
5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
n.c.	1	not connected
A	2	data input
GND	3	ground (0 V)
Υ	4	data output
V_{CC}	5	supply voltage

7. Functional description

Table 4. Function table

H = HIGH voltage level; L = LOW voltage level

Input	Output
A	Υ
L	Н
H	L

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134).

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+7.0	V
I _{IK}	input clamping current	$V_{I} < -0.5 \text{ V}$	-20	-	mA
VI	input voltage		<u>[1]</u> –0.5	+7.0	V
lok	output clamping current	$V_O < -0.5 \text{ V or } V_O > V_{CC} + 0.5 \text{ V}$	-	±20	mA
lo	output current	$-0.5 \text{ V} < \text{V}_{\text{O}} < \text{V}_{\text{CC}} + 0.5 \text{ V}$	-	±25	mA
I _{CC}	supply current		-	75	mA
I_{GND}	ground current		-75	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C}$ to +125 $^{\circ}\text{C}$	[2] -	250	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage		2.0	5.0	5.5	V
VI	input voltage		0	-	5.5	V
Vo	output voltage		0	-	V_{CC}	V
T _{amb}	ambient temperature		-40	+25	+125	°C
$\Delta t/\Delta V$	input transition rise and fall rate	V_{CC} = 3.3 V \pm 0.3 V	-	-	100	ns/V
		V_{CC} = 5.0 V ± 0.5 V	-	-	20	ns/V

10. Static characteristics

 Table 7.
 Static characteristics

Voltages are referenced to GND (ground = 0 V).

Symbol Parameter		Conditions	25 °C		-40 °C to +85 °C		-40 °C to +125 °C		Unit	
			Min	Тур	Max	Min	Max	Min	Max	
V_{IH}	HIGH-level	V _{CC} = 2.0 V	1.7	-	-	1.7	-	1.7	-	V
	input voltage	V _{CC} = 3.0 V	2.4	-	-	2.4	-	2.4	-	V
		$V_{CC} = 5.5 \text{ V}$	4.4	-	-	4.4	-	4.4	-	V
V_{IL}	LOW-level	$V_{CC} = 2.0V$	-	-	0.3	-	0.3	-	0.3	V
input voltag	input voltage	$V_{CC} = 3.0 \text{ V}$	-	-	0.6	-	0.6	-	0.6	V
		$V_{CC} = 5.5 \text{ V}$	-	-	1.1	-	1.1	-	1.1	V

^[2] For both TSSOP5 and SC-74A packages: above 87.5 °C the value of Ptot derates linearly with 4.0 mW/K.

Table 7. Static characteristics ...continued Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		25 °C		-40 °C 1	to +85 °C	-40 °C t	o +125 °C	Unit
			Min	Тур	Max	Min	Max	Min	Max	
V _{OH} HIC	HIGH-level	$V_I = V_{IH}$ or V_{IL}						'		
	output voltage	$I_{O} = -50 \mu A; V_{CC} = 2.0 V$	1.9	2.0	-	1.9	-	1.9	-	V
		$I_O = -50 \mu A; V_{CC} = 3.0 \text{ V}$	2.9	3.0	-	2.9	-	2.9	-	V
		$I_O = -50 \mu A; V_{CC} = 4.5 V$	4.4	4.5	-	4.4	-	4.4	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.58	-	-	2.48	-	2.40	-	V
		$I_{O} = -8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.94	-	-	3.8	-	3.70	-	V
V_{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}								
	output voltage	$I_O = 50 \mu A; V_{CC} = 2.0 \text{ V}$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 50 \mu A; V_{CC} = 3.0 \text{ V}$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 50 \mu A$; $V_{CC} = 4.5 \text{ V}$	-	0	0.1	-	0.1	-	0.1	V
		$I_O = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.36	-	0.44	-	0.55	V
		$I_{O} = 8.0 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.36	-	0.44	-	0.55	V
II	input leakage current	$V_I = 5.5 \text{ V or GND};$ $V_{CC} = 0 \text{ V to } 5.5 \text{ V}$	-	-	0.1	-	1.0	-	2.0	μΑ
I _{CC}	supply current	$V_I = V_{CC}$ or GND; $I_O = 0$ A; $V_{CC} = 5.5 \text{ V}$	-	-	1.0	-	10	-	40	μΑ
C _I	input capacitance		-	1.5	10	-	10	-	10	pF

11. Dynamic characteristics

Table 8. Dynamic characteristics

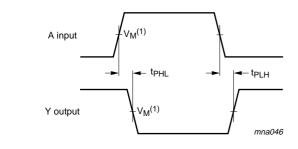
 $GND = 0 \ V$; $t_f = t_f = \le 3.0 \ \text{ns.}$ For test circuit see Figure 6.

Symbol	Parameter	Conditions		25 °C		-40 °C to +85 °C		-40 °C to +125 °C		Unit	
				Min	Тур	Max	Min	Max	Min	Max	
	propagation	A to Y; see Figure 5	<u>[1]</u>								
	delay	$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	[2]								
		C _L = 15 pF		-	3.4	7.1	1.0	8.5	1.0	10.0	ns
		$C_L = 50 pF$		-	4.9	10.6	1.0	12.0	1.0	13.5	ns
		$V_{CC} = 4.5 \text{ V to } 5.5 \text{ V}$	[3]								
		C _L = 15 pF		-	2.6	5.5	1.0	6.0	1.0	7.0	ns
		$C_L = 50 pF$		-	3.6	7.0	1.0	8.0	1.0	9.0	ns
C _{PD}	power dissipation capacitance	per buffer; $V_I = GND \text{ to } V_{CC}$	<u>[4]</u>	-	14	-	-	-	-	-	pF

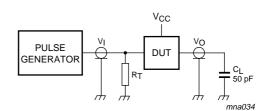
^[1] t_{pd} is the same as t_{PLH} and t_{PHL} .

^[2] Typical values are measured at $V_{CC} = 3.3 \text{ V}$.

^[3] Typical values are measured at V_{CC} = 5.0 V.


^[4] C_{PD} is used to determine the dynamic power dissipation P_D (μ W). $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o) \text{ where:}$ $f_i = \text{input frequency in MHz;}$

 f_o = output frequency in MHz;


C_L = output load capacitance in pF;

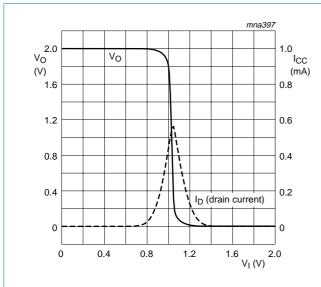
 V_{CC} = supply voltage in Volts.

12. Waveforms

 $V_M = 0.5 \times V_{CC}$; $V_I = GND$ to V_{CC} .

Test data is given in Table 8.

Definitions for test circuit:


 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to output impedance Z_0 of the pulse generator.

Fig 5. The input (A) to output (Y) propagation delay times

Fig 6. Load circuitry for switching times

13. Typical transfer characteristics

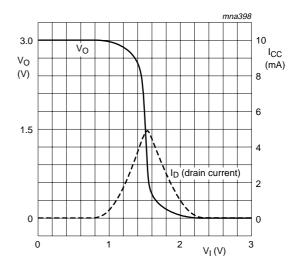
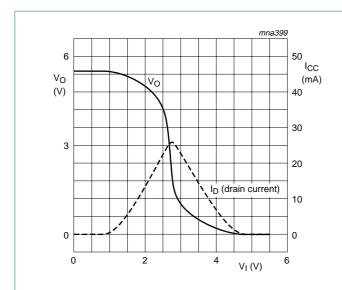



Fig 8. $V_{CC} = 3.0 \text{ V}; I_O = 0 \text{ A}$

6 of 12

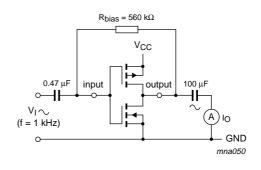


Fig 9. $V_{CC} = 5.5 \text{ V}$; $I_O = 0 \text{ A}$

Fig 10. Test set-up for measuring forward transconductance $g_{fs} = \Delta I_O / \Delta V_I$ at V_O is constant

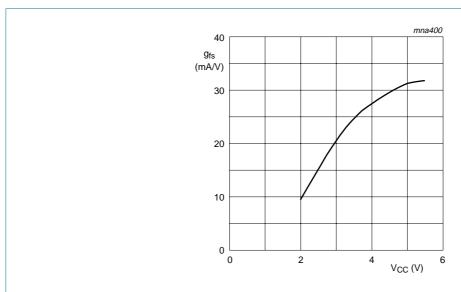
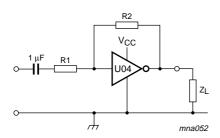


Fig 11. Typical forward transconductance g_{fs} as a function of the supply voltage at T_{amb} = 25 °C

14. Application information


Some applications are:

- Linear amplifier (see Figure 12)
- In crystal oscillator design (see Figure 13)

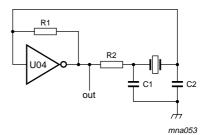
Remark: All values given are typical unless otherwise specified.

74AHC1GU04_5 © Nexperia B.V. 2017. All rights reserved Rev. 05 — 10 July 2007

Product data sheet

Maximum $V_{o(p\text{-}p)}$ = $V_{CC}-1.5$ V centered at $0.5\times V_{CC}.$

$$G_v = -\frac{G_{ol}}{I + \frac{RI}{R2}(I + G_{ol})}$$


 G_{ol} = open loop gain

G_v = voltage gain

 $R1 \ge 3 \text{ k}\Omega, R2 \le 1 \text{ M}\Omega$

 $Z_L > 10 \text{ k}\Omega; G_{ol} = 20 \text{ (typ.)}$

Typical unity gain bandwidth product is 5 MHz.

C1 = 47 pF (typ.)

C2 = 22 pF (typ.)

R1 = 1 M Ω to 10 M Ω (typ.)

R2 optimum value depends on the frequency and required stability against changes in V_{CC} or average minimum I_{CC} (I_{CC} is typically 2 mA at V_{CC} = 3 V and f = 1 MHz).

Fig 12. Used as a linear amplifier

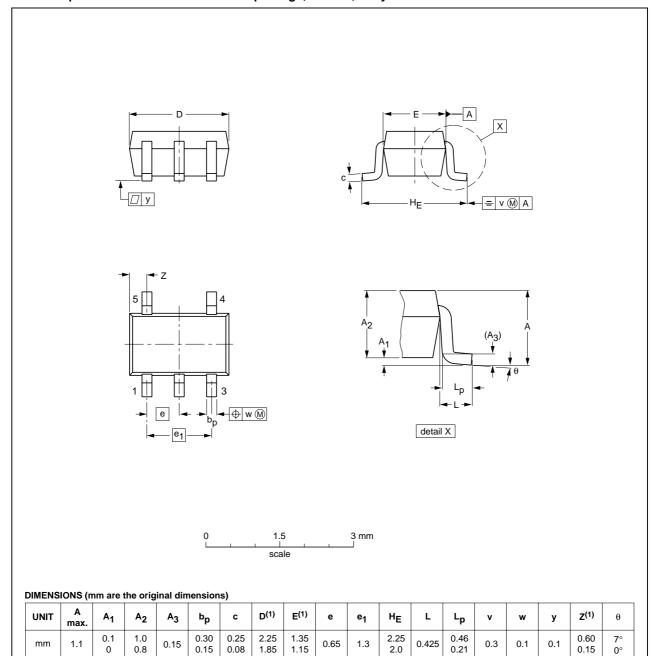
Fig 13. Crystal oscillator configuration

Table 9. External components for resonator (f < 1 MHz)

All values given are typical and must be used as an initial set-up.

Frequency	R1	R2	C1	C2
10 kHz to 15.9 kHz	22 M Ω	220 kΩ	56 pF	20 pF
16 kHz to 24.9 kHz	22 MΩ	220 kΩ	56 pF	10 pF
25 kHz to 54.9 kHz	22 MΩ	100 kΩ	56 pF	10 pF
55 kHz to 129.9 kHz	22 MΩ	100 kΩ	47 pF	5 pF
130 kHz to 199.9 kHz	22 MΩ	47 kΩ	47 pF	5 pF
200 kHz to 349.9 kHz	22 MΩ	47 kΩ	47 pF	5 pF
350 kHz to 600 kHz	22 MΩ	47 kΩ	47 pF	5 pF

Table 10. Optimum value for R2


Frequency	R2	Optimum for
3 kHz	$2.0~\text{k}\Omega$	minimum required I _{CC}
	$8.0~\mathrm{k}\Omega$	minimum influence due to change in V _{CC}
6 kHz	1.0 kΩ	minimum required I _{CC}
	$4.7~\mathrm{k}\Omega$	minimum influence by V _{CC}
10 kHz	$0.5~\mathrm{k}\Omega$	minimum required I _{CC}
	$2.0~\text{k}\Omega$	minimum influence by V _{CC}
14 kHz	$0.5~\mathrm{k}\Omega$	minimum required I _{CC}
	$1.0~\mathrm{k}\Omega$	minimum influence by V _{CC}
>14 kHz	-	replace R2 by C3 with a typical value of 35 pF

8 of 12

15. Package outline

TSSOP5: plastic thin shrink small outline package; 5 leads; body width 1.25 mm

SOT353-1

Product data sheet

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.

OUTLINE		REFER	REFERENCES		EUROPEAN	ISSUE DATE
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT353-1		MO-203	SC-88A			-00-09-01 03-02-19

Fig 14. Package outline SOT353-1 (TSSOP5)

74AHC1GU04_5 © Nexperia B.V. 2017. All rights reserved Rev. 05 — 10 July 2007

Plastic surface-mounted package; 5 leads

SOT753

9 of 12

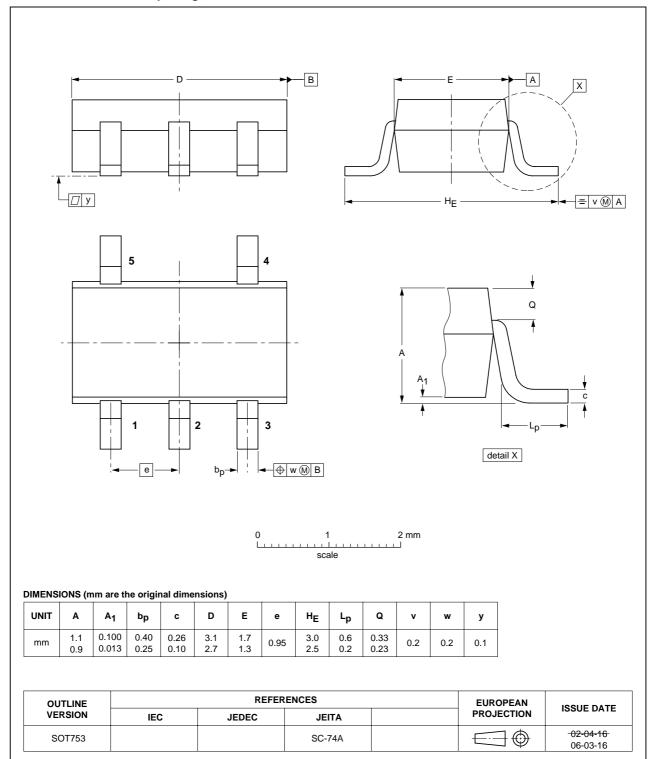


Fig 15. Package outline SOT753 (SC-74A)

74AHC1GU04_5 © Nexperia B.V. 2017. All rights reserved Rev. 05 — 10 July 2007

Product data sheet

16. Abbreviations

Table 11. Abbreviations

Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model

17. Revision history

Table 12. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes				
74AHC1GU04_5	20070710	Product data sheet	-	74AHC1GU04_4				
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 							
	 Legal texts 	have been adapted to the n	ew company name whe	ere appropriate.				
	 Package S 	OT353 changed to SOT353-	-1 in Section 3 and Sec	tion 15.				
	 Quick refer 	ence data and Soldering se	ctions removed.					
74AHC1GU04_4	20020528	Product specification	-	74AHC1GU04_3				
74AHC1GU04_3	20020215	Product specification	-	74AHC1GU04_2				
74AHC1GU04_2	20010427	Product specification	-	74AHC1GU04_1				
74AHC1GU04_1	19990519	Product specification	-	-				

18. Legal information

18.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nexperia.com.

18.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. Nexperia does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local Nexperia sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

18.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, Nexperia does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — Nexperia reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — Nexperia products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a Nexperia product can reasonably be expected to result in personal injury, death or severe property or environmental damage. Nexperia accepts no liability for inclusion and/or use of Nexperia products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. Nexperia makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — Nexperia products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nexperia.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by Nexperia. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

18.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

19. Contact information

For additional information, please visit: http://www.nexperia.com

For sales office addresses, send an email to: salesaddresses@nexperia.com

20. Contents

1	General description
2	Features
3	Ordering information
4	Marking 1
5	Functional diagram
6	Pinning information
6.1	Pinning
6.2	Pin description
7	Functional description
8	Limiting values 3
9	Recommended operating conditions 3
10	Static characteristics 3
11	Dynamic characteristics
12	Waveforms
13	Typical transfer characteristics 5
14	Application information 6
15	Package outline 8
16	Abbreviations
17	Revision history
18	Legal information
18.1	Data sheet status
18.2	Definitions
18.3	Disclaimers
18.4	Trademarks11
19	Contact information
20	Contents

For more information, please visit: http://www.nexperia.com For sales office addresses, please send an email to: salesaddresses@nexperia.com Date of release: 10 July 2007