

FUNCTIONAL BLOCKS

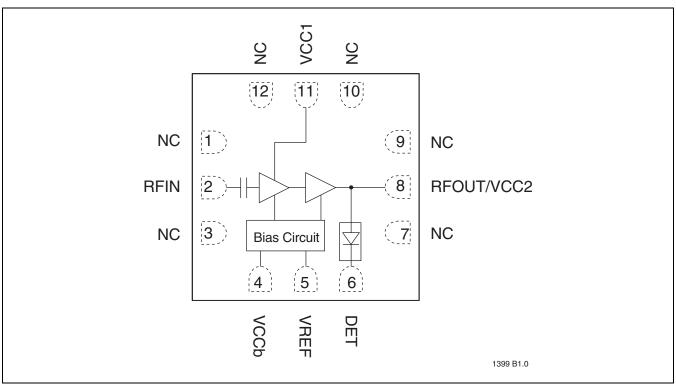


FIGURE 1: Functional Block Diagram 12-Contact XQFN (QXB)

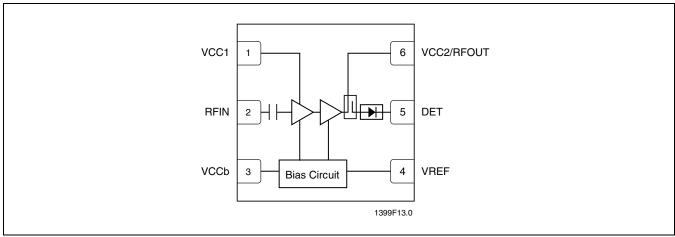


FIGURE 2: Functional Block Diagram 6-Contact XSON (QX6)

PIN ASSIGNMENTS

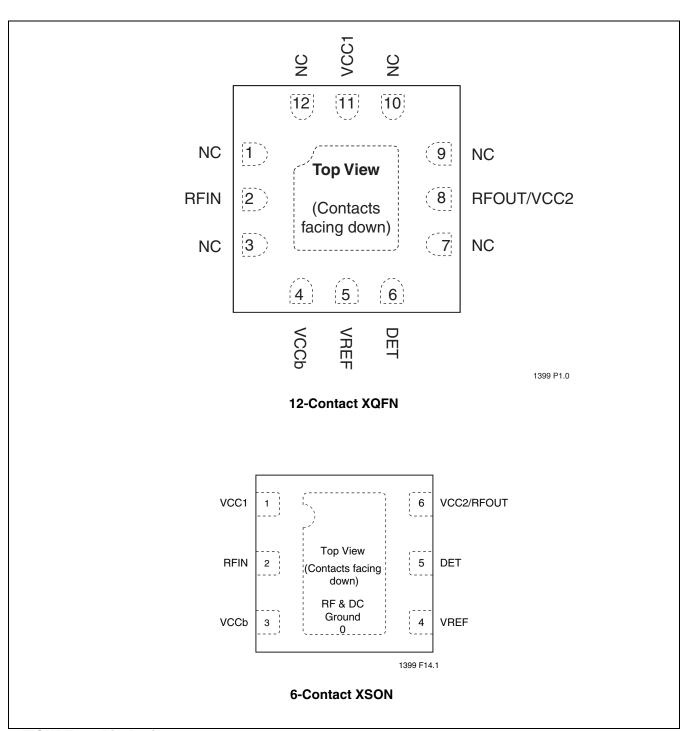


FIGURE 3: Pin Assignments

Preliminary Specifications

PIN DESCRIPTIONS

TABLE 1: Pin Description for12-Contact XQFN (QXB)

Symbol	Pin No.	Pin Name	Type ¹	Function
GND	0	Ground		Low-inductance GND pad
NC	1	No Connection		Unconnected pin
RFIN	2		I	RF input, DC decoupled
NC	3	No Connection		Unconnected pin
VCCb	4	Power Supply	PWR	Supply voltage for bias circuit
VREF	5		PWR	1 st and 2 nd stage idle current control
DET	6		0	On-chip power detector
NC	7	No Connection		Unconnected pin
VCC2/RFOUT	8	Power Supply	PWR/O	Power Supply, 2 nd stage / RF output
NC	9	No Connection		Unconnected pin
NC	10	No Connection		Unconnected pin
VCC1	11	Power Supply	PWR	Power supply, 1 st stage
NC	12	No Connection		Unconnected pin

T1.0 1399

TABLE 2: Pin Description, 6-contact XSON (QX6)

Symbol	Pin No.	Pin Name	Type ¹	Function
GND	0	Ground		Low inductance GND pad
V _{CC1}	1	Power Supply	PWR	Power supply, 1 st stage
RF _{IN}	2		I	RF input, DC decoupled
V _{CCb}	3	Power Supply	PWR	Supply voltage for bias circuit
VREF	4		PWR	1 st and 2 nd stage idle current control
Det	5		0	On-chip power detector
V _{CC2} / RFOUT	6	Power Supply	PWR/O	Power supply, 2 nd stage/ RF Output

T2.0 1399

1. I=Input, O=Output

^{1.} I=Input, O=Output

Preliminary Specifications

ELECTRICAL SPECIFICATIONS

The AC and DC specifications for the power amplifier interface signals. Refer to Table 3 for the DC voltage and current specifications. Refer to Figures 4 through 11 for the RF performance.

Absolute Maximum Stress Ratings (Applied conditions greater than those listed under "Absolute Maximum Stress Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these conditions or conditions greater than those defined in the operational sections of this data sheet is not implied. Exposure to absolute maximum stress rating conditions may affect device reliability.)

Input power to pin 2 (P _{IN})	+5 dBm
Average output power (P _{OUT}) ¹	+26 dBm
Supply Voltage at pins 4, 8, and 11 (V _{CC}) for 12-contact XQFN	0.3V to +4.0V
Supply Voltage at pins 1, 3, and 6 (V _{CC}) for 6-contact XSON	0.3V to +4.0V
Reference voltage to pin 5 (V _{REF}) or 12-contact XQFN	0.3V to +3.3V
Reference voltage to pin 4 (V _{REF}) for 6-contact XSON	0.3V to +3.3V
DC supply current (I _{CC}) ²	400 mA
Operating Temperature (T _A)	40°C to +85°C
Storage Temperature (T _{STG})	40°C to +120°C
Maximum Junction Temperature (T _J)	+150°C
Surface Mount Solder Reflow Temperature	

^{1.} Never measure with CW source. Pulsed single-tone source with <50% duty cycle is recommended. Exceeding the maximum ratio of average output power could cause permanent damage to the device.

Operating Range

Range	Ambient Temp	v_{cc}		
Industrial	-40°C to +85°C	3.3V		

^{2.} Measured with 100% duty cycle 54 Mbps 802.11g OFDM Signal

Preliminary Specifications

TABLE 3: DC Electrical Characteristics at 25°C

Symbol	Parameter	Min.	Тур	Max.	Unit	Test Conditions
V _{CC}	Supply Voltage at pins 4, 8, 11 for 12-contact XQFN	3.0	3.3	3.6	V	Figure 12
	Supply Voltage at pins 1, 3, 6 for 6-contact XSON	3.0	3.3	3.6	V	Figures 13 and 14
Ica	Idle current for 802.11g to meet EVM ~3% @ 20 dBm for 12-contact XQFN		85		mA	Figure 12
	Idle current for 802.11g to meet EVM ~3% @ 20 dBm for 6-contact XSON		65		mA	Figure 13
	Idle current for 802.11g to meet EVM ~3% @ 18 dBm for 6-contact XSON		48		mA	Figure 14
I _{CC} (802.11g)	Current consumption for 802.11g to meet EVM ~3% @ 20 dBm for 12-contact XQFN		148		mA	Figure 12
	Current consumption for 802.11g to meet EVM ~3% @ 20 dBm for 6-contact XSON		140		mA	Figure 13
	Current Consumption for 802.11g to meet EVM ~3% @ 18 dBm for 6-contact XSON		95		mA	Figure 14
	Current consumption for 802.11b/g, 23.5 dBm for 12-contact XQFN		200		mA	Figure 12
I _{CC} (802.11b/g)	Current consumption for 802.11b/g, 23.5 dBm for 6-contact XSON		200		mA	Figure 13
	Current Consumption for 802.11b/g, 22 dBm for 6-contact XSON		140		mA	Figure 14
V _{REG}	Reference Voltage for 12-contact XQFN with 75Ω resistor	2.75	2.85	2.95	V	Figure 12
	Reference Voltage for 6-contact XSON with 180Ω resistor	2.75	2.85	2.95	V	Figure 13
	Reference Voltage for 6-contact XSON with 390Ω resistor	2.75	2.85	2.95	V	Figure 14

T3.2 1399

TABLE 4: AC Electrical Characteristics for Configuration at 25°C

Symbol	Parameter	Min.	Тур	Max.	Unit
F _{L-U}	Frequency range	2412		2484	MHz
G	Small signal gain	29	30		dB
G _{VAR1}	Gain variation over band (2412–2484 MHz)			±0.5	dB
G _{VAR2}	Gain ripple over channel (20 MHz)		0.2		dB
ACPR	Meet 11b spectrum mask	23			dBm
	Meet 11g OFDM 54 Mbps spectrum mask	23			dBm
Added EVM	@ 20 dBm output with 11g OFDM 54 Mbps signal		3		%
2f, 3f, 4f, 5f	Harmonics at 22 dBm, without external filters			-40	dBc

T4.2 1399

TYPICAL PERFORMANCE CHARACTERISTICS Test Conditions: $V_{CC} = 3.3V$, $T_A = 25$ °C, unless otherwise specified

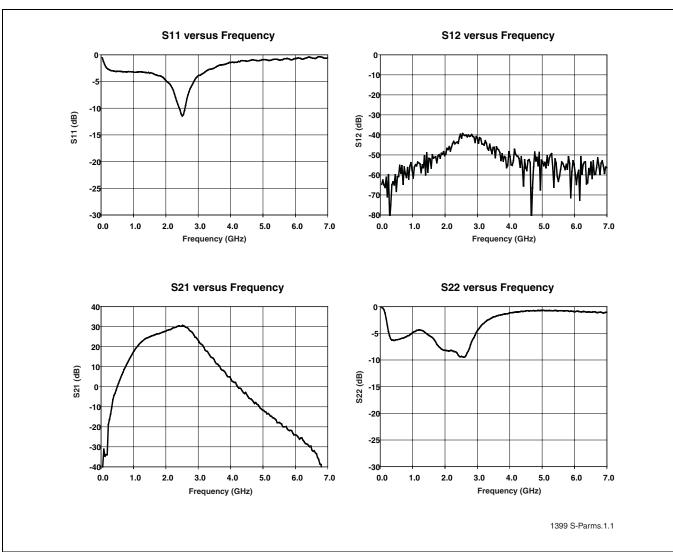


FIGURE 4: S-Parameters

TYPICAL PERFORMANCE CHARACTERISTICS

Test Conditions: $V_{CC} = 3.3V$, $T_A = 25^{\circ}C$, 54 Mbps 802.11g OFDM Signal

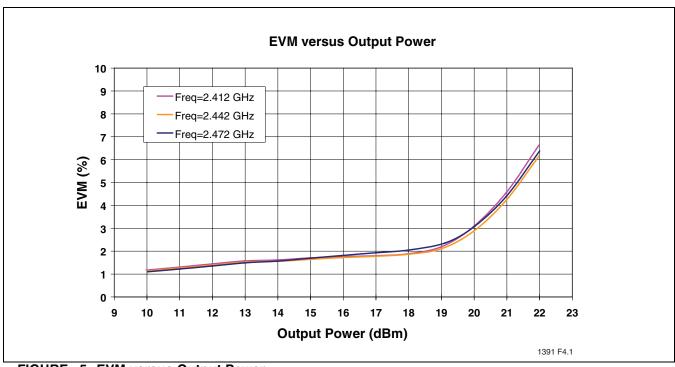


FIGURE 5: EVM versus Output Power

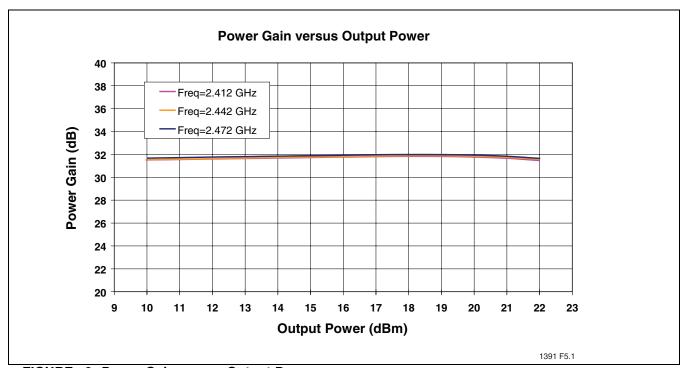


FIGURE 6: Power Gain versus Output Power

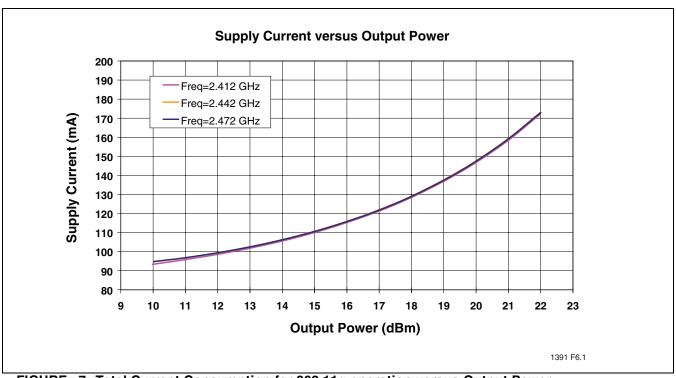


FIGURE 7: Total Current Consumption for 802.11g operation versus Output Power

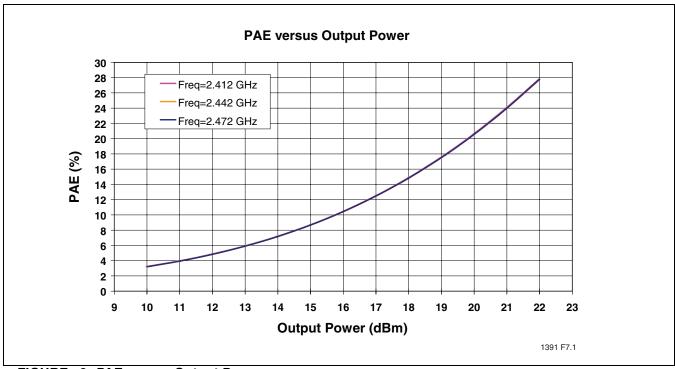


FIGURE 8: PAE versus Output Power

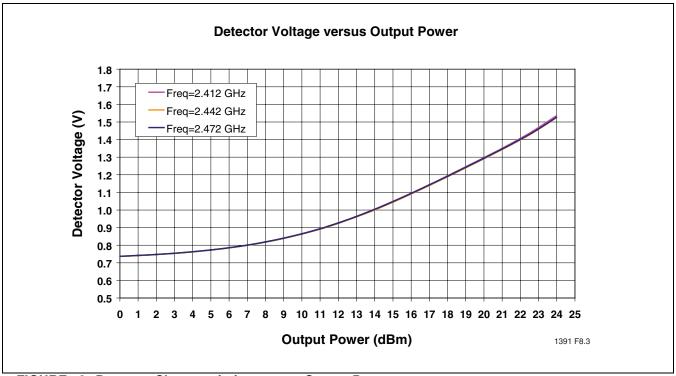


FIGURE 9: Detector Characteristics versus Output Power

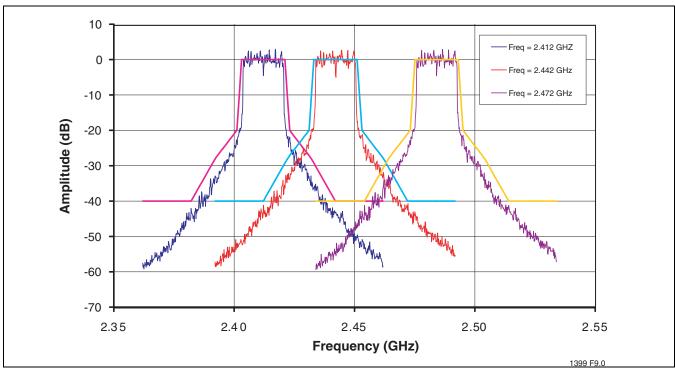


FIGURE 10: 802.11g Spectrum Mask at 23.5 dBm, Total Current 200 mA

TYPICAL PERFORMANCE CHARACTERISTICS Test Conditions: $V_{CC} = 3.3V$, $T_A = 25^{\circ}C$, 1 Mbps 802.11b CCK Signal

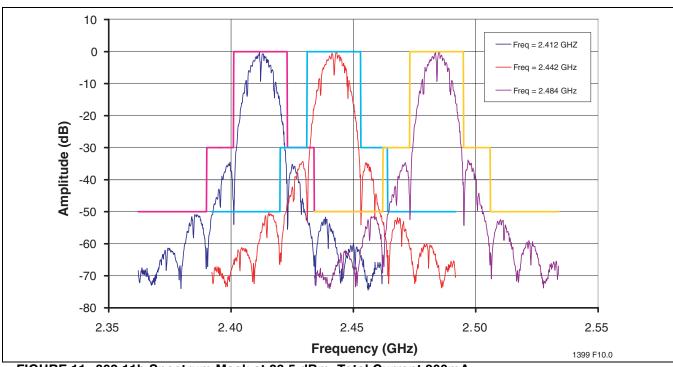


FIGURE 11: 802.11b Spectrum Mask at 23.5 dBm, Total Current 200mA

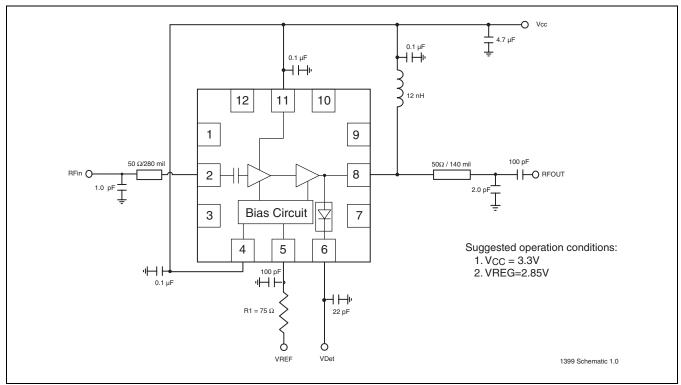


FIGURE 12: Typical Schematic for 12-Contact XQFN (QXB) for High-Power Applications

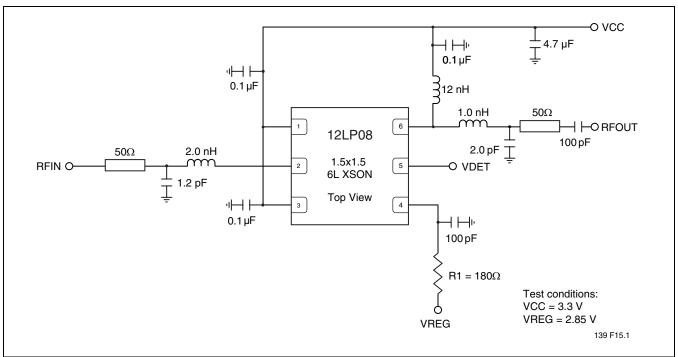


FIGURE 13: Typical Schematic for 6-Contact XSON (QX6) for High-Power Applications

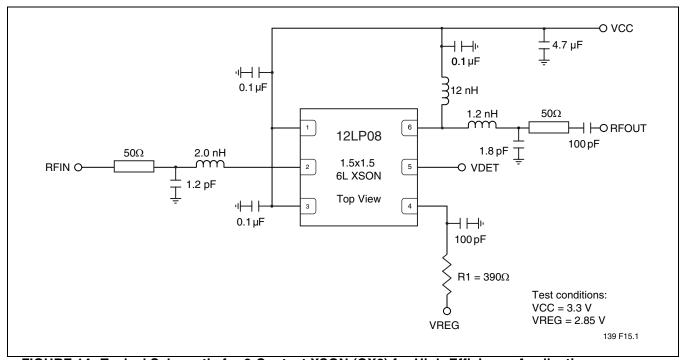
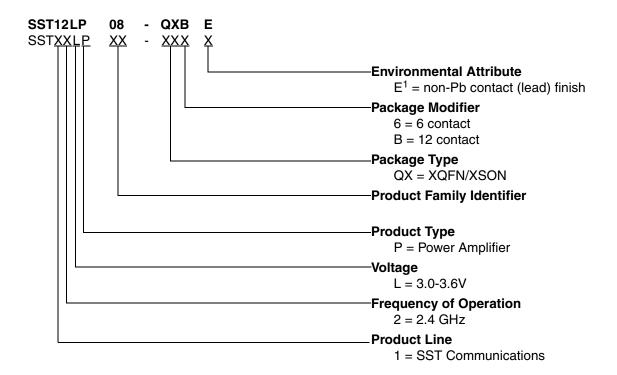



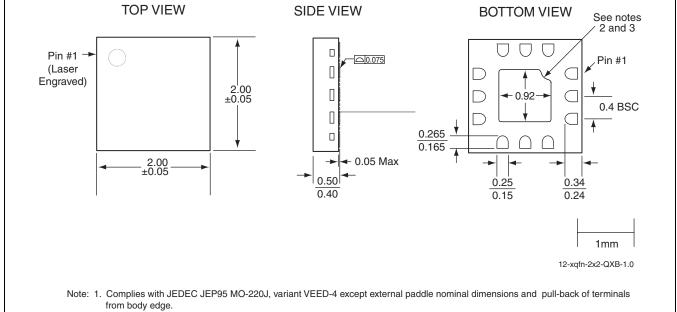
FIGURE 14: Typical Schematic for 6-Contact XSON (QX6) for High-Efficiency Applications

PRODUCT ORDERING INFORMATION

Valid combinations for SST12LP08

SST12LP08-QXBE SST12LP08-QX6E

SST12LP08 Evaluation Kits


SST12LP08-QXBE-K SST12LP08-QX6E-K

Note: Valid combinations are those products in mass production or will be in mass production. Consult your SST sales representative to confirm availability of valid combinations and to determine availability of new combinations.

Environmental suffix "E" denotes non-Pb solder.
 SST non-Pb solder devices are "RoHS Compliant".

Preliminary Specifications

PACKAGING DIAGRAMS

- 2. From the bottom view, the pin #1 indicator may be either a curved indent or a 45-degree chamfer.
- 3. The external paddle is electrically connected to the die back-side and possibly to certain V_{SS} leads. This paddle must be soldered to the PC board; it is required to connect this paddle to the V_{SS} of the unit. Connection of this paddle to any other voltage potential will result in shorts and electrical malfunction of the device.
- 4. Untoleranced dimensions are nominal target dimensions.
- 5. All linear dimensions are in millimeters (max/min).

FIGURE 15: 12-Contact Extremely-thin Quad Flat No-lead (XQFN)
SST Package Code: QXB

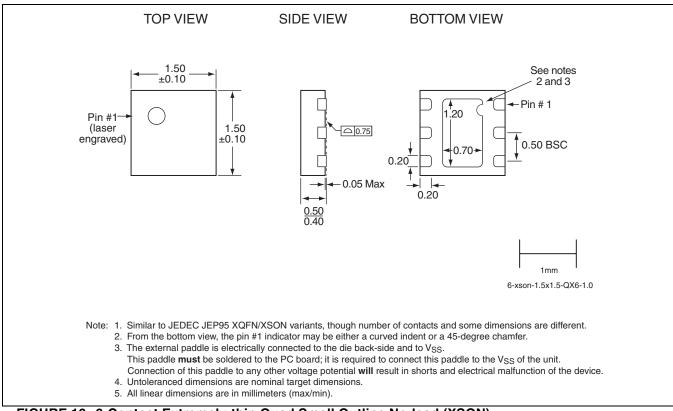


FIGURE 16: 6-Contact Extremely-thin Quad Small Outline No-lead (XSON)
SST Package Code: QX6

TABLE 5: Revision History

Revision		Description		
00	•	Initial release of data sheet	Apr 2009	
01	•	Revised Figure 9 on page 10	May 2009	
02	•	Added information for Qx6 package.	Aug 2009	
	•	Revised Table 3		

Preliminary Specifications

CONTACT INFORMATION

Marketing

SST Communications Corp.

5340 Alla Road, Ste. 210 Los Angeles, CA 90066 Tel: 310-577-3600

Fax: 310-577-3605

Sales and Marketing Offices

NORTH AMERICA

Silicon Storage Technology, Inc.

1171 Sonora Court Sunnyvale, CA 94086-5308

Tel: 408-735-9110 Fax: 408-735-9036

EUROPE

Silicon Storage Technology Ltd.

Mark House 9-11 Queens Road Hersham, Surrey KT12 5LU UK

Tel: 44 (0) 1932-238133 Fax: 44 (0) 1932-230567

JAPAN

SST Japan

NOF Tameike Bldg, 9F 1-1-14 Akasaka, Minato-ku Tokyo, Japan 107-0052 Tel: 81-3-5575-5515

Fax:81-3-5575-5516

ASIA PACIFIC NORTH

SST Macao

Room N, 6th Floor, Macao Finance Center, No. 202A-246, Rua de Pequim, Macau

Tel: 853-2870-6022 Fax: 853-2870-6023

ASIA PACIFIC SOUTH

SST Communications Co.

16F-6, No. 75, Sec.1, Sintai 5th Rd Sijhih City, Taipei County 22101 Taiwan, R.O.C.

Tel: 886-2-8698-1198 Fax: 886-2-8698-1190

KOREA

SST Korea

6F, Heungkuk Life Insurance Bldg 6-7 Sunae-Dong, Bundang-Gu, Sungnam-Si Kyungki-Do, Korea, 463-020

Tel: 82-31-715-9138 Fax: 82-31-715-9137