

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

APPLICATIONS / BENEFITS

- Protection from switching transients and induced RF
- > Protects TTL, ECL, DTL, MOS, MSI, and other integrated circuits requiring 5.0 V or lower power supplies
- ▶ Protection from ESD and EFT per IEC 61000-4-2 and IEC 61000-4-4
- Secondary lightning protection per IEC61000-4-5 with 42 Ohms source impedance: Class 1 thru 4
- Secondary lightning protection per IEC61000-4-5 with 12 Ohms source impedance: Class 1 thru 4
- Secondary lightning protection per IEC61000-4-5 with 2 Ohms source impedance: Class 2 & 3
- > 1N5907 Inherently radiation hard as described in Microsemi MicroNote 050

MAXIMUM RATINGS

- I 500 Watts for 10/1000 μs at lead temperature (T_L) 25°C (See Figs. 1, 2, and 4) with repetition rate of 0.01% or less*
- ➢ Operating & Storage Temperatures: -65° to +175°C for 1N5907
- ➤ THERMAL RESISTANCE (junction to lead): 50°C/W for 1N5907
- > THERMAL RESISTANCE (junction to ambient): 110 °C/W for 1N5907
- ➤ DC Power Dissipation* (1N5907): 1 Watt at $T_L \le 125^{\circ}C 3/8$ " (10 mm) from body, or 1 Watt at $T_A \le +65^{\circ}C$ when mounted on FR4 PC board as described for thermal resistance junction to ambient
- > Forward surge current: 200 A for 8.3ms half-sine wave at $T_A = +25^{\circ}C$
- Solder Temperatures: 260 ° C for 10 s (maximum)

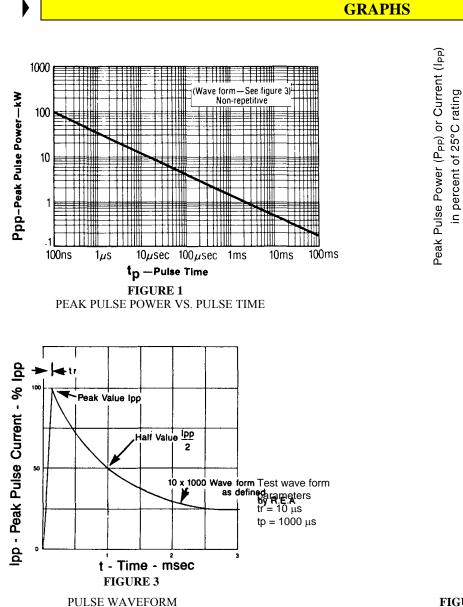
MECHANICAL AND PACKAGING

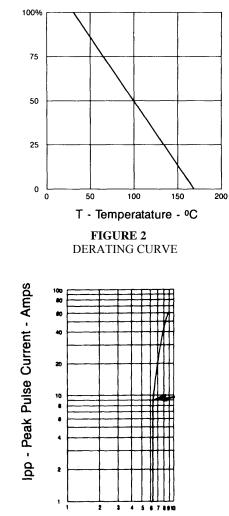
- CASE (1N5907): DO-13 (DO-202AA) welded hermetically sealed metal and glass
- FINISH: External metal surfaces are Tin-Lead (Sn-Pb) plated and solderable per MIL-STD-750 method 2026
- > POLARITY: Polarity indicated by diode symbol or cathode band (cathode connected to case for 1N5907)
- > MARKING: Part number and polarity symbol
- ▶ WEIGHT: 1.4 grams. (Approx)
- > TAPE & REEL option: Standard per EIA-296 (add "TR" suffix to part number)
- See package dimension on last page

* TVS devices are not typically used for dc power dissipation and are instead operated at or less than their rated standoff voltage (V_{WM}) except for transients that briefly drive the device into avalanche breakdown (V_{BR} to V_C region).

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

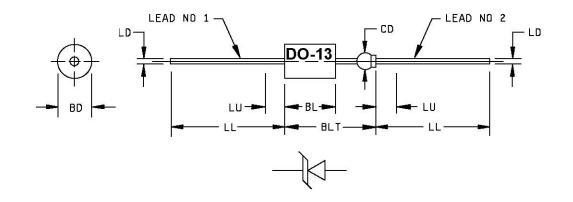
ELECT	ELECTRICAL CHARACTERISTICS @ 25°C												
JEDEC	Reverse	Minimum	Maximum	Maximum	Peak Pulse	Maximum	Peak Pulse	Maximum	Peak Pulse				
Туре	Standoff	Breakdown	Standby	Clamping	Current	Clamping	Current	Clamping	Current				
No.	Voltage	Voltage	Current	Voltage	I _{PP1}	Voltage	I _{PP2}	Voltage V _C @	I _{PP3}				
	V _{WM}	V _(BR) @ 1 mA	ID @ VWM	V _C @ I _{PP1}	(FIG. 3)	V _C @ I _{PP2}	(FIG. 3)	I _{PP3}	(FIG. 3)				
	(NOTE 1)			(FIG. 3)		(FIG. 3)		(FIG. 3)					
	Volts	Volts	μA	Volts	Amps	Volts	Amps	Volts	Amps				
1N5907 *	5.0	6.0	300	7.6	30	8.0	60	8.5	120				


* Also available in military qualified types with a JAN, JANTX, or JANTXV prefix per MIL-PRF-19500/500.


NOTE 1: A TVS is normally selected according to the reverse "Standoff Voltage" V_{WM} which should be equal to or greater than the dc or continuous peak operating voltage level.

	SYMBOLS & DEFINITIONS							
Symbol	Definition							
V_{WM}	Standoff Voltage: Applied Reverse Voltage to assure a nonconductive condition. (See Note 1 above)							
V _(BR)	Breakdown Voltage: This is the Breakdown Voltage the device will exhibit at 25°C							
V _C	Maximum Clamping Voltage: The maximum peak voltage appearing across the TVS when subjected to the peak pulse current in a one millisecond time interval. The peak pulse voltage is the combination of voltage rise due to both the series resistance and thermal rise and positive temperature coefficient ($\alpha_{V(BR)}$)							
I _{PP}	Peak Pulse Current: The peak current during the impulse (See Figure 2)							
P _{PP}	Peak Pulse Power: The pulse power as determined by the product of V_C and I_{PP}							
I _D	Standby Current: The current at the standoff voltage (V _{WM})							
I _(BR)	Breakdown Current: The current used for measuring Breakdown Voltage (V _(BR))							

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298



Vc - Clamping Voltage -FIGURE 4 TYPICAL CLAMPING VOLTAGE (V_C) VS. PEAK PULSE CURRENT (I_{PP})

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 620-2600 / Fax: (978) 689-0803 Website: http://www.microsemi.com Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298

PACKAGE DIMENSIONS

NOTES:

- 1. Dimensions are in inches.
- 2. Millimeters are given for general information only.
- 3. The major diameter is essentially constant along its length.
- 4. Within this zone, diameter may vary to allow for lead finishes and irregularities.
- 5. Dimension to allow for pinch or seal deformation anywhere along tubulation.
- 6. Lead 1 (cathode) shall be electrically connected to the case.
- 7. In accordance with ASME Y14.5M, diameters are equivalent to φx symbology.

Symbol	Inc	hes	Millir	Notes	
	Min	Max	Min	Max	
BD	.215	.235	5.46	5.97	
BL	.293	.357	7.44	9.07	3
BLT		.570		14.48	
CD	.045	.100	1.14	2.54	5
LD	.025	.035	0.64	0.89	
LL	1.000	1.625	25.40	41.28	4
LU		.188		4.78	4

FIGURE 1. Physical dimensions (DO-13).