

March 1988 Revised November 2005

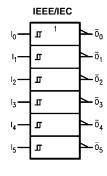
74F14

Hex Inverter Schmitt Trigger

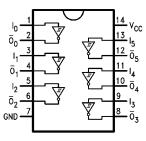
General Description

The 74F14 contains six logic inverters which accept standard TTL input signals and provide standard TTL output levels. They are capable of transforming slowly changing input signals into sharply defined, jitter-free output signals. In addition, they have a greater noise margin than conventional inverters.

Each circuit contains a Schmitt trigger followed by a Darlington level shifter and a phase splitter driving a TTL


totem-pole output. The Schmitt trigger uses positive feed back to effectively speed-up slow input transition, and provide different input threshold voltages for positive and negative-going transitions. This hysteresis between the positive-going and negative-going input thresholds (typically 800 mV) is determined internally by resistor ratios and is essentially insensitive to temperature and supply voltage variations

Ordering Code:


Order Number	Package Number	Package Description
74F14SC	M14A	14-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150" Narrow
74F14SJ	M14D	Pb-Free 14-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F14PC	N14A	14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

Connection Diagram

Unit Loading/Fan Out

Din Names	Description	U.L.	Input I _{IH} /I _{IL}		
rin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
I _n	Input	1.0/1.0	20 μA/-0.6 mA		
\overline{O}_n	Output	50/33.3	-1 mA/20 mA		

Function Table

Input	Output			
А	Ю			
L	Н			
Н	L			

H = HIGH Voltage Level L = LOW Voltage Level

© 2005 Fairchild Semiconductor Corporation

DS009461

www.fairchildsemi.com

Absolute Maximum Ratings(Note 1)

Cto +150°C Conditions

Storage Temperature $-65^{\circ}\text{C} \text{ to } +150^{\circ}\text{C}$

 $\begin{array}{lll} \mbox{Ambient Temperature under Bias} & -55^{\circ}\mbox{C to } +125^{\circ}\mbox{C} \\ \mbox{Junction Temperature under Bias} & -55^{\circ}\mbox{C to } +175^{\circ}\mbox{C} \\ \mbox{V}_{\mbox{CC}} \mbox{ Pin Potential to Ground Pin} & -0.5\mbox{V to } +7.0\mbox{V} \\ \end{array}$

Input Voltage (Note 2) -0.5V to +7.0V Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)

 $\begin{array}{ll} \mbox{Standard Output} & -0.5\mbox{V to V}_{\mbox{CC}} \\ \mbox{3-STATE Output} & -0.5\mbox{V to } +5.5\mbox{V} \end{array}$

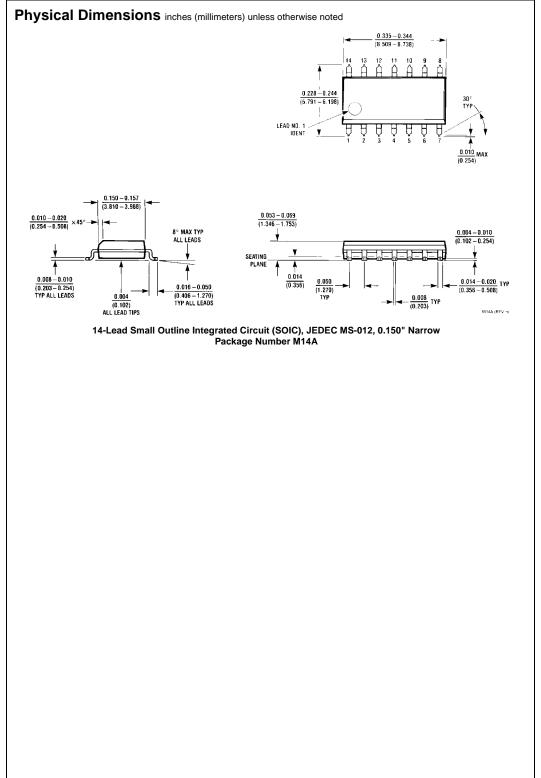
Current Applied to Output

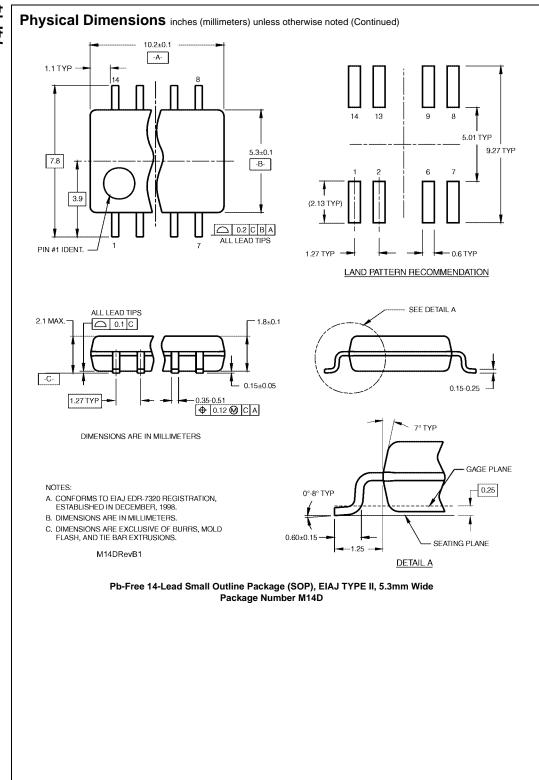
in LOW State (Max) twice the rated I_{OL} (mA) ESD Last Passing Voltage (Min) 4000V

Free Air Ambient Temperature 0°C to +70°C Supply Voltage +4.5V to +5.5V

Recommended Operating

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.


Note 2: Either voltage limit or current limit is sufficient to protect inputs.


DC Electrical Characteristics

Symbol	Parameter	Min	Тур	Max	Units	v _{cc}	Conditions	
V _{T+}	Positive-Going Threshold	1.5	1.7	2.0	V	5.0V		
V _{T-}	Negative-Going Threshold	0.7	0.9	1.1	V	5.0V		
ΔV_{T}	Hysteresis (V _{T+} –V _{T-})	0.4	0.8		V	5.0V		
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH 10% V _{CC} Voltage 5% V _{CC}	2.5 2.7			V	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$	
V _{OL}	Output LOW 10% V _{CC} Voltage			0.5	V	Min	I _{OL} = 20 mA	
I _{IH}	Input HIGH Current			5.0	μА	Max	V _{IN} = 2.7V	
I _{BVI}	Input HIGH Current Breakdown Test			7.0	μА	Max	V _{IN} = 7.0V	
I _{CEX}	Output HIGH Leakage Current			50	μА	Max	V _{OUT} = V _{CC}	
V _{ID}	Input Leakage Test	4.75			V	Max	I _{ID} = 1.9 μA All Other Pins Grounded	
I _{OD}	Output Leakage Circuit Current			3.75	μА	0.0	V _{IOD} = 150 mV All Other Pins Grounded	
I _{IL}	Input LOW Current			-0.6	mA	Max	V _{IN} = 0.5V	
Ios	Output Short-Circuit Current	-60		-150	mA	Max	V _{OUT} = 0V	
I _{CCH}	Power Supply Current			25	mA	Max	V _O = HIGH	
I _{CCL}	Power Supply Current			25	mA	Max	$V_0 = LOW$	

AC Electrical Characteristics

Symbol	Parameter	$T_A = +25$ °C $V_{CC} = +5.0$ V $C_L = 50 \text{ pF}$		$T_A = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$		$T_A = 0$ °C to $+70$ °C $V_{CC} = +5.0V$ $C_L = 50$ pF		Units
		Min	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	4.0	10.5	4.0	13.0	4.0	11.5	ns
t _{PHL}	$I_n \rightarrow \overline{O}_n$	3.5	8.5	3.5	10.0	3.5	9.0	

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 0.740 - 0.770(18.80 - 19.56)0.090 (2.286) 14 13 12 14 13 12 11 10 9 8 0.250 ± 0.010 (6.350 ± 0.254) PIN NO. 1 IDENT PIN NO. 1 IDENT 1 2 3 4 5 6 7 1 2 3 $\frac{0.092}{(2.337)}$ DIA 0.030 MAX (0.762) DEPTH OPTION 1 OPTION 02 $\frac{0.135 \pm 0.005}{(3.429 \pm 0.127)}$ 0.300 - 0.320 $\overline{(7.620 - 8.128)}$ $\frac{0.145 - 0.200}{(3.683 - 5.080)}$ 0.065 0.00 4° TYP Optional (1.651)95° ±5° $\frac{0.008 - 0.016}{(0.203 - 0.406)}$ TYP 0.020 (0.508)0.125 - 0.150 $\overline{(3.175 - 3.810)}$ 0.280 0.014-0.023 TYP (7.112) MIN

14-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N14A

 $\frac{0.050\pm0.010}{(1.270-0.254)}$ TYP

 $\frac{0.100 \pm 0.010}{(2.540 \pm 0.254)} \text{ TYP}$

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

 $0.325 { +0.040 \atop -0.015 \atop -0.015 \atop \hline (8.255 { +1.016 \atop -0.381 \atop }$

www.fairchildsemi.com

N14A (REV F)

ON Semiconductor and in are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. "Typical" parameters which may be provided in ON Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hol

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor 19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81–3–5817–1050 ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative