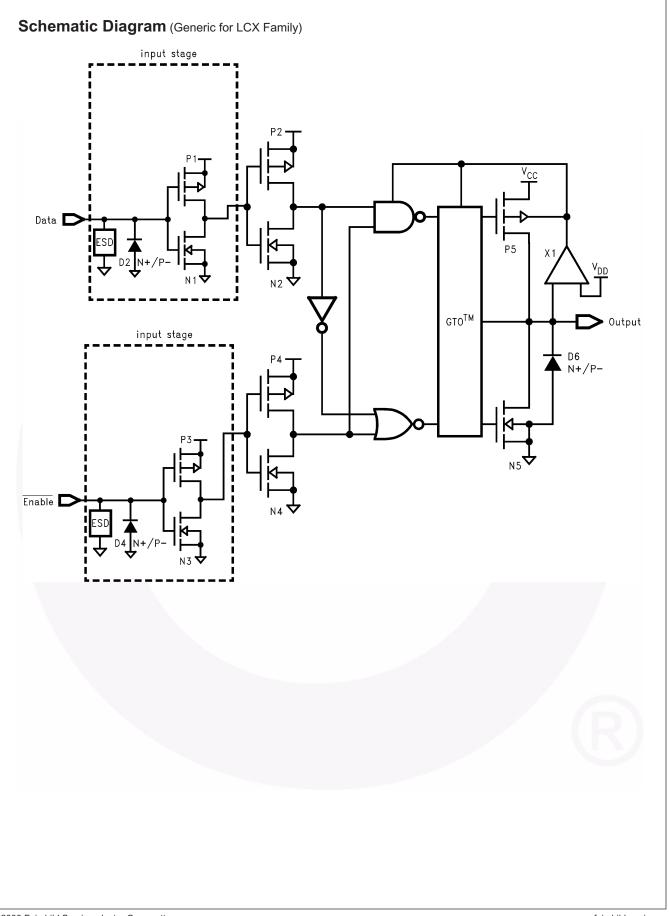
AC Electrical Characteristics

		$T_A = -40^{\circ}$ C to +85°C, $R_L = 500\Omega$						
		$\label{eq:V_CC} \begin{split} V_{CC} &= 3.3V \pm 0.3V, \\ C_L &= 50 \ \text{pF} \end{split}$		$\begin{array}{l} V_{CC}=2.7V,\\ C_L=50~pF \end{array}$		$\label{eq:V_CC} \begin{split} V_{CC} &= 2.5V \pm 0.2V,\\ C_L &= 30 \text{ pF} \end{split}$		
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Units
t _{PHL} , t _{PLH}	Propagation Delay	1.5	5.5	1.5	6.0	1.5	6.6	ns
t _{PZL} , t _{PZH}	Output Enable Time	1.5	6.0	1.5	7.0	1.5	7.8	ns
t _{PLZ} , t _{PHZ}	Output Disable Time	1.5	5.5	1.5	6.5	1.5	6.6	ns
t _{OSHL} , t _{OSLH}	Output to Output Skew ⁽⁶⁾		1.0					ns

Note:


6. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}).

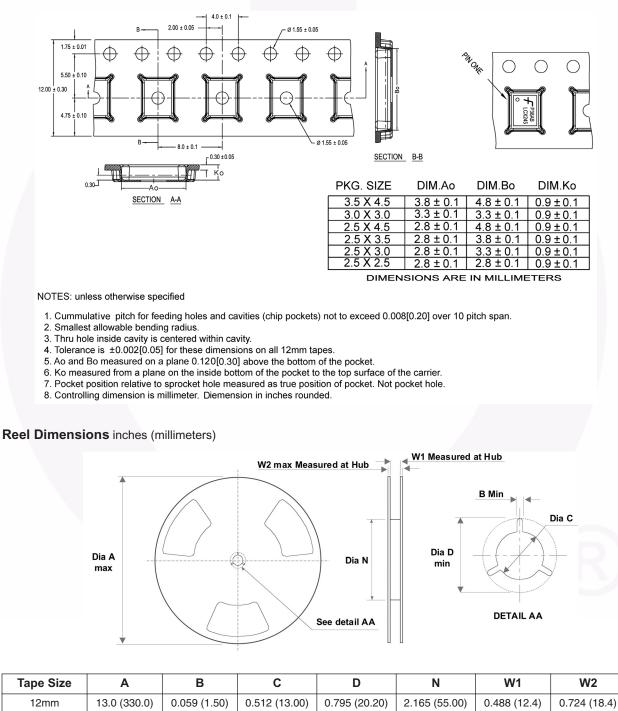
Dynamic Switching Characteristics

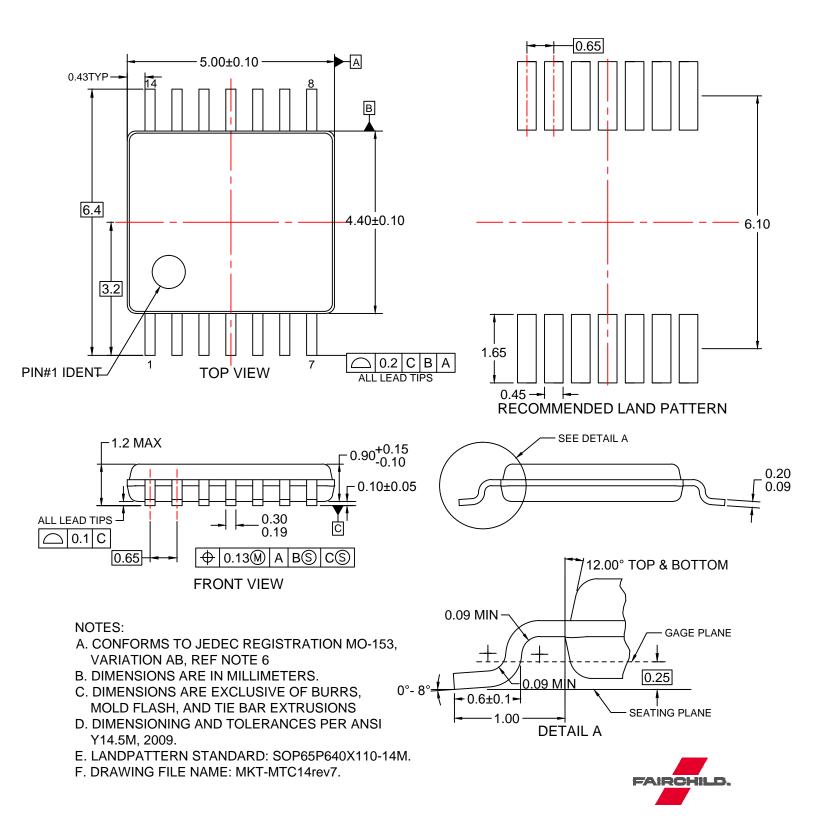

				$T_A = 25^{\circ}C$	
Symbol	Parameter	V _{CC} (V)	Conditions	Typical	Unit
V _{OLP}	Quiet Output Dynamic Peak V _{OL}	3.3	$C_L = 50 pF, V_{IH} = 3.3V, V_{IL} = 0V$	0.8	V
		2.5	$C_L = 30 pF$, $V_{IH} = 2.5 V$, $V_{IL} = 0 V$	0.6	
V _{OLV}	Quiet Output Dynamic Valley V _{OL}	3.3	$C_L = 50 pF, V_{IH} = 3.3V, V_{IL} = 0V$	-0.8	V
		2.5	$C_{L} = 30 pF, V_{IH} = 2.5V, V_{IL} = 0V$	-0.6	

Capacitance

Symbol	Parameter	Conditions	Typical	Units
C _{IN}	Input Capacitance	$V_{CC} = Open, V_I = 0V \text{ or } V_{CC}$	7	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.3$ V, $V_I = 0$ V or V_{CC}	8	pF
C _{PD}	Power Dissipation Capacitance	$V_{CC} = 3.3V$, $V_I = 0V$ or V_{CC} , f = 10MHz	25	pF

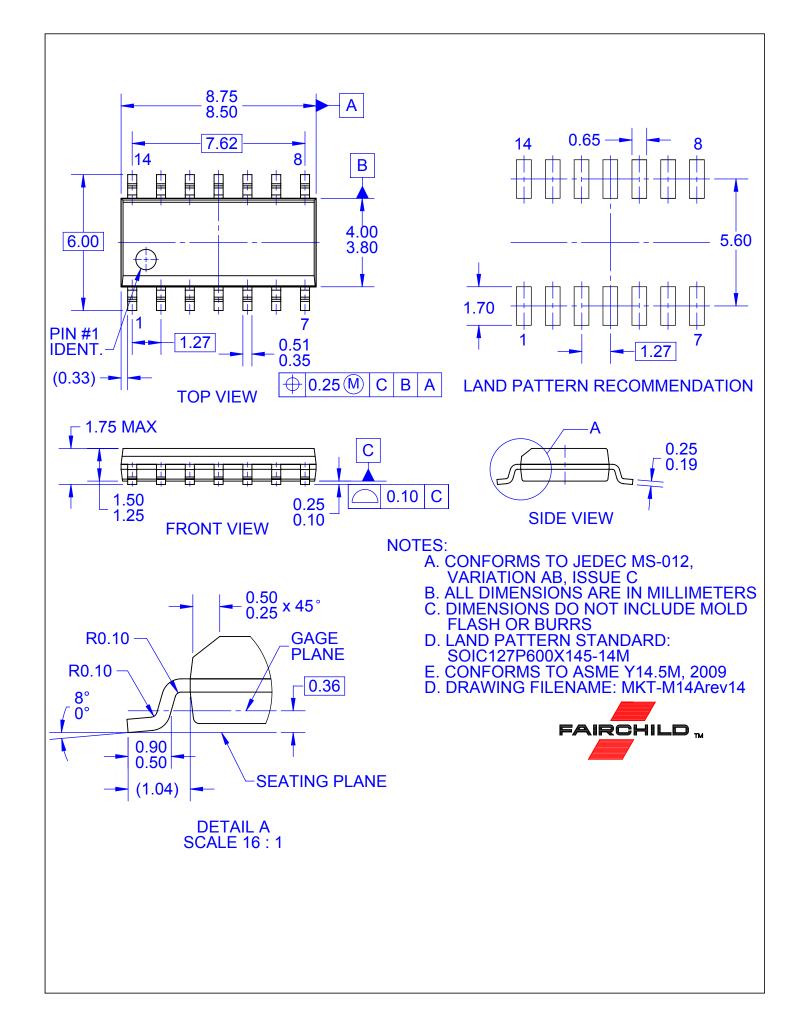
©2000 Fairchild Semiconductor Corporation 74LCX126 Rev. 1.5.1

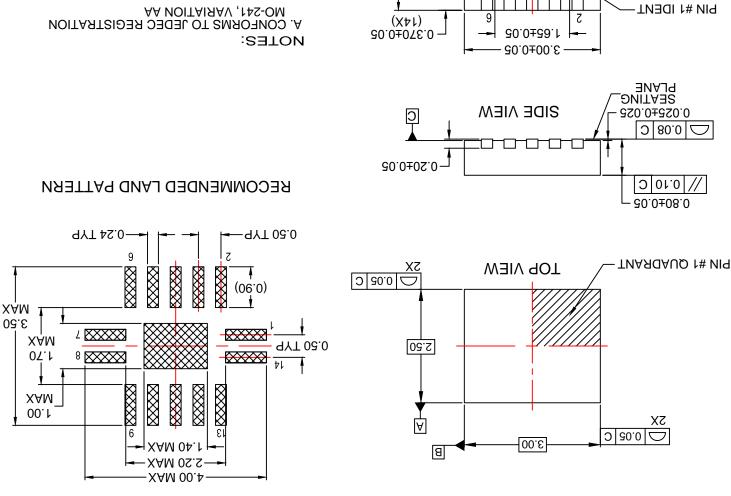

74LCX126 — Low Voltage Quad Buffer with 5V Tolerant Inputs and Outputs


Tape and Reel Specification

Tape Format for DQFN

Package Designator	Tape Section	Number of Cavities	Cavity Status	Cover Tape Status	
BQX	Leader (Start End)	125 (Тур.)	Empty	Sealed	
	Carrier	3000	Filled	Sealed	
	Trailer (Hub End)	75 (Тур.)	Empty	Sealed	


Tape Dimensions inches (millimeters)



Downloaded from Arrow.com.

.rrow.com.

0.10(M) C A B

 \oplus

2.50±0.05

0.25±0.05

30.0±31.1

6

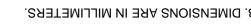
8

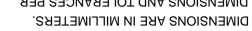
BOTTOM VIEW

2.00

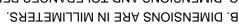
05.0

14


0.50


13

E. DRAWING FILENAME: MKT-MLP14Arev2.


-CHIHOHINA

- EXISTING INDUSTRY LAND PATTERN. D. LAND PATTERN RECOMMENDATION IS
- C. DIMENSIONS AND TOLERANCES PER ASME Y14.5M, 2009.

ON Semiconductor and are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent-Marking.pdf</u>. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor has against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death ass

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative

© Semiconductor Components Industries, LLC

Downloaded from Arrow.com.