VN10K

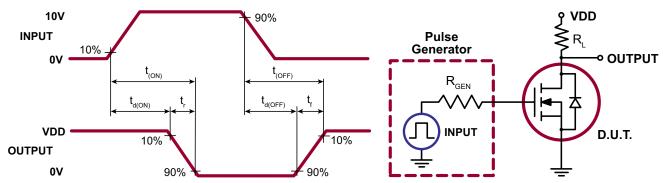
Thermal Characteristics

Package	Ι _D (continuous) [†]	Ι _D (pulsed)	Power Dissipation @T _c = 25°C	l _{DR} [†]	I DRM
TO-92	310mA	1.0A	1.0W	310mA	1.0A

Notes:

† I_{p} (continuous) is limited by max rated T_{i} . (VN0106N3 can be used if an I_{p} (continuous) of 500mA is needed.)

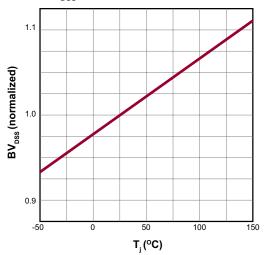
Electrical Characteristics (*T_A* = 25°C unless otherwise specified)

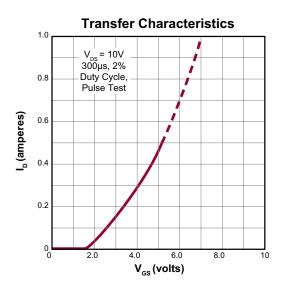

Sym	Parameter	Min	Тур	Max	Units	Conditions	
BV _{DSS}	Drain-to-source breakdown voltage	60	-	-	V	V _{GS} = 0V, I _D = 100µA	
V _{GS(th)}	Gate threshold voltage	0.8	-	2.5	V	$V_{GS} = V_{DS}, I_{D} = 1.0 \text{mA}$	
$\Delta V_{GS(th)}$	Change in $V_{GS(th)}$ with temperature	-	-3.8	-	mV/ºC	$V_{GS} = V_{DS}, I_{D} = 1.0 \text{mA}$	
I _{GSS}	Gate body leakage	-	-	100	nA	V _{GS} = 15V, V _{DS} = 0V	
	Zero gate voltage drain current		-	10		$V_{GS} = 0V, V_{DS} = 45V$	
I _{DSS}			-	500	μA	$V_{GS} = 0V, V_{DS} = 45V, T_{A} = 125^{\circ}C$	
I _{D(ON)}	On-state drain current	0.75	-	-	A	V _{GS} = 10V, V _{DS} = 10V	
	Statia drain to acurac an atota registeres	-	-	7.5	Ω	V _{GS} = 5.0V, I _D = 200mA	
R _{DS(ON)}	Static drain-to-source on-state resistance	-	-	5.0		V _{GS} = 10V, I _D = 500mA	
$\Delta R_{DS(ON)}$	Change in $R_{DS(ON)}$ with temperature	-	0.7	-	%/°C	V _{GS} = 10V, I _D = 500mA	
G _{FS}	Forward transductance	100	-	-	mmho	$V_{\rm DS}$ = 10V, $I_{\rm D}$ = 500mA	
C _{ISS}	Input capacitance	-	48	60		V _{GS} = 0V, V _{DS} = 25V, f = 1.0MHz	
C _{oss}	Common source output capacitance	-	16	25	pF		
C _{RSS}	Reverse transfer capacitance	-	2.0	5.0			
t _(ON)	Turn-on time	-	-	10	ns	$V_{DD} = 15V,$ $I_{D} = 600mA,$	
t _(OFF)	Turn-off time	-	-	10	113	$R_{gen} = 25\Omega$	
V _{SD}	Diode forward voltage drop	-	0.8	-	V	V _{GS} = 0V, I _{SD} = 500mA	
t _{rr}	Reverse recovery time	-	160	-	ns	V _{GS} = 0V, I _{SD} = 500mA	

Notes:

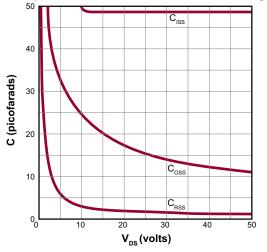
1. All D.C. parameters 100% tested at 25°C unless otherwise stated. (Pulse test: 300µs pulse, 2% duty cycle.)

2. All A.C. parameters sample tested.

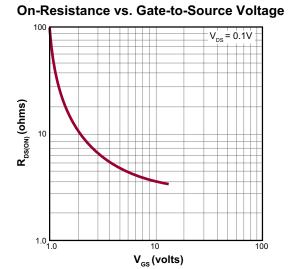

Switching Waveforms and Test Circuit

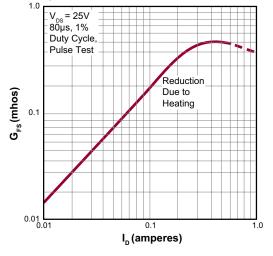


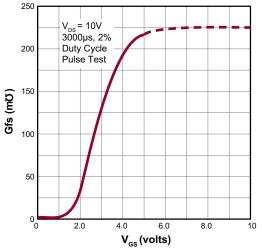
VN10K


Typical Performance Curves

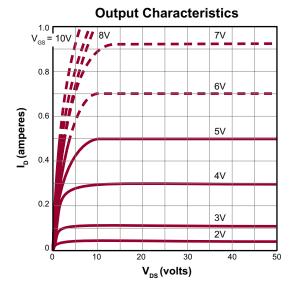
BV_{DSS} Variation with Temperature

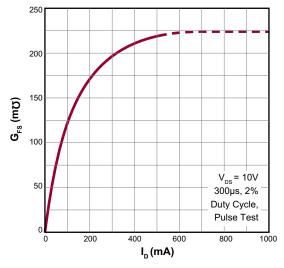


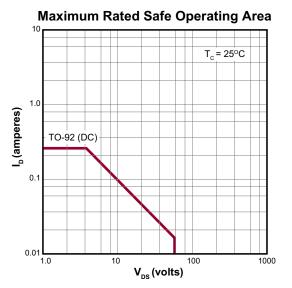

Capacitance vs. Drain-to-Source Voltage

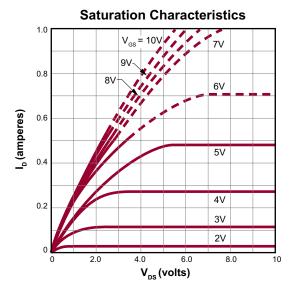

Doc.# DSFP-VN10K B031411

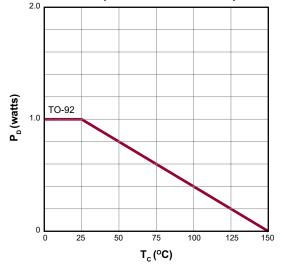
Output Conductance vs Drain Current

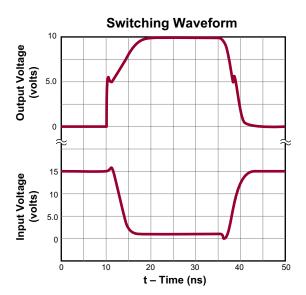


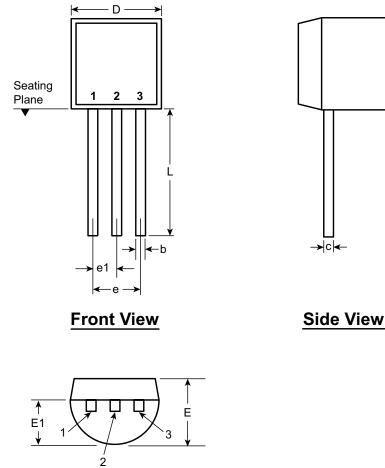



VN10K


Typical Performance Curves (cont.)


Transconductance vs. Drain Current




Power Dissipation vs. Case Temperature

Doc.# DSFP-VN10K B031411

3-Lead TO-92 Package Outline (N3)

Bottom View

Symb	ol	Α	b	С	D	E	E1	е	e1	L
Dimensions (inches)	MIN	.170	.014†	.014†	.175	.125	.080	.095	.045	.500
	NOM	-	-	-	-	-	-	-	-	-
	MAX	.210	.022†	.022†	.205	.165	.105	.105	.055	.610*

JEDEC Registration TO-92.

* This dimension is not specified in the JEDEC drawing.

† This dimension differs from the JEDEC drawing.

Drawings not to scale.

Supertex Doc.#: DSPD-3TO92N3, Version E041009.

(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information go to <u>http://www.supertex.com/packaging.html</u>.)

Supertex inc. does not recommend the use of its products in life support applications, and will not knowingly sell them for use in such applications unless it receives an adequate "product liability indemnification insurance agreement." **Supertex inc.** does not assume responsibility for use of devices described, and limits its liability to the replacement of the devices determined defective due to workmanship. No responsibility is assumed for possible omissions and inaccuracies. Circuitry and specifications are subject to change without notice. For the latest product specifications refer to the **Supertex inc.** (website: http://www.supertex.com)

©2013 Supertex inc. All rights reserved. Unauthorized use or reproduction is prohibited.