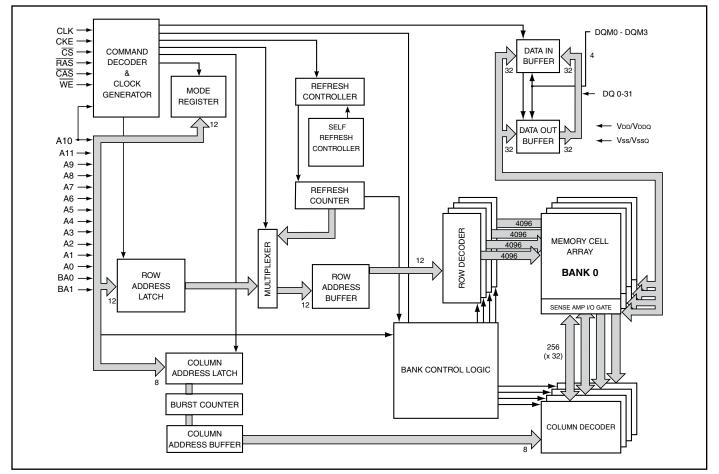


DEVICE OVERVIEW


The 128Mb SDRAM is a high speed CMOS, dynamic random-access memory designed to operate in 3.3V VDD and 3.3V VDDQ memory systems containing 134,217,728 bits. Internally configured as a quad-bank DRAM with a synchronous interface. Each 33,554,432-bit bank is organized as 4,096 rows by 256 columns by 32 bits.

The 128Mb SDRAM includes an AUTO REFRESH MODE, and a power-saving, power-down mode. All signals are registered on the positive edge of the clock signal, CLK. All inputs and outputs are LVTTL compatible.

The 128Mb SDRAM has the ability to synchronously burst data at a high data rate with automatic column-address generation, the ability to interleave between internal banks to hide precharge time and the capability to randomly change column addresses on each clock cycle during burst access. A self-timed row precharge initiated at the end of the burst sequence is available with the AUTO PRECHARGE function enabled. Precharge one bank while accessing one of the other three banks will hide the precharge cycles and provide seamless, high-speed, random-access operation.

SDRAM read and write accesses are burst oriented starting at a selected location and continuing for a programmed number of locations in a programmed sequence. The registration of an ACTIVE command begins accesses, followed by a READ or WRITE command. The ACTIVE command in conjunction with address bits registered are used to select the bank and row to be accessed (BA0, BA1 select the bank; A0-A11 select the row). The READ or WRITE commands in conjunction with address bits registered are used to select the starting column location for the burst access.

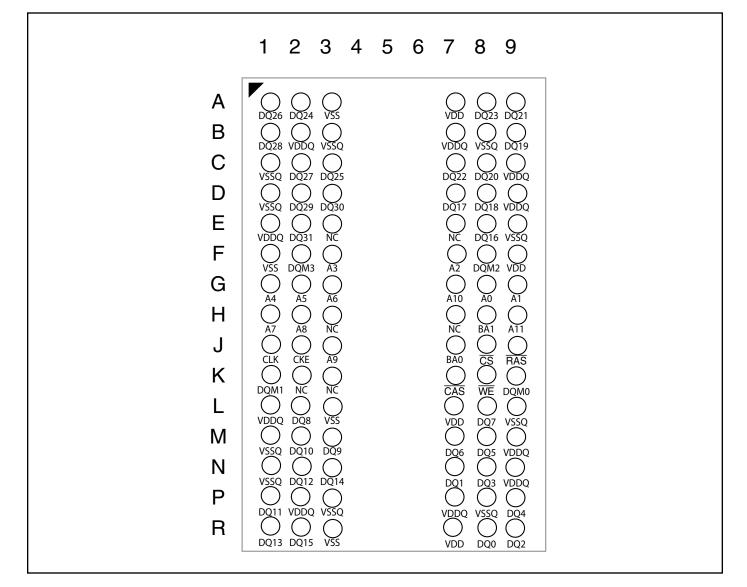
Programmable READ or WRITE burst lengths consist of 1, 2, 4 and 8 locations or full page, with a burst terminate option.

FUNCTIONAL BLOCK DIAGRAM (FOR 1MX32X4 BANKS)

PIN CONFIGURATIONS 86 pin TSOP - Type II for x32

Vob 1 • 8 1 Vss $D00$ 2 88 10 D015 2 88 10 D014 $D00$ 1 4 88 10 $D01$ 1 4 88 10 D014 $D02$ 6 81 10 D014 10 003 7 10 D014 10 10 003 17 10 D014 10 10 003 10 77 10 D014 10 003 11 77 10 D014 10 003 11 77 10 D014 10 003 112 75 10 VscQ 10 003 12 75 10 VscQ 10 10 003 112 75 10 VscQ 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 1			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			-TI .v
Voo III 3 8 1 Viso III DOI 4 88 1 DOI DO2 1 5 8 1 DOI DO3 1 7 80 1 DOI DO4 1 7 1 DOI DOI Voc III 8 7 1 DOI DOI Voc III 8 1 Voc III Poil DOI Voc III 1 0 7 1 DOI Voc III 1 0 7 1 DOI Voc III 1 7 1 DOI DOI Voc III 1 1 0 DOI NC IIII 1 1 DOI NC IIIIIII			
DO1 4 83 DO14 D02 5 82 DO13 VSSQ 6 81 VyDQ D03 7 B DO12 D04 8 79 DO11 VD00 9 78 DVsQ D06 10 77 DO30 D06 11 76 DO9 VD00 12 75 Noc VD01 13 74 DO8 VD01 15 72 Vso VD01 15 72 Vso VD01 16 71 DOM1 VD01 15 72 Vso CAS 19 68 NC CAS 19 68 A3 DAM0 22 68 A4 A11 24 63 A6 A11 25 61 A4 A2 27 60 A3 DOM3 28 9 DOM3 Vso 28 81 Vso			
022 1 5 82 10013 $Vaso$ 6 81 1002 $D03$ 7 80 10012 $D04$ 6 78 10011 $Vabo$ 9 78 10010 $Vabo$ 19 76 1003 $Vabo$ 11 76 1003 $Vabo$ 12 75 10003 $Vabo$ 12 75 1003 $Vabo$ 14 73 1003 Vab 15 72 1055 Vab 16 71 1004 Vab 12 68 104 Aab 122 68 104 Aab 22 64 1024			
VSQ 6 81 IV VOQ DQ3 7 86 IP DQ4 8 79 D011 DQ5 10 77 D030 DQ6 11 76 D030 DQ6 12 70 D040 DQ6 11 76 D030 DQ7 13 74 D08 VSQ 15 72 VSS DQM0 16 71 D0M1 VDO 15 72 VSS DQM0 16 71 D0M1 VSS 11 70 NC DQM0 16 71 D0M1 CAS 18 68 NC GS 20 67 CK BA1 21 66 A9 BA1 22 61 A6 GS 20 67 A6 GS 20 67 A6 GS 21 A6 A6 GS 12 14 14			
DQ3 7 80 10 DQ12 DQ4 8 78 10 DQ11 DQ5 11 76 10 DQ9 DQ6 111 76 10 DQ9 VS00 12 10 10 10 VS01 12 76 11 Voc0 VS01 13 74 11 DQ8 VS01 14 73 11 Voc0 VS01 15 72 11 Vs01 VS01 16 71 11 DQ011 VS02 16 71 11 DQ04 VS02 16 71 11 DQ04 VS02 16 71 11 DQ16 VS03 16 70 11 NC RAS 19 61 14 A1 A11 21 66 11 A7 A11 21 61 14 A5 A11 22 61 14 A5 A2 </th <th></th> <th></th> <th></th>			
DQA 8 78 10 DQ11 VD00 9 78 10 VssQ DQ5 10 77 10 DQ10 DQ6 11 76 10 DQ9 VD00 12 75 10 DQ8 DQ7 13 74 10 DQ8 NC 14 73 10 DQ8 DQ700 15 72 10 VssQ DQM0 16 71 10 DQ8 DQM0 16 71 10 DQ8 DQM0 116 71 10 DQ11 DQM0 115 72 10 VssQ CAS 11 17 70 10 NC CAS 12 20 65 11 AS DQ16 21			
Voc0 9 78 10 Vs60 DG6 11 76 1009 Vs60 12 76 1008 Vs60 12 76 1008 DC7 14 78 1008 Vs60 14 78 1008 Vb1 15 72 1008 DCMM0 16 71 10004 Vs60 18 88 1004 Vs61 12 004 1004 Vs61 16 71 1004 Vs61 18 88 1004 Vs61 18 88 1004 Vs62 10 004 1004 Vs63 14 88 1004 Vs64 14 49 1004 Vs64 14 49 40 Vs64 14 46 14 Vs64 14 46 14 Vs64 14 46 14 Vs64 14 46 14 Vs64			
DQS 10 77 11 DQ10 DQS 11 76 11 DQ9 VSQ 12 74 11 DQ8 DQ7 13 74 11 DQ8 NC 14 73 11 NC VD0 15 72 11 NC DQM0 16 71 11 DQM1 WE 17 10 NC NC CAS 18 68 11 NC CAS 19 68 11 CKE A11 21 68 11 A9 BA0 12 65 11 A6 A11 21 66 11 A7 BA0 12 65 11 A6 A11 22 65 11 A7 BA0 12 26 11 A7 DQM2 28 19 10 13 DQM2 12 10 10 10 DQ16 11 <th></th> <th></th> <th></th>			
DQ6 11 76 DQ9 VS8Q 12 75 VD0Q DQ7 13 74 DQ8 NC 14 73 NC VD0 15 72 VS8 DQM0 16 71 DQM1 WE 17 70 NC CAS 18 91 NC CAS 12 0 6 CAS 12 0 6 RAS 19 66 10 CAS 12 65 11 A11 21 66 10 BA0 12 65 11 A2 12 75 14 A3 11 21 6 A4 14 26 14 A7 A4 12 14 14 14 A6 11 26 14 14 A2 12 17 6 14 A2 12 17 10 14 <td< th=""><th></th><th></th><th>VssQ VssQ</th></td<>			VssQ VssQ
VssQ 11 12 75 11 VooQ DQ7 13 74 11 DQ8 NC 14 73 11 NC DQM0 16 71 11 DQM1 DQM0 16 71 11 DQM1 CAS 11 17 70 11 NC CAS 11 12 60 11 AP CAS 11 12 60 11 AP CAS 12 20 67 11 CLK CAS 12 22 66 11 AP BA1 21 22 65 11 AF BA1 22 68 11 AF A10 24 63 11 AF A2 27 60 11 AF A2 27 60 11 AF A2 27 60 11 AF A3 27 60 11 AF DQM2	DQ5 🔲		
DQ7 [13 74] DQ8 NC [14 73] NC VD0 [15 72] VSS DQM0 [16 71] DQM1 WE [17 70] NC CAS [18 0 0] NC CAS [18 0 0] CLK RAS [19 68] CLK A11 [21 66] A9 BA0 [22 65] A8 BA1 [23 61] A7 A10 [24 61] A7 A11 [21 61] A6 BA1 [22 65] A8 BA1 [23 61] A7 A10 [24 61] A7 A10 [25 62] A5 CAS [19 A1 BA1 [28 61] A1 A11 [28 61] A3 DQM2 [28 61] VSS DQM3 [31 61] DQM3 DQM3 [31 61] DQM3 DQM3 [31 61] DQM3 DQM3 [31 61] DQ31 VSS [31 61] DQ31 VSS [31 61] DQ31 VSS [31 61] DQ30 DQ14 [31 61] DQ29 VSS [32 61] VSS DQ29 VSS [32 61] VSS DQ29 VSS [32 61] VSS DQ29 VSS [33 61] DQ29 VSS [33 61] DQ29 VSS [34 61] DQ29 VSS [35 61] VSS DQ20 [37 61] DQ27 VSS [35 61] VSS DQ21 [33 61] DQ26 VSS [35 62] VSS DQ21 [33 61] DQ26 VSS [35 61] VSS [35 62] VSS [35 60] VSS [35	DQ6 🔲	11 76	DQ9
NC 14 73 NC Voo 15 72 Vos Voo 16 71 DOM1 WE 17 70 NC CAS 11 17 70 NC CAS 11 19 68 CK CAS 12 20 67 CK A1 21 68 A9 CAS 22 65 A8 BAO 22 65 A8 A11 21 23 64 A7 A10 24 68 A6 A6 AA1 25 62 A5 A5 A10 24 59 DOM3 A3 Voo 29 58 Vos NC A0 12 28 99 DOM3 Voo 29 58 Voo NC A0 12 28 99 DOM3 Voo 12 29 59 NC NC A0 10029 <th>VssQ 🔲</th> <th>12 75</th> <th>T VDDQ</th>	VssQ 🔲	12 75	T VDDQ
VDD 15 72 VSS DQM0 16 71 DQM1 WE 17 70 NC CAS 18 69 NC GCS 19 68 CLK A11 21 66 A9 BA0 22 65 A8 BA1 21 68 A7 A11 24 61 A7 A11 24 63 A6 A2 27 60 A3 DQM2 28 59 DQM3 Vob 29 58 Vsc Vob 29 58 Vsc Vob 31 56 DQ30 Vob 29 58 Vsc Vob 31 56 DQ30 Vob 33 DQ29 Vsc Vob 34 53 DQ29 Vob 34 53 DQ29 Vob 35 DQ29 Vsc Vob 10 51 DQ29<	DQ7 🎞	13 74	DQ8
DQM0 16 71 DQM1 WE 17 70 NC CAS 19 68 CLK RAS 19 68 CLK GS 20 67 CKE A11 21 66 A9 BA0 22 65 A8 BA1 23 64 A7 A10 24 63 A6 A0 25 62 A5 A10 24 63 DAM1 Vob 29 58 Vss NC 30 57 NC Vob 29 58 Vss NC 30 57 NC DQ16 31 56 DQ30 DQ17 33 54 DQ30 Vob 29 58 Vss DQ18 34 53 DQ29 Vob 29 58 VssQ DQ216 31 DQ30 DQ31 VsSQ 32 DQ29 Vs		14 73	
DQM0 16 71 DQM1 WE 17 70 NC CAS 11 13 69 NC CAS 19 68 CLK CAS 20 67 CKE A11 21 66 A9 BAO 22 66 A9 BAO 22 61 AA A11 23 64 A7 A10 24 63 A6 AAO 25 A6 A4 A11 26 A1 A4 A2 7 60 A3 DQM2 28 59 DQM3 VDD 29 59 VSS NC 30 57 NC VSQ 32 55 VDQ VSQ 32 55 VDQ Q21 33 54 DQ30 VSQ 37 50 DQ29 VSQ 37 50 DQ28 VDQ 37 50 <	Vdd 🔳	15 72	Vss
WE 17 70 NC CAS 18 69 NC RAS 20 67 CLK CS 20 67 CKE BA1 21 66 A9 BA0 22 61 A7 BA1 23 61 A7 A10 24 63 A6 A2 27 60 A3 DOM2 28 9 DOM3 VDO 29 59 DA3 VDS 29 59 DA3 VDS 30 57 NC VDQ 33 54 DQ30 VDQ 33 52 VsoQ VDQ 37 50 DQ29 VDQ 37 50 DQ29 VDQ 37 50 DQ28 DQ20 37 50 DQ28 DQ21 39 49 VsoQ DQ22 40 47 DQ25 <th></th> <th></th> <th></th>			
FAS 19 68 CLK CS 20 67 CKE A11 21 66 A9 BA1 22 65 A8 BA1 23 64 A7 A10 24 63 A6 AA0 25 62 A5 AA 24 63 A6 AA 24 63 A6 AA 24 63 A6 AA 24 63 A6 AA 24 27 60 A3 DOM2 28 59 DOM3 VDO 29 58 Vss ADA 31 56 DOM3 VSQ 32 55 VoDQ DQ16 31 54 DO30 DQ17 33 54 DO29 VoDQ 35 DO29 VsSQ DQ19 36 51 DO27 VsSQ 37 48 DO27 VsSQ 39 48 <th>WE</th> <th>17 70</th> <th></th>	WE	17 70	
FAS 19 68 CLK CS 20 67 CKE A11 21 66 A9 BA1 22 65 A8 BA1 23 64 A7 A10 24 63 A6 AA0 25 62 A5 AA 24 63 A6 AA 24 63 A6 AA 24 63 A6 AA 24 63 A6 AA 24 27 60 A3 DOM2 28 59 DOM3 VDO 29 58 Vss ADA 31 56 DOM3 VSQ 32 55 VoDQ DQ16 31 54 DO30 DQ17 33 54 DO29 VoDQ 35 DO29 VsSQ DQ19 36 51 DO27 VsSQ 37 48 DO27 VsSQ 39 48 <th></th> <th></th> <th></th>			
CS 20 67 CKE A11 21 66 A9 BA0 22 64 A1 BA1 23 64 A7 A10 24 63 A6 A0 25 62 A1 A1 26 61 A3 DQM2 28 59 DQM3 VDD 29 58 VSS NC 30 57 NC DQM2 32 55 VDQ0 VD1 33 54 DQ31 VSSQ 35 VSSQ VSQ DQ16 31 53 DQ29 VSQ 35 1 VSQ DQ17 36 51 DQ28 DQ20 37 50 1 DQ28 DQ20 37 48 1 VSQ DQ21 39 48 1 VDQ26 DQ21 40 47 1 DQ25			
A11 21 66 A9 BA0 22 66 A8 BA1 23 64 A7 A10 24 63 A6 A0 25 62 A5 A1 26 61 A4 A2 27 60 A3 DQM2 28 59 DOM3 Vbb 29 58 Vss NC 30 57 NC DQ16 31 56 DQ31 VsQ 32 55 VbQ DQ17 33 54 DQ29 VbQ 35 29 VsQ DQ18 34 53 DQ29 VbQ 35 VsQ VsQ DQ17 36 1 DQ28 DQ20 37 50 DQ27 VsQ 38 49 VsQ DQ21 39 48 DQ26			
BA0 22 65 A8 BA1 23 64 A7 A10 24 68 A6 A0 25 21 A5 A1 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 VDD 29 58 VSS VD1 29 58 DQ31 VSS 31 56 DQ31 VSS 32 55 DQ31 VSS 33 54 DQ32 VSQ 32 55 DQ31 VSQ 32 55 DQ31 VSQ 32 55 DQ30 VSQ 33 DQ29 SQ VSQ 35 DQ29 SQ VSQ 37 10 DQ28 DQ19 36 10 DQ27 VSQ 38 49 VDQQ USQ 49 VDQQ DQ26 DQ21 39 44 <			
BA1 23 64 A7 A10 24 63 A6 A0 25 62 A5 A11 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 Vbb 29 58 Vss NC 30 57 NC DQ16 31 50 Vss Vbb 22 33 Uss Vss Vbb 33 0231 Uss Uss Vbb 33 0231 Uss Uss Vbb 33 0231 Uss Uss Vbb 33 0230 Uss Uss Vbb 35 Vbb Uss Uss Vbb 35 Uss Uss Uss Vbb 36 Ub230 Uss Uss Vbb 36 Ub230 Ub230 Ub230 Vbb 38 Ub230 Ub230 Ub230 Ub24 39 <td< th=""><th></th><th></th><th></th></td<>			
A10 24 63 A6 A0 25 62 A5 A1 26 A1 A2 27 60 A3 DQM2 228 59 DQM3 Vbb 29 58 Vss NC 30 57 NC DQ16 31 56 DQ31 VssQ 132 55 VbDQ VbQ 235 DQ31 VbQ DQ17 133 54 DQ30 DQ17 133 54 DQ30 DQ18 44 DQ30 DQ18 14 34 53 DQ29 VbQ 15 DQ29 VbQ 15 DQ29 VbQ 15 DQ27 VssQ 138 DQ21 40 47 DQ25		F	
A0 25 62 A5 A1 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 Vbb 29 58 Vss A0 31 51 NC A1 31 51 DQ31 VsQ 32 55 VbDQ A3 A A A A3 A A A A0 32 55 VbQ A3 A A A A0 32 55 VbDQ A3 A A A A1 34 53 DQ30 A2 35 A DQ29 VbQ 35 52 VsQ A4 DQ29 A A A4 DQ27 A A A4 DQ26 A A A4 DQ25 A A		i i i i i i i i i i i i i i i i i i i	
A1 26 61 A4 A2 27 60 A3 DQM2 28 59 DQM3 VDD 29 58 VSS NC 30 57 NC DQ16 31 56 DQ31 VSSQ 32 55 VDQQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VDDQ 35 VSSQ VSSQ JQ20 37 50 DQ27 VSSQ 38 49 VDQ2 VSQ 38 49 DQ26 DQ21 40 47 DQ25			
A2 27 60 A3 DQM2 28 59 DQM3 VDD 29 58 VSs NC 30 57 NC DQ16 31 56 DQ31 VSSQ 32 55 VDQQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VDDQ 35 VSSQ VSSQ Q20 37 S6 DQ27 VSSQ 38 49 VDQ2 VSSQ 38 49 VDQ26 Q21 40 47 Q25			
DQM2 28 59 DQM3 VDD 29 58 VSs NC 30 57 NC DQ16 31 56 DQ31 VSSQ 32 55 VD0Q DQ17 33 54 DQ30 DQ18 34 DQ30 DQ90 VDDQ 35 VSQ VSQ VDQQ 36 DQ29 VSQ VSQ 37 S0 DQ27 VSQ 38 49 VDQ VSQ 38 48 DQ26 DQ21 40 47 DQ25			
VDD 29 58 VSS NC 30 57 NC DQ16 31 56 DQ31 VSSQ 32 55 VDQQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VDDQ 35 VSQ VSQ DQ19 36 52 VSQ DQ20 37 50 DQ27 VSQ 38 49 VDQ DQ21 39 48 DQ26			
NC 30 57 NC DQ16 31 56 DQ31 VssQ 32 55 VbbQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VbbQ 35 VssQ VssQ DQ19 36 51 DQ27 VssQ 38 49 VbbQ DQ21 39 48 DQ26 DQ22 40 47 DQ25			
DQ16 31 56 DQ31 VssQ 32 55 VDDQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VDDQ 35 52 VssQ DQ19 36 51 DQ28 DQ19 37 50 DQ27 VssQ 38 49 VDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25			
VSSQ 32 55 VDDQ DQ17 33 54 DQ30 DQ18 34 53 DQ29 VDDQ 35 52 VSSQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VSSQ 38 48 DQ26 DQ21 39 48 DQ25		F	
DQ17 33 54 DQ30 DQ18 34 53 DQ29 VDDQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25			
DQ18 34 53 DQ29 VDDQ 35 52 VssQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25		E Contraction of the second	
VDDQ 35 52 VSsQ DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VDQQ DQ21 39 48 DQ26 DQ22 40 47 DQ25			
DQ19 36 51 DQ28 DQ20 37 50 DQ27 VssQ 38 49 VodQ DQ21 39 48 DQ26 DQ22 40 47 DQ25			
DQ20 37 50 DQ27 VssQ 38 49 VDDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25			
VssQ 38 49 VDDQ DQ21 39 48 DQ26 DQ22 40 47 DQ25			
DQ21 II 39 48 DQ26 DQ22 II 40 47 DQ25		r filler	
	VDDQ	41 46	T VssQ
	DQ23 [[42 45	DQ24
	Vdd 🎞	43 44	Vss

PIN DESCRIPTIONS


A0-A11	Row Address Input
A0-A7	Column Address Input
BA0, BA1	Bank Select Address
DQ0 to DQ31	Data I/O
CLK	System Clock Input
CKE	Clock Enable
CS	Chip Select
RAS	Row Address Strobe Command
CAS	Column Address Strobe Command

WE	Write Enable
DQM0-DQM3	x32 Input/Output Mask
Vdd	Power
Vss	Ground
Vddq	Power Supply for I/O Pin
Vssq	Ground for I/O Pin
NC	No Connection

PIN CONFIGURATION

PACKAGE CODE: B 90 BALL TF-BGA (Top View) (8.00 mm x 13.00 mm Body, 0.8 mm Ball Pitch)

PIN DESCRIPTIONS

A0-A11	Row Address Input
A0-A7	Column Address Input
BA0, BA1	Bank Select Address
DQ0 to DQ31	Data I/O
CLK	System Clock Input
CKE	Clock Enable
CS	Chip Select
RAS	Row Address Strobe Command
CAS	Column Address Strobe Command

WE	Write Enable
DQM0-DQM3	x32 Input/Output Mask
Vdd	Power
Vss	Ground
Vddq	Power Supply for I/O Pin
Vssq	Ground for I/O Pin
NC	No Connection

PIN FUNCTIONS

Symbol	Туре	Function (In Detail)
A0-A11	Input Pin	Address Inputs: A0-A11 are sampled during the ACTIVE
		command (row-address A0-A11) and READ/WRITE command (column address A0-A7), with A10 defining auto precharge) to select one location out of the memory array in the respective bank. A10 is sampled during a PRECHARGE command to determine if all banks are to be precharged (A10 HIGH) or bank selected by BA0, BA1 (LOW). The address inputs also provide the op-code during a LOAD MODE REGISTER command.
BA0, BA1	Input Pin	Bank Select Address: BA0 and BA1 defines which bank the ACTIVE, READ, WRITE or PRECHARGE command is being applied.
CAS	Input Pin	CAS, in conjunction with the RAS and WE, forms the device command. See the "Command Truth Table" for details on device commands.
CKE	Input Pin	The CKE input determines whether the CLK input is enabled. The next rising edge of the CLK signal will be valid when is CKE HIGH and invalid when LOW. When CKE is LOW, the device will be in either power-down mode, clock suspend mode, or self refresh mode. CKE is an asynchronous input.
CLK	Input Pin	CLK is the master clock input for this device. Except for CKE, all inputs to this device are acquired in synchronization with the rising edge of this pin.
CS	Input Pin	The \overline{CS} input determines whether command input is enabled within the device. Command input is enabled when \overline{CS} is LOW, and disabled with \overline{CS} is HIGH. The device remains in the previous state when \overline{CS} is HIGH.
DQM0-DQM3	Input Pin	DQM0 - DQM3 control the four bytes of the I/O buffers (DQ0-DQ31). In read
		mode, DQMn control the output buffer. When DQMn is LOW, the corresponding buf- fer byte is enabled, and when HIGH, disabled. The outputs go to the HIGH imped- ance state whenDQMn is HIGH. This function corresponds to \overline{OE} in conventional DRAMs. In write mode, DQMn control the input buffer. When DQMn is LOW, the corresponding buffer byte is enabled, and data can be written to the device. When DQMn is HIGH, input data is masked and cannot be written to the device.
DQ0-DQ31	Input/Output Pin	Data on the Data Bus is latched on these pins during Write commands, and buffered after Read commands.
RAS	Input Pin	\overline{RAS} , in conjunction with \overline{CAS} and \overline{WE} , forms the device command. See the "Command Truth Table" item for details on device commands.
WE	Input Pin	$\overline{\text{WE}}$, in conjunction with $\overline{\text{RAS}}$ and $\overline{\text{CAS}}$, forms the device command. See the "Command Truth Table" item for details on device commands.
VDDQ	Power Supply Pin	VDDQ is the output buffer power supply.
Vdd	Power Supply Pin	VDD is the device internal power supply.
Vssq	Power Supply Pin	Vssa is the output buffer ground.
Vss	Power Supply Pin	Vss is the device internal ground.

GENERAL DESCRIPTION

READ

The READ command selects the bank from BA0, BA1 inputs and starts a burst read access to an active row. Inputs A0-A7 provides the starting column location. When A10 is HIGH, this command functions as an AUTO PRECHARGE command. When the auto precharge is selected, the row being accessed will be precharged at the end of the READ burst. The row will remain open for subsequent accesses when AUTO PRECHARGE is not selected. DQ's read data is subject to the logic level on the DQM inputs two clocks earlier. When a given DQM signal was registered HIGH, the corresponding DQ's will be High-Z two clocks later. DQ's will provide valid data when the DQM signal was registered LOW.

WRITE

A burst write access to an active row is initiated with the WRITE command. BA0, BA1 inputs selects the bank, and the starting column location is provided by inputs A0-A7. Whether or not AUTO-PRECHARGE is used is determined by A10.

The row being accessed will be precharged at the end of the WRITE burst, if AUTO PRECHARGE is selected. If AUTO PRECHARGE is not selected, the row will remain open for subsequent accesses.

A memory array is written with corresponding input data on DQ's and DQM input logic level appearing at the same time. Data will be written to memory when DQM signal is LOW. When DQM is HIGH, the corresponding data inputs will be ignored, and a WRITE will not be executed to that byte/column location.

PRECHARGE

The PRECHARGE command is used to deactivate the open row in a particular bank or the open row in all banks. BA0, BA1 can be used to select which bank is precharged or they are treated as "Don't Care". A10 determined whether one or all banks are precharged. After executing this command, the next command for the selected bank(s) is executed after passage of the period t_{RP} which is the period required for bank precharging. Once a bank has been precharged, it is in the idle state and must be activated prior to any READ or WRITE commands being issued to that bank.

AUTO PRECHARGE

The AUTO PRECHARGE function ensures that the precharge is initiated at the earliest valid stage within a burst. This function allows for individual-bank precharge without requiring an explicit command. A10 to enable the AUTO PRECHARGE function in conjunction with a specific READ or WRITE command. For each individual READ or WRITE command, auto precharge is either enabled or disabled. AUTO PRECHARGE does not apply except in full-page burst mode. Upon completion of the READ or WRITE burst, a precharge of the bank/row that is addressed is automatically performed.

AUTO REFRESH COMMAND

This command executes the AUTO REFRESH operation. The row address and bank to be refreshed are automatically generated during this operation. The stipulated period (tRc) is required for a single refresh operation, and no other commands can be executed during this period. This command is executed at least 4096 times for every TREF. During an AUTO REFRESH command, address bits are "Don't Care". This command corresponds to CBR Auto-refresh.

BURST TERMINATE

The BURST TERMINATE command forcibly terminates the burst read and write operations by truncating either fixed-length or full-page bursts and the most recently registered READ or WRITE command prior to the BURST TERMINATE.

COMMAND INHIBIT

COMMAND INHIBIT prevents new commands from being executed. Operations in progress are not affected, apart from whether the CLK signal is enabled

NO OPERATION

When $\overline{\text{CS}}$ is low, the NOP command prevents unwanted commands from being registered during idle or wait states.

LOAD MODE REGISTER

During the LOAD MODE REGISTER command the mode register is loaded from A0-A11. This command can only be issued when all banks are idle.

ACTIVE COMMAND

When the ACTIVE COMMAND is activated, BA0, BA1 inputs selects a bank to be accessed, and the address inputs on A0-A11 selects the row. Until a PRECHARGE command is issued to the bank, the row remains open for accesses.

COMMAND TRUTH TABLE

	СКЕ									A11
Function	n – 1	n	CS	RAS	CAS	WE	BA1	BA0	A10	A9 - A0
Device deselect (DESL)	Н	×	Н	×	×	×	×	×	×	×
No operation (NOP)	Н	×	L	Н	Н	Н	×	×	×	×
Burst stop (BST)	Н	×	L	Н	Н	L	×	×	×	×
Read	Н	×	L	Н	L	Н	V	V	L	V
Read with auto precharge	Н	×	L	Н	L	Н	V	V	Н	V
Write	Н	×	L	Н	L	L	V	V	L	V
Write with auto precharge	Н	×	L	Н	L	L	V	V	Н	V
Bank activate (ACT)	Н	×	L	L	Н	Н	V	V	V	V
Precharge select bank (PRE)) H	×	L	L	Н	L	V	V	L	×
Precharge all banks (PALL)	Н	×	L	L	Н	L	×	×	Н	×
CBR Auto-Refresh (REF)	Н	Н	L	L	L	Н	×	×	×	×
Self-Refresh (SELF)	Н	L	L	L	L	Н	×	×	×	×
Mode register set (MRS)	Н	×	L	L	L	L	L	L	L	V

Note: $H=V_{IH}$, $L=V_{IL} x=V_{IH}$ or V_{IL} , V = Valid Data.

DQM TRUTH TABLE

ו-1	n	U	L
4	×	L	L
4	x	Н	Н
4	×	L	×
4	x	×	L
-	x	Н	×
4	x	×	Н
	1	1 ×	H x L

Note: $H=V_{IH}$, $L=V_{IL} x=V_{IH}$ or V_{IL} , V = Valid Data.

CKE TRUTH TABLE

	CKE						
Current State /Function	n – 1	n	CS	RAS	CAS	WE	Address
Activating Clock suspend mode entry	Н	L	×	×	×	×	×
Any Clock suspend mode	L	L	×	×	×	×	×
Clock suspend mode exit	L	Н	×	×	×	×	×
Auto refresh command Idle (REF)	Н	Н	L	L	L	Н	×
Self refresh entry Idle (SELF)	Н	L	L	L	L	Н	×
Power down entry Idle	Н	L	×	×	×	×	×
Self refresh exit	L	Н	L	Н	Н	Н	×
	L	Н	Н	×	x	×	×
Power down exit	Ĺ	Н	×	×	×	×	×

Note: $H=V_{IH}$, $L=V_{IL} \times V_{IH}$ or V_{IL} , V = Valid Data.

FUNCTIONAL TRUTH TABLE

Current State	CS	RAS	CAS	WE	Address	Command	Action
dle	H	Х	Х	Х	Х	DESL	Nop or Power Down ⁽²⁾
	L	Н	Н	Н	Х	NOP	Nop or Power Down ⁽²⁾
	L	Н	Н	L	Х	BST	Nop or Power Down
	L	Н	L	Н	BA, CA, A10	READ/READA	ILLEGAL ⁽³⁾
	L	Н	L	L	A, CA, A10	WRIT/ WRITA	ILLEGAL ⁽³⁾
	L	L	Н	Н	BA, RA	ACT	Row activating
	L	L	Н	L	BA, A10	PRE/PALL	Nop
	L	L	L	Н	Х	REF/SELF	Auto refresh or Self-refresh ⁽⁴⁾
	L	L	L	L	OC, BA1=L	MRS	Mode register set
Row Active	Н	Х	Х	Х	Х	DESL	Nop
	L	Н	Н	Н	Х	NOP	Nop
	L	Н	Н	L	Х	BST	Nop
	L	Н	L	Н	BA, CA, A10	READ/READA	Begin read ⁽⁵⁾
	L	Н	L	L	BA, CA, A10	WRIT/ WRITA	Begin write ⁽⁵⁾
	L	L	Н	Н	BA, RA	ACT	ILLEGAL ⁽³⁾
	L	L	Н	L	BA, A10	PRE/PALL	Precharge Precharge all banks ⁽⁶⁾
	L	L	L	Н	Х	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL
Read	Н	Х	Х	Х	Х	DESL	Continue burst to end to Row active
	L	Н	Н	Н	Х	NOP	Continue burst to end Row Row active
	L	Н	Н	L	Х	BST	Burst stop, Row active
	L	Н	L	Н	BA, CA, A10	READ/READA	Terminate burst, begin new read (7)
	L	Н	L	L	BA, CA, A10	WRIT/WRITA	Terminate burst, begin write ^(7,8)
	L	L	Н	Н	BA, RA	ACT	ILLEGAL ⁽³⁾
	L	L	Н	L	BA, A10	PRE/PALL	Terminate burst Precharging
	L	L	L	Н	Х	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL
Write	Н	Х	Х	Х	Х	DESL	Continue burst to end Write recovering
	L	Н	Н	Н	Х	NOP	Continue burst to end Write recovering
		Н	Н	L	Х	BST	Burst stop, Row active
	L	Н	L	Н	BA, CA, A10	READ/READA	Terminate burst, start read : Determine AP (7,8)
	L	Н	L	L	BA, CA, A10	WRIT/WRITA	Terminate burst, new write : Determine AP ⁽⁷⁾
		L	Н	Н	BA, RA	RA ACT	ILLEGAL ⁽³⁾
			H	L	BA, A10	PRE/PALL	Terminate burst Precharging ⁽⁹
				н	X	REF/SELF	ILLEGAL
				L	OC, BA	MRS	ILLEGAL

Note: H=VIH, L=VIL x= VIH or VIL, V = Valid Data, BA= Bank Address, CA+Column Address, RA=Row Address, OC= Op-Code

FUNCTIONAL TRUTH TABLE Continued:

Current State	CS	RAS	CAS	WE	Address	Command	Action
Read with auto Precharging	н	×	×	×	×	DESL	Continue burst to end, Precharge
	L	Н	Н	Н	х	NOP	Continue burst to end, Precharge
	L	Н	Н	L	×	BST	ILLEGAL
	L	Н	L	Н	BA, CA, A10	READ/READA	ILLEGAL (11)
	L	Н	L	L	BA, CA, A10	WRIT/ WRITA	ILLEGAL (11)
	L	L	Н	Н	BA, RA	ACT	ILLEGAL ⁽³⁾
	L	L	Н	L	BA, A10	PRE/PALL	ILLEGAL (11)
	L	L	L	Н	×	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL
Write with Auto Precharge	Н	×	×	×	×	DESL	Continue burst to end, Write recovering with auto precharge
	L	Н	Н	Н	×	NOP	Continue burst to end, Write recovering with auto precharge
	L	Н	Н	L	×	BST	ILLEGAL
	L	Н	L	Н	BA, CA, A10	READ/READA	ILLEGAL ⁽¹¹⁾
	L	Н	L	L	BA, CA, A10	WRIT/ WRITA	ILLEGAL (11)
	L	L	Н	Н	BA, RA	ACT	ILLEGAL ^(3,11)
	L	L	Н	L	BA, A10	PRE/PALL	ILLEGAL ^(3,11)
	L	L	L	Н	×	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL
Precharging	Н	×	×	×	×	DESL	Nop, Enter idle after tRP
	L	Н	Н	Н	×	NOP	Nop, Enter idle after tRP
	L	Н	Н	L	×	BST	Nop, Enter idle after tRP
	L	Н	L	Н	BA, CA, A10	READ/READA	ILLEGAL ⁽³⁾
	L	Н	L	L	BA, CA, A10	WRIT/WRITA	ILLEGAL ⁽³⁾
	L	L	Н	Н	BA, RA	ACT	ILLEGAL ⁽³⁾
	L	L	Н	L	BA, A10	PRE/PALL	Nop Enter idle after tRP
	L	L	L	Н	×	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL
Row Activating	Н	×	×	×	×	DESL	Nop, Enter bank active after tRCD
	L	Н	Н	Н	×	NOP	Nop, Enter bank active after tRCD
	L	Н	Н	L	×	BST	Nop, Enter bank active after tRCD
	L	Н	L	Н	BA, CA, A10	READ/READA	ILLEGAL ⁽³⁾
	L	Н	L	L	BA, CA, A10	WRIT/WRITA	ILLEGAL ⁽³⁾
	L	L	Н	Н	BA, RA	ACT	ILLEGAL ^(3,9)
	L	L	Н	L	BA, A10	PRE/PALL	ILLEGAL ⁽³⁾
	L	L	L	Н	×	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL

Note: H=VIH, L=VIL x= VIH or VIL, V = Valid Data, BA= Bank Address, CA+Column Address, RA=Row Address, OC= Op-Code

FUNCTIONAL TRUTH TABLE Continued:

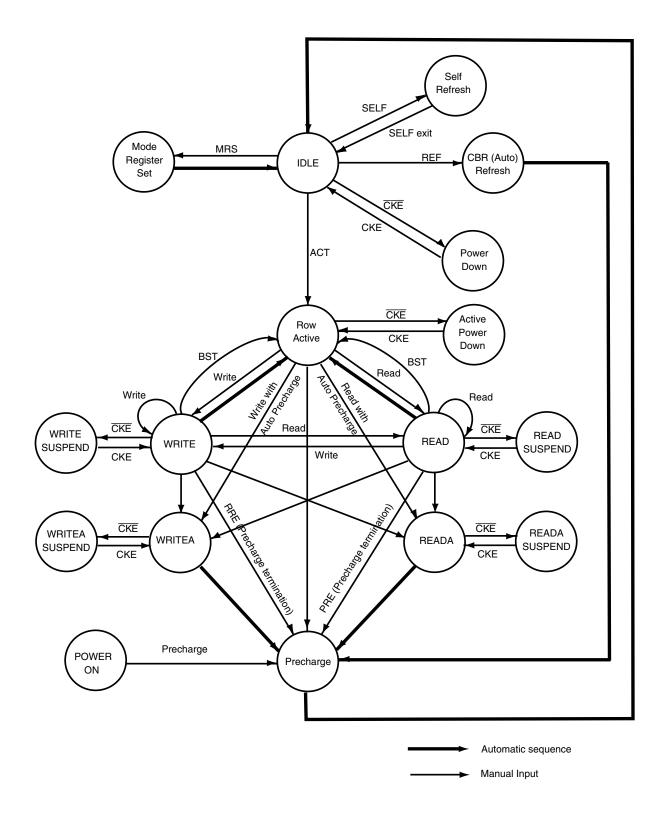
Current State	CS	RAS	CAS	WE	Address	Command	Action
Write Recovering	Н	×	×	×	×	DESL	Nop, Enter row active after tDPL
	L	Н	Н	Н	×	NOP	Nop, Enter row active after tDPL
	L	Н	Н	L	×	BST	Nop, Enter row active after tDPL
	L	Н	L	Н	BA, CA, A10	READ/READA	Begin read ⁽⁸⁾
	L	Н	L	L	BA, CA, A10	WRIT/ WRITA	Begin new write
	L	L	Н	Н	BA, RA	ACT	ILLEGAL ⁽³⁾
	L	L	Н	L	BA, A10	PRE/PALL	ILLEGAL ⁽³⁾
	L	L	L	Н	×	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL
Vrite Recovering	Н	x	×	×	×	DESL	Nop, Enter precharge after tDPL
vith Auto	L	Н	Н	Н	×	NOP	Nop, Enter precharge after tDPL
Precharge	L	Н	Н	L	×	BST	Nop, Enter row active after tDPL
	L	Н	L	Н	BA, CA, A10	READ/READA	ILLEGAL ^(3,8,11)
	L	Н	L	L	BA, CA, A10	WRIT/WRITA	ILLEGAL ^(3,11)
	L	L	Н	Н	BA, RA	ACT	ILLEGAL ^(3,11)
	L	L	Н	L	BA, A10	PRE/PALL	ILLEGAL ^(3,11)
	L	L	L	Н	×	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL
Refresh	Н	x	×	×	×	DESL	Nop, Enter idle after tRC
	L	Н	Н	×	×	NOP/BST	Nop, Enter idle after tRC
	L	Н	L	Н	BA, CA, A10	READ/READA	ILLEGAL
	L	Н	L	L	BA, CA, A10	WRIT/WRITA	ILLEGAL
	L	L	Н	Н	BA, RA	ACT	ILLEGAL
	L	L	Н	L	BA, A10	PRE/PALL	ILLEGAL
	L	L	L	Н	×	REF/SELF	ILLEGAL
	L	L	L	L	OC, BA	MRS	ILLEGAL
/lode Register	Н	×	×	×	×	DESL	Nop, Enter idle after 2 clocks
Accessing	L	Н	Н	Н	×	NOP	Nop, Enter idle after 2 clocks
	L	Н	Н	L	×	BST	ILLEGAL
	L	Н	L	×	BA, CA, A10	READ/WRITE	ILLEGAL
	L	L	×	×	BA, RA	ACT/PRE/PALL REF/MRS	ILLEGAL

Note: H=VIH, L=VIL x= VIH or VIL, V = Valid Data, BA= Bank Address, CA+Column Address, RA=Row Address, OC= Op-Code

Notes:

- 1. All entries assume that CKE is active (CKEn-1=CKEn=H).
- 2. If both banks are idle, and CKE is inactive (Low), the device will enter Power Down mode. All input buffers except CKE will be disabled.
- 3. Illegal to bank in specified states; Function may be legal in the bank indicated by Bank Address (BA), depending on the state of that bank.
- 4. If both banks are idle, and CKE is inactive (Low), the device will enter Self-Refresh mode. All input buffers except CKE will be disabled.
- 5. Illegal if tRCD is not satisfied.
- 6. Illegal if tRAS is not satisfied.
- 7. Must satisfy burst interrupt condition.
- 8. Must satisfy bus contention, bus turn around, and/or write recovery requirements.
- 9. Must mask preceding data which don't satisfy tDPL.
- 10. Illegal if tRRD is not satisfied.
- 11. Illegal for single bank, but legal for other banks.

CKE RELATED COMMAND TRUTH TABLE⁽¹⁾


		CKE						
Current State	Operation	n-1	n	CS	RAS	CAS	WE	Address
Self-Refresh (S.R.)	INVALID, CLK (n - 1) would exit S.R.	Н	Х	Х	Х	Х	Х	Х
	Self-Refresh Recovery ⁽²⁾	L	Н	Н	Х	Х	Х	Х
	Self-Refresh Recovery ⁽²⁾	L	Н	L	Н	Н	Х	Х
	Illegal	L	Н	L	Н	L	Х	Х
	Illegal	L	Н	L	L	Х	Х	Х
	Maintain S.R.	L	L	Х	Х	Х	Х	Х
Self-Refresh Recove	ry Idle After tRC	Н	Н	Н	Х	Х	Х	Х
	Idle After tRC	Н	Н	L	Н	Н	Х	Х
	Illegal	Н	Н	L	Н	L	Х	Х
	Illegal	Н	Н	L	L	Х	Х	Х
	Begin clock suspend next cycle ⁽⁵⁾	Н	L	Н	Х	Х	Х	Х
	Begin clock suspend next cycle ⁽⁵⁾	Н	L	L	Н	Н	Х	Х
	Illegal	Н	L	L	Н	L	Х	Х
	Illegal	Н	L	L	L	Х	Х	Х
	Exit clock suspend next cycle ⁽²⁾	L	Н	Х	Х	Х	Х	Х
	Maintain clock suspend	L	L	Х	Х	Х	Х	Х
Power-Down (P.D.)	INVALID, CLK (n - 1) would exit P.D.	Н	Х	Х	Х	Х	Х	_
	EXIT P.D> Idle ⁽²⁾	L	Н	Х	Х	Х	Х	Х
	Maintain power down mode	L	L	Х	Х	Х	Х	Х
Both Banks Idle	Refer to operations in Operative Command Table	Н	Н	Н	Х	Х	Х	_
	Refer to operations in Operative Command Table	Н	Н	L	Н	Х	Х	—
	Refer to operations in Operative Command Table	Н	Н	L	L	Н	Х	—
	Auto-Refresh	Н	Н	L	L	L	Н	Х
	Refer to operations in Operative Command Table	Н	Н	L	L	L	L	Op - Code
	Refer to operations in Operative Command Table	Н	L	Н	Х	Х	Х	_
	Refer to operations in Operative Command Table	Н	L	L	Н	Х	Х	_
	Refer to operations in Operative Command Table	Н	L	L	L	Н	Х	_
	Self-Refresh ⁽³⁾	Н	L	L	L	L	Н	Х
	Refer to operations in Operative Command Table	Н	L	L	L	L	L	Op - Code
	Power-Down ⁽³⁾	L	Х	Х	Х	Х	Х	Х
Any state	Refer to operations in Operative Command Table	Н	Н	Х	Х	Х	Х	Х
other than	Begin clock suspend next cycle ⁽⁴⁾	Н	L	Х	Х	Х	Х	Х
listed above	Exit clock suspend next cycle	L	н	Х	Х	Х	Х	Х
	Maintain clock suspend	L	L	Х	Х	Х	Х	Х

Notes:

- H : High level, L : low level, X : High or low level (Don't care).
 CKE Low to High transition will re-enable CLK and other inputs asynchronously. A minimum setup time must be satisfied
 - before any command other than EXIT.
- 3. Power down and Self refresh can be entered only from the both banks idle state.
- 4. Must be legal command as defined in Operative Command Table.
- 5. Illegal if txsR is not satisfied.

STATE DIAGRAM

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Parameters		Rating	Unit
VDD MAX	Maximum Supply Voltage		-0.5 to +4.6	V
V DDQ MAX	Maximum Supply Voltage for Output I	Buffer	-0.5 to +4.6	V
VIN	Input Voltage		-0.5 to VDD + 0.5	V
Vout	Output Voltage		-1.0 to VDDQ + 0.5	V
Pd max	Allowable Power Dissipation		1	W
lcs	Output Shorted Current		50	mA
Topr	Operating Temperature	Com.	0 to +70	°C
		Ind.	-40 to +85	
		A1	-40 to +85	
		A2	-40 to +105	
Тѕтс	Storage Temperature		-65 to +150	٥C

Notes:

 Stress greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. All voltages are referenced to Vss.

DC RECOMMENDED OPERATING CONDITIONS

 $(T_A = 0^{\circ}C \text{ to } + 70^{\circ}C \text{ for Com. grade}. T_A = -40^{\circ}C \text{ to } + 85^{\circ}C \text{ for Ind. and A1 grade}. T_A = -40^{\circ}C \text{ to } + 105^{\circ}C \text{ for A2 grade}.)$

Symbol	Parameter	Min.	Тур.	Max.	Unit
Vdd	Supply Voltage	3.0	3.3	3.6	V
Vddq	I/O Supply Voltage	3.0	3.3	3.6	V
VIH ⁽¹⁾	Input High Voltage	2.0		VDDQ + 0.3	V
V IL ⁽²⁾	Input Low Voltage	-0.3		+0.8	V

Note:

1. VIH (max) = VDDQ +1.2V (PULSE WIDTH \leq 3NS).

2. VIL (min) = -1.2V (PULSE WIDTH \leq 3NS).

3. All voltages are referenced to Vss.

CAPACITANCE CHARACTERISTICS (At TA = 0 to +25°C, VDD = VDDQ = 3.3 ± 0.3V)

Symbol	Parameter	Min.	Max.	Unit
CIN1	Input Capacitance: CLK	2	4	pF
CIN2	Input Capacitance: All other input pins	1.3	3	pF
Cı/o	Data Input/Output Capacitance:I/Os	2	5	pF

THERMAL RESISTANCE

Package	Substrate	Theta-ja (Airflow = 0m/s)	Theta-ja (Airflow = 1m/s)	Theta-ja (Airflow = 2m/s)	Theta-jc	Units
TSOP2(86)	4-layer	88.1	77.3	72.3	15.3	C/W
BGA(90)	4-layer	38.1	33.1	31.3	5.7	C/W

14

Symbol	Parameter	Test Condition	-6	-7	-75E	Unit
DD1 (1)	Operating Current	One bank active, $CL = 3$, $BL = 1$,	120	100	120	mA
		tcικ = tcικ (min), trc = trc (min)				
IDD2P	Precharge Standby Current $CKE \le VIL$ (MAX), tck = 15ns (In Power-Down Mode)		2	2	2	mA
IDD2PS	Precharge Standby Current (In Power-Down Mode)	$CKE \leq Vil \ (\text{max}), \ CLK \leq Vil \ (\text{max})$	2	2	2	mA
DD2N ⁽²⁾	Precharge Standby Current	$\overline{CS} \ge V_{DD}$ - 0.2V, $CKE \ge V_{IH}$ (MIN)	25	25	25	mA
	(In Non Power-Down Mode)	tcκ = 15ns				
DD2NS	Precharge Standby Current	$\overline{CS} \ge V_{DD}$ - 0.2V, $CKE \ge V_{IH}$ (MIN) or	15	15	15	mA
	(In Non Power-Down Mode)	$CKE \le V_{IL}$ (MAX), All inputs stable				
DD3N ⁽²⁾	Active Standby Current	$\overline{CS} \ge V_{DD}$ - 0.2V, $CKE \ge V_{IH}$ (MIN)	40	40	40	mA
	(In Non Power-Down Mode)	tcκ = 15ns				
DD3NS	Active Standby Current	$\overline{CS} \ge V_{DD}$ - 0.2V, $CKE \ge V_{IH}$ (MIN) or	25	25	25	mA
	(In Non Power-Down Mode)	$CKE \le V_{IL}$ (MAX), All inputs stable				
DD3P	Active Standby Current	$CKE \le V_{IL}$ (MAX), tck = 15ns	6	6	6	mA
	(Power-Down Mode)					
DD3PS	Active Standby Current	$CKE \leq VIL (MAX), CLK \leq VIL (MAX)$	6	6	6	mA
	(Power-Down Mode)					
DD4	Operating Current	All banks active, $BL = 4$, $CL = 3$,	150	100	150	mA
		tск = tск (min)				
DD5	Auto-Refresh Current	trc = trc (min), tclκ = tclκ (min)	150	130	150	mA
DD6	Self-Refresh Current	CKE ≤ 0.2V	2	2	2	mA

DC ELECTRICAL CHARACTERISTICS 1 (Recommended Operation Conditions unless otherwise noted.)

Notes:

1. IDD (MAX) is specified at the output open condition.

2. Input signals are changed one time during 30ns.

DC ELECTRICAL CHARACTERISTICS 2 (Recommended Operation Conditions unless otherwise noted.)

Symbol	Parameter	Test Condition	Min	Max	Unit
lı∟	Input Leakage Current	$0V \le Vin \le V_{DD}$, with pins other than	-10	10	μA
		the tested pin at 0V			
Iol	Output Leakage Current	Output is disabled, $0V \le Vout \le VDD$,	-10	10	μA
Vон	Output High Voltage Level	Іон = -2mA	2.4	_	V
Vol	Output Low Voltage Level	Iol = 2mA	_	0.4	V

AC ELECTRICAL CHARACTERISTICS (1,2,3)

			-6	i	-7		-75	E	
Symbol	Parameter		Min.	Max.	Min.	Max.	Min.	Max.	Units
tскз	Clock Cycle Time	CAS Latency = 3	6	_	7	_	_	_	ns
tck2		CAS Latency = 2	10	—	10	—	7.5	—	ns
tac3	Access Time From CLK	CAS Latency = 3	_	5.4		5.4	_	_	ns
tac2		CAS Latency = 2	—	6.5	_	6.5	—	5.5	ns
tсн	CLK HIGH Level Width		2.5	—	2.5	—	2.5	—	ns
tc∟	CLK LOW Level Width		2.5	—	2.5	—	2.5	—	ns
tонз	Output Data Hold Time	CAS Latency = 3	2.5	_	2.5	_	2.5	_	ns
toh2		CAS Latency = 2	2.5	—	2.5	—	2.5	—	ns
tız	Output LOW Impedance Time		0	_	0	_	0	_	ns
tHZ3	Output HIGH Impedance Time	CAS Latency = 3	2.5	5.4	2.5	5.4	_	_	ns
tHZ2		CAS Latency = 2	2.5	6.5	2.5	6.5	2.5	5.5	ns
tDS	Input Data Setup Time ⁽²⁾		1.5	_	1.5	_	1.5	_	ns
tDH	Input Data Hold Time ⁽²⁾		0.8	_	0.8	_	0.8	_	ns
tas	Address Setup Time ⁽²⁾		1.5	—	1.5	—	1.5	—	ns
tан	Address Hold Time ⁽²⁾		0.8	_	0.8	_	0.8	_	ns
tcks	CKE Setup Time ⁽²⁾		1.5	_	1.5	_	1.5	_	ns
tскн	CKE Hold Time ⁽²⁾		0.8	_	0.8	_	0.8	_	ns
tсмs	Command Setup Time (CS, RA	S, CAS, WE, DQM) ⁽²⁾	1.5	_	1.5	_	1.5	_	ns
tсмн	Command Hold Time (CS, RAS	, CAS, WE, DQM) ⁽²⁾	0.8	_	0.8	_	0.8	_	ns
trc	Command Period (REF to REF	/ ACT to ACT)	60	_	65	_	67.5	_	ns
tras	Command Period (ACT to PRE)	42	100K	42	100K	45	100K	ns
tRP	Command Period (PRE to ACT)	18	_	20	_	15	_	ns
trcd	Active Command To Read / Wri	te Command Delay Time	18	_	20	_	15	_	ns
trrd	Command Period (ACT [0] to A	CT[1])	12	_	14	_	15	_	ns
t DPL	Input Data To Precharge	L 2/	12	_	14	_	15	_	ns
	Command Delay time								
t DAL	Input Data To Active / Refresh		30	_	35	_	30	_	ns
	Command Delay time (During A	uto-Precharge)							
t MRD	Mode Register Program Time		12	_	14	_	15	_	ns
tdde	Power Down Exit Setup Time		6	_	7	_	7.5	_	ns
txsr	Exit Self-Refresh to Active Time	(4)	70	_	70	_	70	_	ns
t⊤	Transition Time		0.3	1.2	0.3	1.2	0.3	1.2	ns
tref	Refresh Cycle Time (4096)								
		Com., Ind., A1, A2	_	64	_	64	_	64	ms
		85°C Ind., A1, A2	_	64	_	64	_	64	ms
		TA > 85°C A2	_	16	—	16	_	—	ms

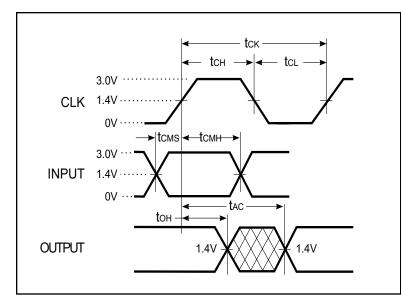
Notes:

1. The power-on sequence must be executed before starting memory operation.

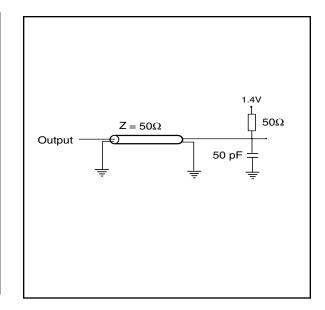
2. Measured with $t_T = 1$ ns. If clock rising time is longer than 1ns, (t_R/2 - 0.5) ns should be added to the parameter.

3. The reference level is 1.4V when measuring input signal timing. Rise and fall times are measured between VIH(min.) and VIL

(max).


OPERATING FREQUENCY / LATENCY RELATIONSHIPS

SYMBOL	. PARAMETER		-6	-7	-75E	UNITS
_	Clock Cycle Time	CAS Latency = 3	6	7	_	ns
	-	CAS Latency = 2	10	10	7.5	ns
_	Operating Frequency	CAS Latency = 3	166	143	_	MHz
		CAS Latency = 2	100	100	133	MHz
trcd	Active Command To Read/Write Command Delay Time	CAS Latency = 3	3	3	_	cycle
		CAS Latency = 2	2	2	2	cycle
trac	RAS Latency (tRCD + tCAC)	\overline{CAS} Latency = 3	6	6	_	cycle
		CAS Latency = 2	4	4	4	
trc	Command Period (REF to REF / ACT to ACT)	\overline{CAS} Latency = 3	10	10	_	cycle
		CAS Latency = 2	6	7	9	cycle
tras	Command Period (ACT to PRE)	CAS Latency = 3	7	6	_	cycle
		CAS Latency = 2	5	5	6	cycle
trp	Command Period (PRE to ACT)	CAS Latency = 3	3	3	—	cycle
		CAS Latency = 2	2	2	2	cycle
trrd	Command Period (ACT[0] to ACT [1])		2	2	2	cycle
tccd	Column Command Delay Time (READ, READA, WRIT, WRITA)		1	1	1	cycle
t DPL	Input Data To Precharge Command Delay Time		2	2	2	cycle
tdal	Input Data To Active/Refresh Command Delay Time	\overline{CAS} Latency = 3	5	5	_	cycle
	(During Auto-Precharge)	CAS Latency = 2	4	4	4	cycle
t RBD	Burst Stop Command To Output in HIGH-Z Delay Time	CAS Latency = 3	3	3	3	cycle
	(Read)	CAS Latency = 2	2	2	2	cycle
twbd	Burst Stop Command To Input in Invalid Delay Time (Write)		0	0	0	cycle
tral	Precharge Command To Output in HIGH-Z Delay Time	\overline{CAS} Latency = 3	3	3	3	cycle
	(Read)	CAS Latency = 2	2	2	2	•
twdl	Precharge Command To Input in Invalid Delay Time (Write)		0	0	0	cycle
t PQL	Last Output To Auto-Precharge Start Time (Read)	\overline{CAS} Latency = 3	-2	-2	-2	cycle
		CAS Latency = 2	-1	-1	-1	cycle
tqмd	DQM To Output Delay Time (Read)		2	2	2	cycle
tdмd	DQM To Input Delay Time (Write)		0	0	0	cycle
tmrd	Mode Register Set To Command Delay Time		2	2	2	cycle



ACTEST CONDITIONS

Input Load

Output Load

AC TEST CONDITIONS

Parameter	Rating
AC Input Levels	0V to 3.0V
Input Rise and Fall Times	1 ns
Input Timing Reference Level	1.4V
Output Timing Measurement Reference Level	1.4V

FUNCTIONAL DESCRIPTION

The 128Mb SDRAMs are quad-bank DRAMs which operate at 3.3V and include a synchronous interface (all signals are registered on the positive edge of the clock signal, CLK). Each of the 33,554,432-bit banks is organized as 4,096 rows by 256 columns by 32 bits.

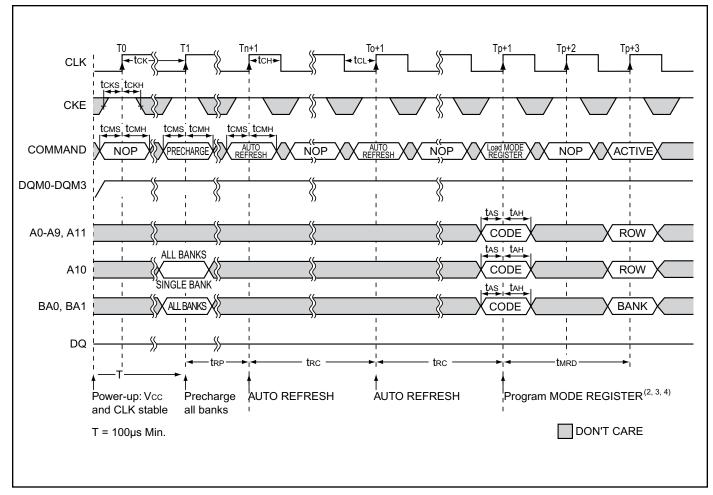
Read and write accesses to the SDRAM are burst oriented; accesses start at a selected location and continue for a programmed number of locations in a programmed sequence. Accesses begin with the registration of an AC-TIVE command which is then followed by a READ or WRITE command. The address bits registered coincident with the ACTIVE command are used to select the bank and row to be accessed (BA0 and BA1 select the bank, A0-A11 select the row). The address bits A0-A7 registered coincident with the READ or WRITE command are used to select the starting column location for the burst access.

Prior to normal operation, the SDRAM must be initialized. The following sections provide detailed information covering device initialization, register definition, command descriptions and device operation.

Initialization

SDRAMs must be powered up and initialized in a predefined manner.

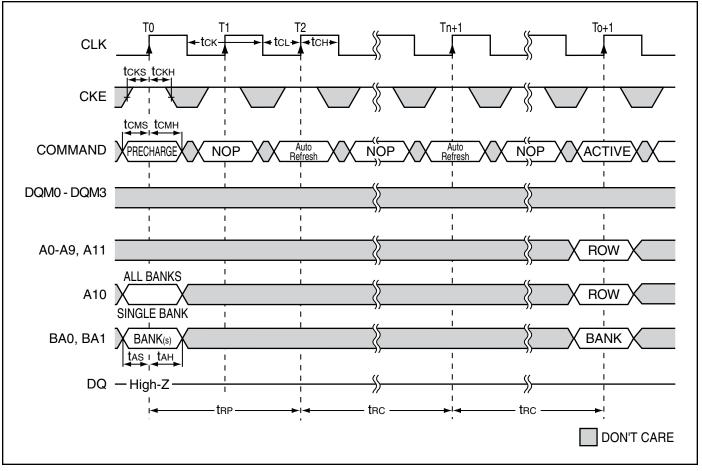
The 128M SDRAM is initialized after the power is applied to VDD and VDDQ (simultaneously) and the clock is stable with DQM High and CKE High.


A 100µs delay is required prior to issuing any command other than a COMMAND INHIBIT or a NOP. The COMMAND INHIBIT or NOP may be applied during the 100µs period and should continue at least through the end of the period.

With at least one COMMAND INHIBIT or NOP command having been applied, a PRECHARGE command should be applied once the 100µs delay has been satisfied. All banks must be precharged. This will leave all banks in an idle state after which at least two AUTO REFRESH cycles must be performed. After the AUTO REFRESH cycles are complete, the SDRAM is then ready for mode register programming.

The mode register should be loaded prior to applying any operational command because it will power up in an unknown state.

INITIALIZE AND LOAD MODE REGISTER⁽¹⁾



Notes:

- If CS is High at clock High time, all commands applied are NOP.
 The Mode register may be loaded prior to the Auto-Refresh cycles if desired.
- JEDEC and PC100 specify three clocks.
 Outputs are guaranteed High-Z after the command is issued.

AUTO-REFRESH CYCLE

Notes:

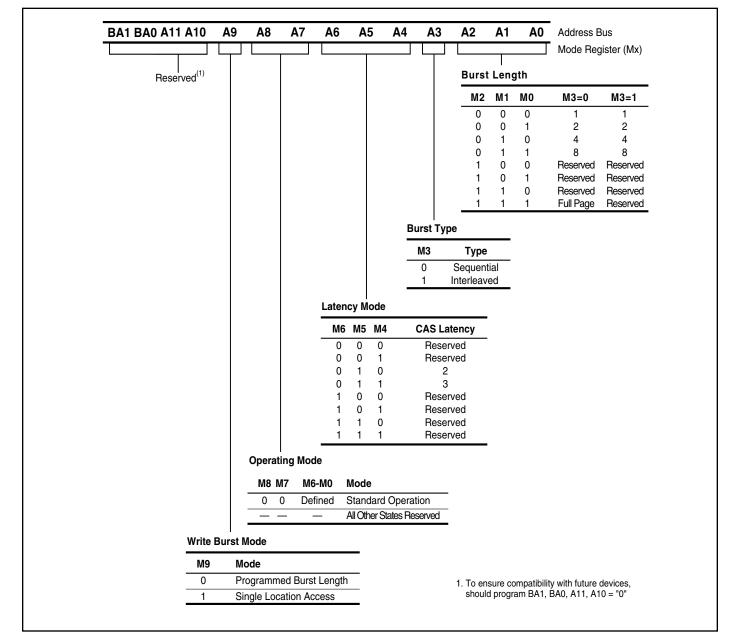
1. \overline{CAS} latency = 2, 3

SELF-REFRESH CYCLE

Note:

1. Self-Refresh Mode is not supported for A2 grade with $T_A > 85^{\circ}C$.

REGISTER DEFINITION


Mode Register

The mode register is used to define the specific mode of operation of the SDRAM. This definition includes the selection of a burst length, a burst type, a CAS latency, an operating mode and a write burst mode, as shown in MODE REGISTER DEFINITION.

The mode register is programmed via the LOAD MODE REGISTER command and will retain the stored information until it is programmed again or the device loses power.

Mode register bits M0-M2 specify the burst length, M3 specifies the type of burst (sequential or interleaved), M4- M6 specify the CAS latency, M7 and M8 specify the operating mode, M9 specifies the WRITE burst mode, and M10 and M11 are reserved for future use.

The mode register must be loaded when all banks are idle, and the controller must wait the specified time before initiating the subsequent operation. Violating either of these requirements will result in unspecified operation.

MODE REGISTER DEFINITION

Integrated Silicon Solution, Inc. - www.issi.com Rev. D 10/28/2015

BURST LENGTH

Read and write accesses to the SDRAM are burst oriented, with the burst length being programmable, as shown in MODE REGISTER DEFINITION. The burst length determines the maximum number of column locations that can be accessed for a given READ or WRITE command. Burst lengths of 1, 2, 4 or 8 locations are available for both the sequential and the interleaved burst types, and a full-page burst is available for the sequential type. The full-page burst is used in conjunction with the BURST TERMINATE command to generate arbitrary burst lengths.

Reserved states should not be used, as unknown operation or incompatibility with future versions may result.

When a READ or WRITE command is issued, a block of columns equal to the burst length is effectively selected. All accesses for that burst take place within this block, mean-

ing that the burst will wrap within the block if a boundary is reached. The block is uniquely selected by A1-A7 (x32) when the burst length is set to two; by A2-A7 (x32) when the burst length is set to four; and by A3-A7 (x32) when the burst length is set to eight. The remaining (least significant) address bit(s) is (are) used to select the starting location within the block. Full-page bursts wrap within the page if the boundary is reached.

Burst Type

Accesses within a given burst may be programmed to be either sequential or interleaved; this is referred to as the burst type and is selected via bit M3.

The ordering of accesses within a burst is determined by the burst length, the burst type and the starting column address, as shown in BURST DEFINITION table.

BURST DEFINITION

Burst	Sta	rting Col	umn	Order of Acce	esses Within a Burst
Length		Address		Type = Sequential	Type = Interleaved
			A 0		
2			0	0-1	0-1
			1	1-0	1-0
		A 1	A 0		
		0	0	0-1-2-3	0-1-2-3
4		0	1	1-2-3-0	1-0-3-2
		1	0	2-3-0-1	2-3-0-1
		1	1	3-0-1-2	3-2-1-0
	A 2	A 1	A 0		
	0	0	0	0-1-2-3-4-5-6-7	0-1-2-3-4-5-6-7
	0	0	1	1-2-3-4-5-6-7-0	1-0-3-2-5-4-7-6
	0	1	0	2-3-4-5-6-7-0-1	2-3-0-1-6-7-4-5
8	0	1	1	3-4-5-6-7-0-1-2	3-2-1-0-7-6-5-4
	1	0	0	4-5-6-7-0-1-2-3	4-5-6-7-0-1-2-3
	1	0	1	5-6-7-0-1-2-3-4	5-4-7-6-1-0-3-2
	1	1	0	6-7-0-1-2-3-4-5	6-7-4-5-2-3-0-1
	1	1	1	7-0-1-2-3-4-5-6	7-6-5-4-3-2-1-0
Full Page	n = A0-A	7		Cn, Cn + 1, Cn + 2 Cn + 3, Cn + 4	Not Supported
(y)	(location 0	-у)		Ćn - 1, Cn	

CAS Latency

The CAS latency is the delay, in clock cycles, between the registration of a READ command and the availability of the first piece of output data. The latency can be set to two or three clocks.

If a READ command is registered at clock edge n, and the latency is m clocks, the data will be available by clock edge n + m. The DQs will start driving as a result of the clock edge one cycle earlier (n + m - 1), and provided that the relevant access times are met, the data will be valid by clock edge n + m. For example, assuming that the clock cycle time is such that all relevant access times are met, if a READ command is registered at T0 and the latency is programmed to two clocks, the DQs will start driving after T1 and the data will be valid by T2, as shown in CAS Latency diagrams. The Allowable Operating Frequency table indicates the operating frequencies at which each CAS latency setting can be used.

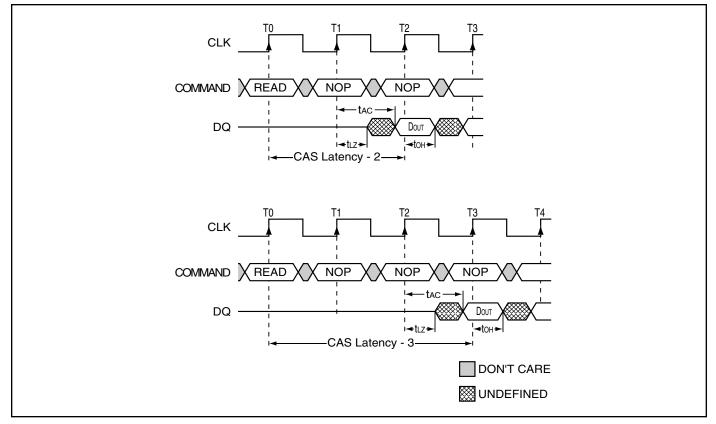
Reserved states should not be used as unknown operation or incompatibility with future versions may result.

Operating Mode

The normal operating mode is selected by setting M7 and M8 to zero; the other combinations of values for M7 and M8 are reserved for future use and/or test modes. The programmed burst length applies to both READ and WRITE bursts.

Test modes and reserved states should not be used because unknown operation or incompatibility with future versions may result.

Write Burst Mode


When M9 = 0, the burst length programmed via M0-M2 applies to both READ and WRITE bursts; when M9 = 1, the programmed burst length applies to READ bursts, but write accesses are single-location (nonburst) accesses.

CAS Latency

Allowable Operating Frequency (MHz)

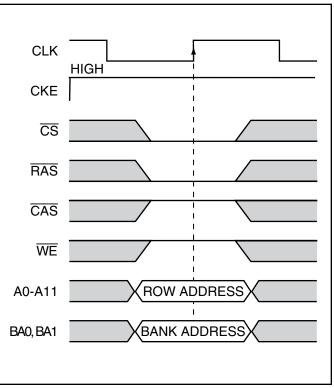
Speed	CAS Latency = 2	CAS Latency = 3
-6	100	166
-7	100	143
-75E	133	_

CAS LATENCY

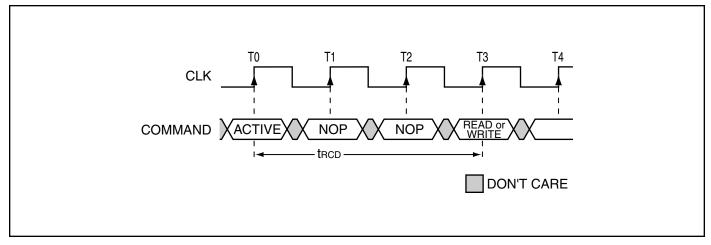
Integrated Silicon Solution, Inc. - www.issi.com Rev. D 10/28/2015

CHIP OPERATION

BANK/ROW ACTIVATION


Before any READ or WRITE commands can be issued to a bank within the SDRAM, a row in that bank must be "opened." This is accomplished via the ACTIVE command, which selects both the bank and the row to be activated (see Activating Specific Row Within Specific Bank).

After opening a row (issuing an ACTIVE command), a READ or WRITE command may be issued to that row, subject to the tRCD specification. Minimum tRCD should be divided by the clock period and rounded up to the next whole number to determine the earliest clock edge after the ACTIVE command on which a READ or WRITE command can be entered. For example, a tRCD specification of 18ns with a 125 MHz clock (8ns period) results in 2.25 clocks, rounded to 3. This is reflected in the following example, which covers any case where $2 < [tRCD (MIN)/tcK] \le 3$. (The same procedure is used to convert other specification limits from time units to clock cycles).


A subsequent ACTIVE command to a different row in the same bank can only be issued after the previous active row has been "closed" (precharged). The minimum time interval between successive ACTIVE commands to the same bank is defined by tRc.

A subsequent ACTIVE command to another bank can be issued while the first bank is being accessed, which results in a reduction of total row-access overhead. The minimum time interval between successive ACTIVE commands to different banks is defined by tRRD.

ACTIVATING SPECIFIC ROW WITHIN SPE-CIFIC BANK

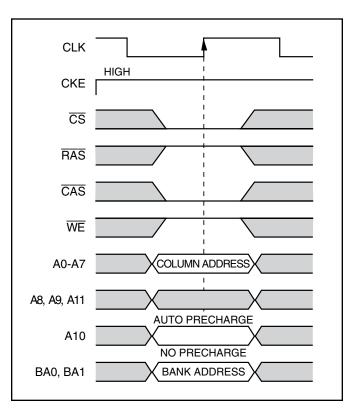
EXAMPLE: MEETING TRCD (MIN) WHEN 2 < [TRCD (MIN)/TCK] \leq 3

READS

READ bursts are initiated with a READ command, as shown in the READ COMMAND diagram.

The starting column and bank addresses are provided with the READ command, and auto precharge is either enabled or disabled for that burst access. If auto precharge is enabled, the row being accessed is precharged at the completion of the burst. For the generic READ commands used in the following illustrations, auto precharge is disabled.

During READ bursts, the valid data-out element from the starting column address will be available following the CAS latency after the READ command. Each subsequent data-out element will be valid by the next positive clock edge. The CAS Latency diagram shows general timing for each possible CAS latency setting.


Upon completion of a burst, assuming no other commands have been initiated, the DQs will go High-Z. A full-page burst will continue until terminated. (At the end of the page, it will wrap to column 0 and continue.)

Data from any READ burst may be truncated with a subsequent READ command, and data from a fixed-length READ burst may be immediately followed by data from a READ command. In either case, a continuous flow of data can be maintained. The first data element from the new burst follows either the last element of a completed burst or the last desired data element of a longer burst which is being truncated.

The new READ command should be issued x cycles before the clock edge at which the last desired data element is valid, where x equals the CAS latency minus one. This is shown in Consecutive READ Bursts for CAS latencies of two and three; data element n + 3 is either the last of a burst of four or the last desired of a longer burst. The 128Mb SDRAM uses a pipelined architecture and therefore does not require the 2n rule associated with a prefetch architecture. A READ command can be initiated on any clock cycle following a previous READ command. Full-speed random read accesses can be performed to the same bank, as shown in Random READ Accesses, or each subsequent READ may be performed to a different bank.

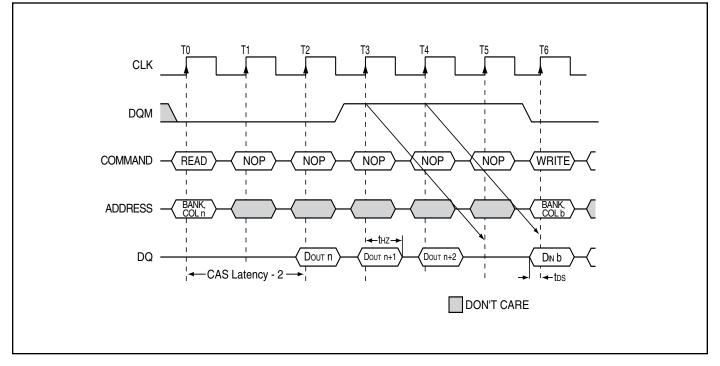
Data from any READ burst may be truncated with a subsequent WRITE command, and data from a fixed-length READ burst may be immediately followed by data from a WRITE command (subject to bus turnaround limitations). The WRITE burst may be initiated on the clock edge immediately following the last (or last desired) data element from the READ burst, provided that I/O contention can be avoided. In a given system design, there may be a possibility that the device driving the input data will go Low-Z before the SDRAM DQs go High-Z. In this case, at least a single-cycle delay should occur between the last read data and the WRITE command.

READ COMMAND

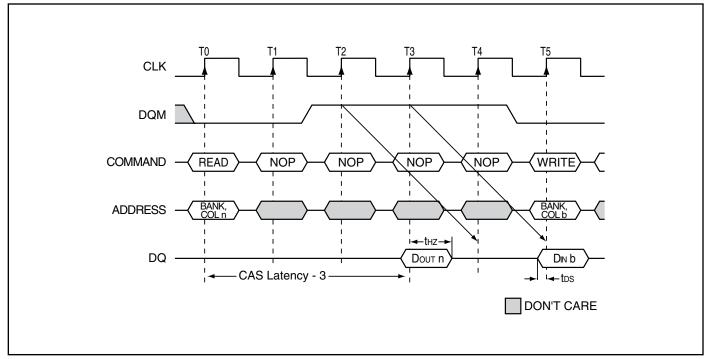
The DQM input is used to avoid I/O contention, as shown in Figures RW1 and RW2. The DQM signal must be asserted (HIGH) at least three clocks prior to the WRITE command (DQM latency is two clocks for output buffers) to suppress data-out from the READ. Once the WRITE command is registered, the DQs will go High-Z (or remain High-Z), regardless of the state of the DQM signal, provided the DQM was active on the clock just prior to the WRITE command that truncated the READ command. If not, the second WRITE will be an invalid WRITE. For example, if DQM was LOW during T4 in Figure RW2, then the WRITEs at T5 and T7 would be valid, while the WRITE at T6 would be invalid.

The DQM signal must be de-asserted prior to the WRITE command (DQM latency is zero clocks for input buffers) to ensure that the written data is not masked.

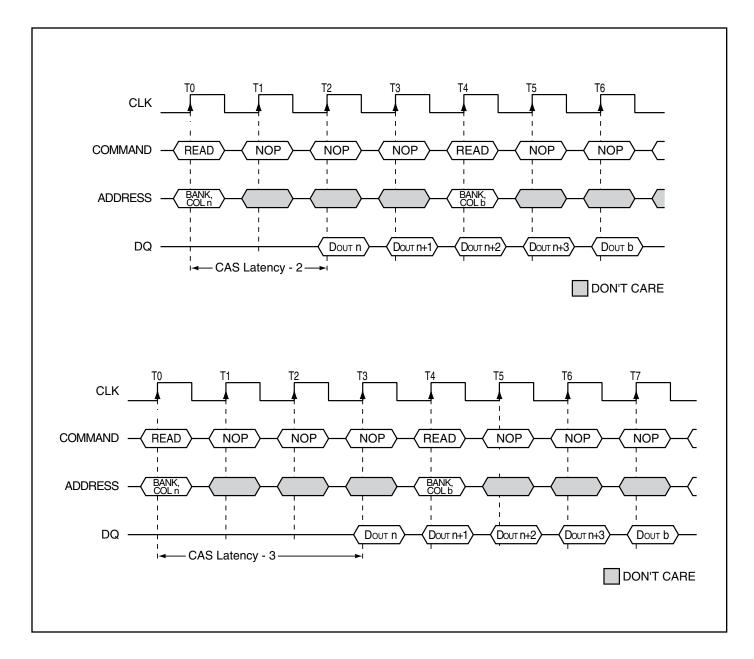
A fixed-length READ burst may be followed by, or truncated with, a PRECHARGE command to the same bank (provided that auto precharge was not activated), and a full-page burst may be truncated with a PRECHARGE command to the same bank. The PRECHARGE command should be issued *x* cycles before the clock edge at which the last desired data element is valid, where *x* equals the CAS latency minus one. This is shown in the READ to PRECHARGE


diagram for each possible CAS latency; data element n + 3 is either the last of a burst of four or the last desired of a longer burst. Following the PRECHARGE command, a subsequent command to the same bank cannot be issued until tRP is met. Note that part of the row precharge time is hidden during the access of the last data element(s).

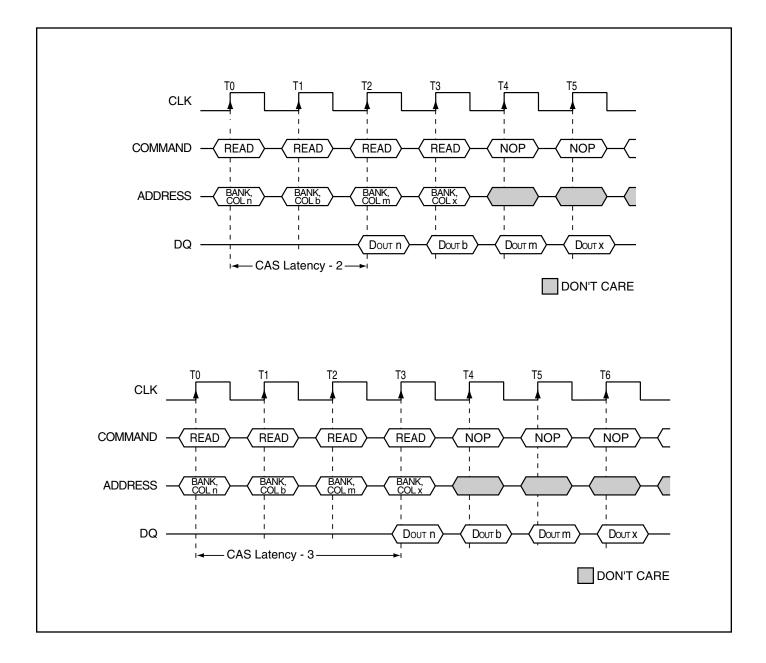
In the case of a fixed-length burst being executed to completion, a PRECHARGE command issued at the optimum time (as described above) provides the same operation that would result from the same fixed-length burst with auto precharge. The disadvantage of the PRE-CHARGE command is that it requires that the command and address buses be available at the appropriate time to issue the command; the advantage of the PRECHARGE command is that it can be used to truncate fixed-length or full-page bursts.


Full-page READ bursts can be truncated with the BURST TERMINATE command, and fixed-length READ bursts may be truncated with a BURST TERMINATE command, provided that auto precharge was not activated. The BURST TERMINATE command should be issued *x* cycles before the clock edge at which the last desired data element is valid, where *x* equals the CAS latency minus one. This is shown in the READ Burst Termination diagram for each possible CAS latency; data element n+3 is the last desired data element of a longer burst.

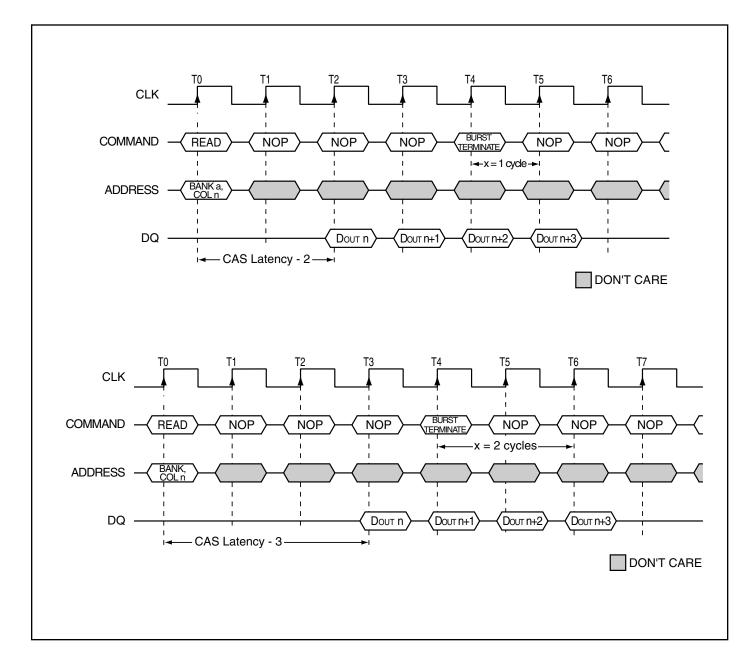
RW1 - READ to WRITE



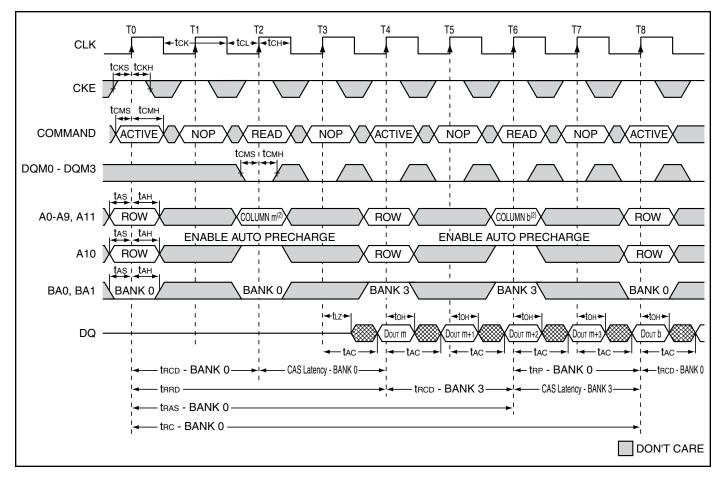
RW2 - READ to WRITE



CONSECUTIVE READ BURSTS

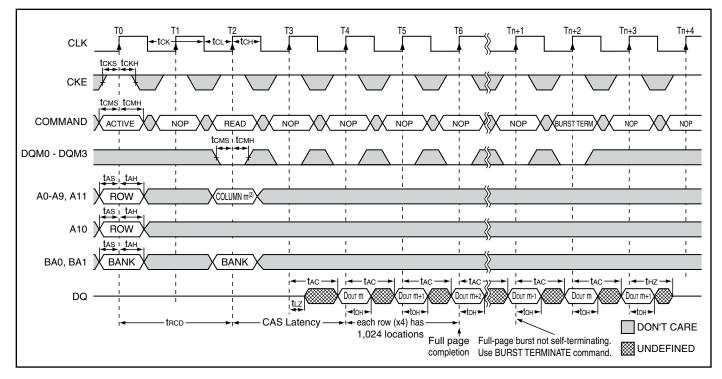


RANDOM READ ACCESSES



READ BURST TERMINATION

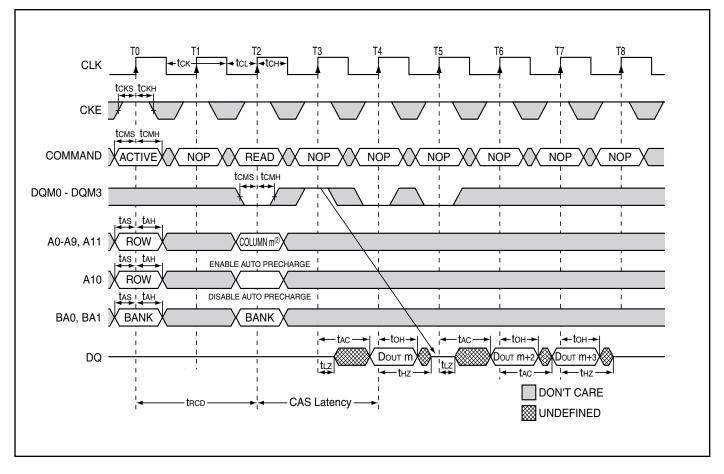
ALTERNATING BANK READ ACCESSES



Notes:

1) CAS latency = 2, Burst Length = 4 2) x32: A8, A9, A11 = "Don't Care"

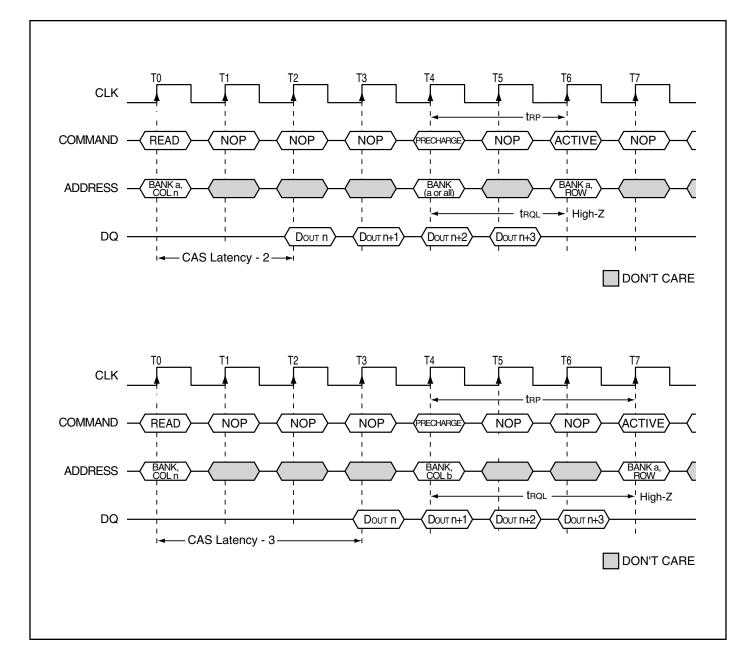
READ - FULL-PAGE BURST


Notes:

1) CAS latency = 2, Burst Length = Full Page 2) x32: A8, A9, A11 = "Don't Care"

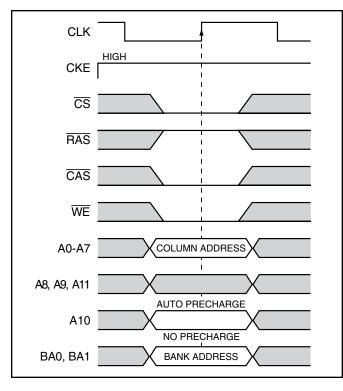
> Integrated Silicon Solution, Inc. - www.issi.com Rev. D 10/28/2015

READ - DQM OPERATION



Notes:

1) CAS latency = 2, Burst Length = 4 2) x32: A8, A9, A11 = "Don't Care"


READ to PRECHARGE

WRITES

WRITE bursts are initiated with a WRITE command, as shown in WRITE Command diagram.

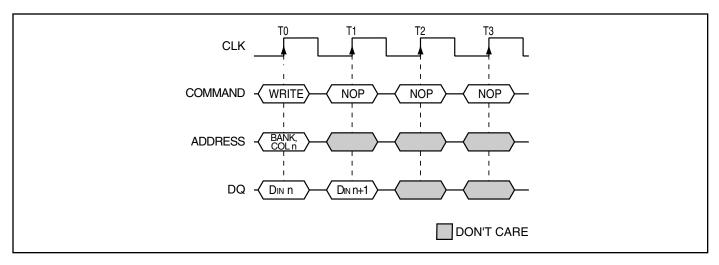
WRITE COMMAND

The starting column and bank addresses are provided with the WRITE command, and auto precharge is either enabled or disabled for that access. If auto precharge is enabled, the row being accessed is precharged at the completion of the burst. For the generic WRITE commands used in the following illustrations, auto precharge is disabled.

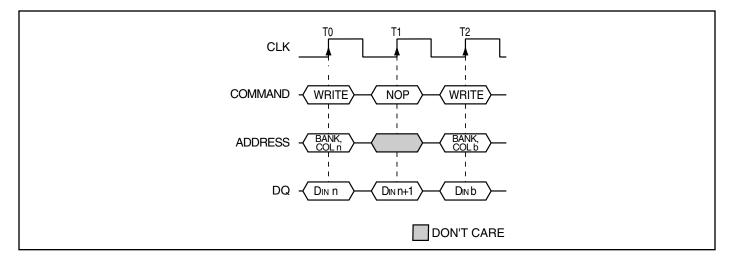
During WRITE bursts, the first valid data-in element will be registered coincident with the WRITE command. Subsequent data elements will be registered on each successive positive clock edge. Upon completion of a fixed-length burst, assuming no other commands have been initiated, the DQs will remain High-Z and any additional input data will be ignored (see WRITE Burst). A full-page burst will continue until terminated. (At the end of the page, it will wrap to column 0 and continue.)

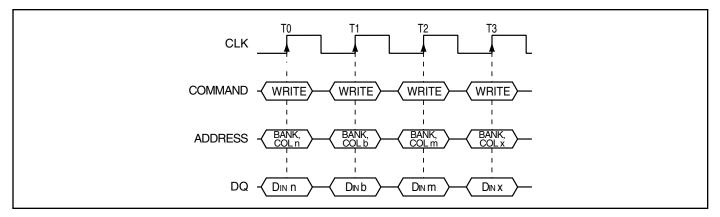
Data for any WRITE burst may be truncated with a subsequent WRITE command, and data for a fixed-length WRITE burst may be immediately followed by data for a WRITE command. The new WRITE command can be issued on any clock following the previous WRITE command, and the data provided coincident with the new command applies to the new command. An example is shown in WRITE to WRITE diagram. Data n + 1 is either the last of a burst of two or the last desired of a longer burst. The 128Mb SDRAM uses a pipelined architecture and therefore does not require the 2n rule associated with a prefetch architecture. A WRITE command can be initiated on any clock cycle following a previous WRITE command. Full-speed random write accesses within a page can be performed to the same bank, as shown in Random WRITE Cycles, or each subsequent WRITE may be performed to a different bank.

Data for any WRITE burst may be truncated with a subsequent READ command, and data for a fixed-length WRITE burst may be immediately followed by a subsequent READ command. Once the READ com mand is registered, the data inputs will be ignored, and WRITEs will not be executed. An example is shown in WRITE to READ. Data n + 1 is either the last of a burst of two or the last desired of a longer burst.

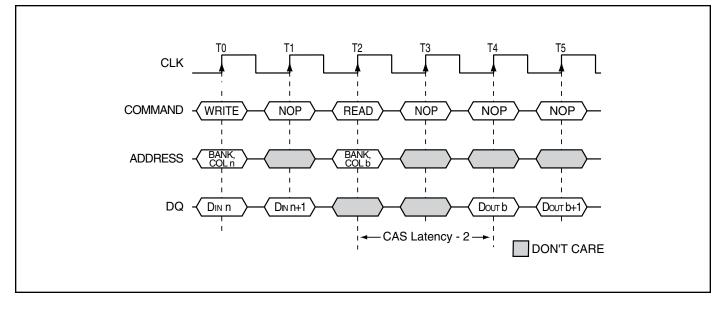

Data for a fixed-length WRITE burst may be followed by, or truncated with, a PRECHARGE command to the same bank (provided that auto precharge was not activated), and a full-page WRITE burst may be truncated with a PRECHARGE command to the same bank. The PRECHARGE command should be issued tDPL after the clock edge at which the last desired input data element is registered. The auto precharge mode requires a tDPL of at least one clock plus time, regardless of frequency. In addition, when truncating a WRITE burst, the DQM signal must be used to mask input data for the clock edge prior to, and the clock edge coincident with, the PRECHARGE command. An example is shown in the WRITE to PRE-CHARGE diagram. Data n+1 is either the last of a burst of two or the last desired of a longer burst. Following the PRECHARGE command, a subsequent command to the same bank cannot be issued until tRP is met.

In the case of a fixed-length burst being executed to completion, a PRECHARGE command issued at the optimum time (as described above) provides the same operation that would result from the same fixed-length burst with auto precharge. The disadvantage of the PRECHARGE command is that it requires that the command and address buses be available at the appropriate time to issue the command; the advantage of the PRECHARGE command is that it can be used to truncate fixed-length or full-page bursts.

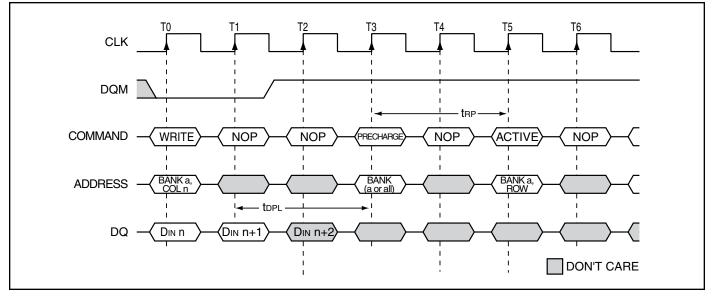

Fixed-length or full-page WRITE bursts can be truncated with the BURST TERMINATE command. When truncating a WRITE burst, the input data applied coincident with the BURST TERMINATE command will be ignored. The last data written (provided that DQM is LOW at that time) will be the input data applied one clock previous to the BURST TERMINATE command. This is shown in WRITE Burst Termination, where data *n* is the last desired data element of a longer burst.


WRITE BURST

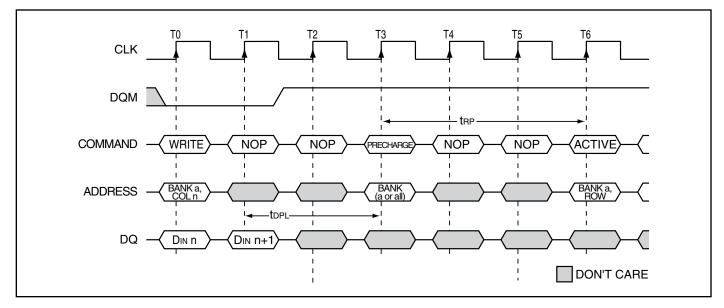
WRITE TO WRITE



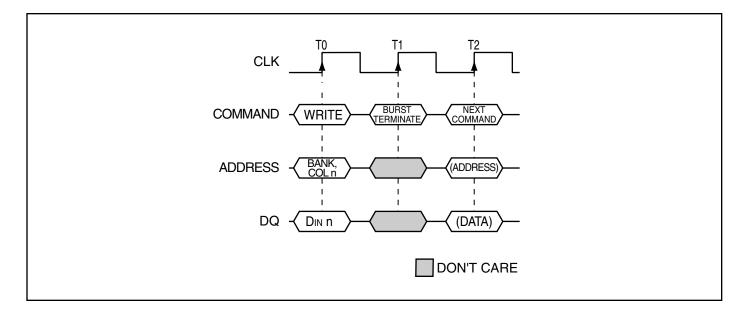
RANDOM WRITE CYCLES



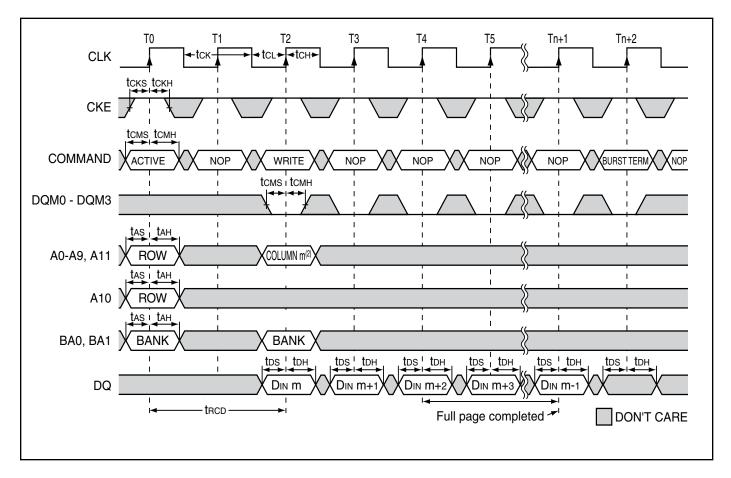
WRITE to READ



WP1 - WRITE to PRECHARGE

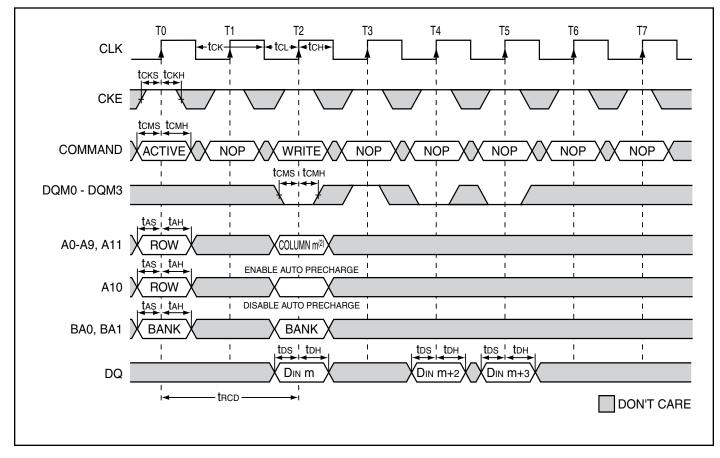


WP2 - WRITE to PRECHARGE



WRITE Burst Termination

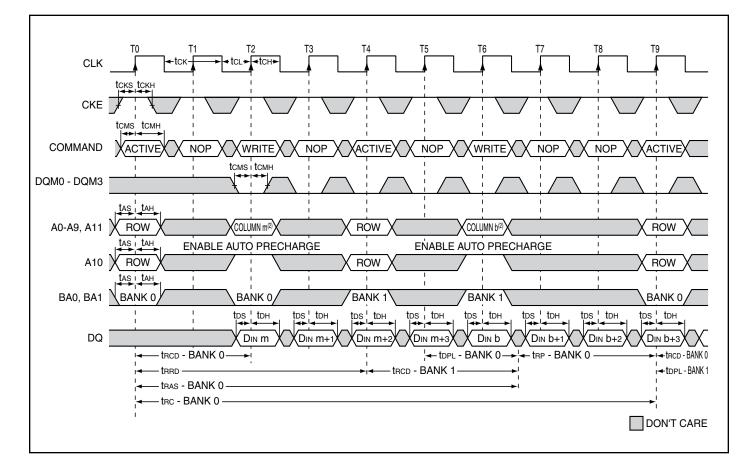
WRITE - FULL PAGE BURST


Notes:

1) Burst Length = Full Page

2) x32: A8, A9, A11 = "Don't Care"

WRITE - DQM OPERATION

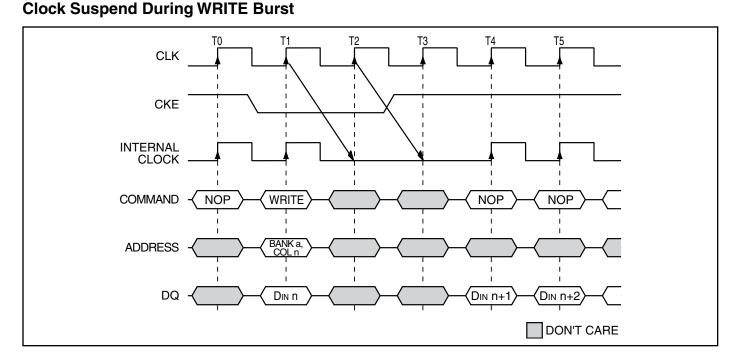

Notes:

1) Burst Length = 4

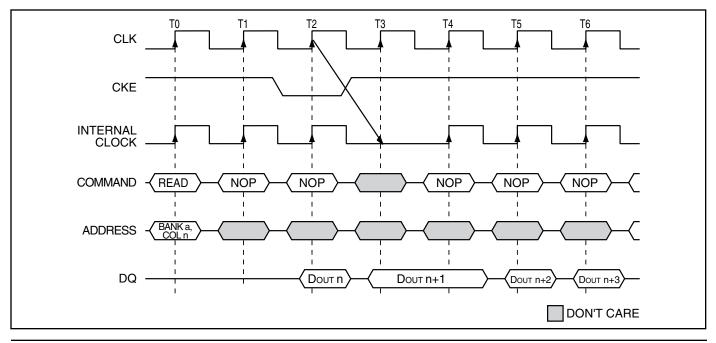
2) x32: A8, A9, A11 = "Don't Care"

ALTERNATING BANK WRITE ACCESSES

- 1) Burst Length = 4
- 2) x32: A8, A9, A11 = "Don't Care"

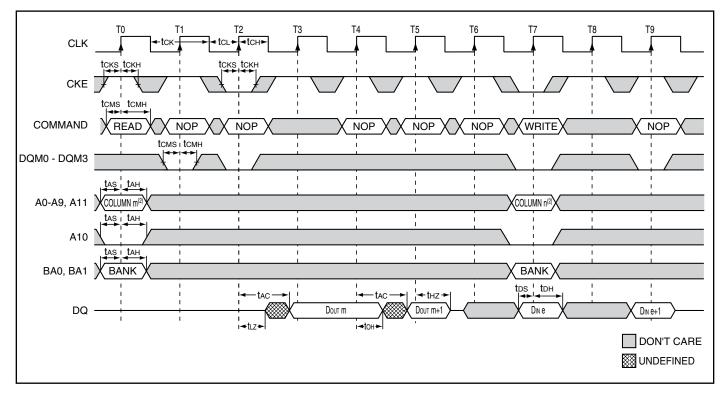

CLOCK SUSPEND

Clock suspend mode occurs when a column access/burst is in progress and CKE is registered LOW. In the clock suspend mode, the internal clock is deactivated, "freezing" the synchronous logic.


For each positive clock edge on which CKE is sampled LOW, the next internal positive clock edge is suspended. Any command or data present on the input pins at the time

of a suspended internal clock edge is ignored; any data present on the DQ pins remains driven; and burst counters are not incremented, as long as the clock is suspended. (See following examples.)

Clock suspend mode is exited by registering CKE HIGH; the internal clock and related operation will resume on the subsequent positive clock edge.



Clock Suspend During READ Burst

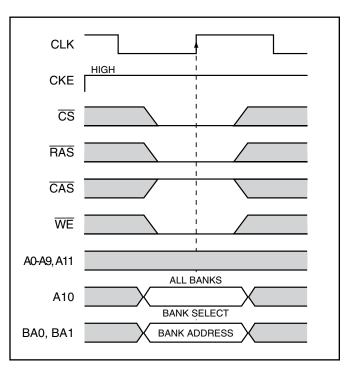
CLOCK SUSPEND MODE

Notes:

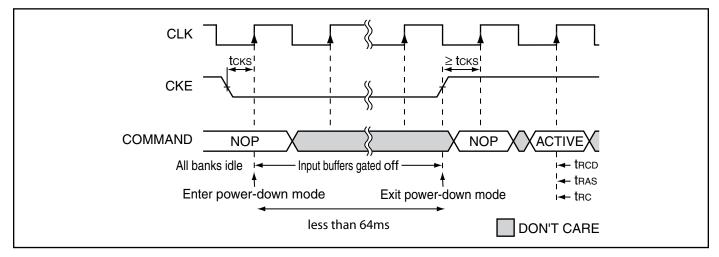
1) \overline{CAS} latency = 3, Burst Length = 2, Auto Precharge is disabled.

2) x32: A8, A9, A11 = "Don't Care"

PRECHARGE

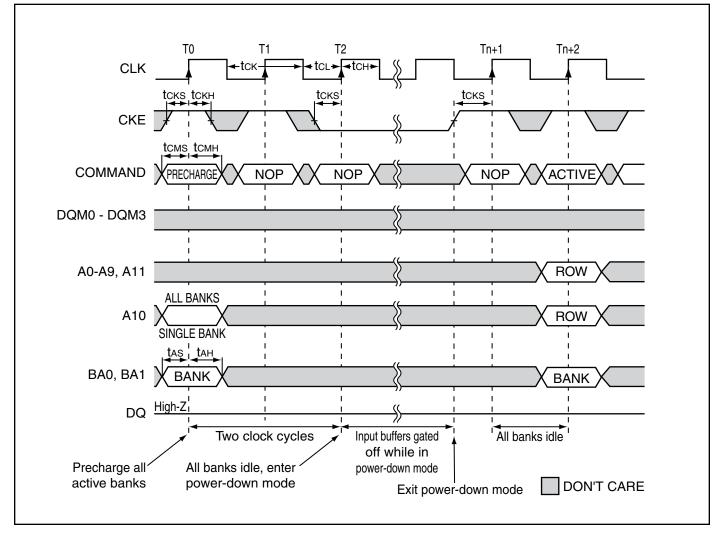

The PRECHARGE command (see figure) is used to deactivate the open row in a particular bank or the open row in all banks. The bank(s) will be available for a subsequent row access some specified time (tRP) after the PRECHARGE command is issued. Input A10 determines whether one or all banks are to be precharged, and in the case where only one bank is to be precharged, inputs BA0, BA1 select the bank. When all banks are to be precharged, inputs BA0, BA1 are treated as "Don't Care." Once a bank has been precharged, it is in the idle state and must be activated prior to any READ or WRITE commands being issued to that bank.

POWER-DOWN


Power-down occurs if CKE is registered LOW coincident with a NOP or COMMAND INHIBIT when no accesses are in progress. If power-down occurs when all banks are idle, this mode is referred to as precharge power-down; if power-down occurs when there is a row active in either bank, this mode is referred to as active power-down. Entering power-down deactivates the input and output buffers, excluding CKE, for maximum power savings while in standby. The device may not remain in the power-down state longer than the refresh period (64ms) since no refresh operations are performed in this mode.

The power-down state is exited by registering a NOP or COMMAND INHIBIT and CKE HIGH at the desired clock edge (meeting tcks). See figure below (Power-Down).

PRECHARGE Command



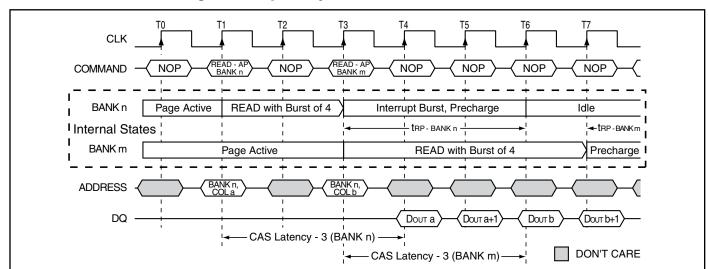
POWER-DOWN

POWER-DOWN MODE CYCLE

Note:

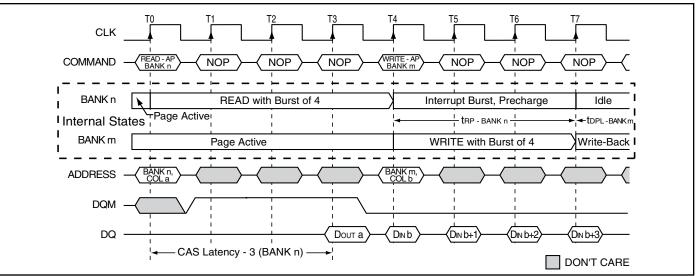
x32: A8, A9, A11 = "Don't Care"

BURST READ/SINGLE WRITE


The burst read/single write mode is entered by programming the write burst mode bit (M9) in the mode register to a logic 1. In this mode, all WRITE commands result in the access of a single column location (burst of one), regardless of the programmed burst length. READ commands access columns according to the programmed burst length and sequence, just as in the normal mode of operation (M9 = 0).

CONCURRENT AUTO PRECHARGE

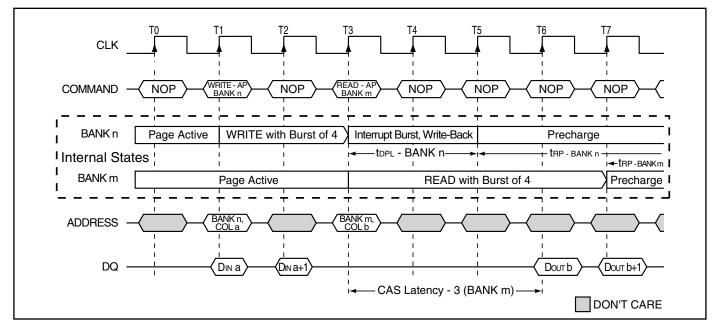
An access command (READ or WRITE) to another bank while an access command with auto precharge enabled is executing is not allowed by SDRAMs, unless the SDRAM supports CONCURRENT AUTO PRECHARGE. *ISSI* SDRAMs support CONCURRENT AUTO PRECHARGE. Four cases where CONCURRENT AUTO PRECHARGE occurs are defined below.

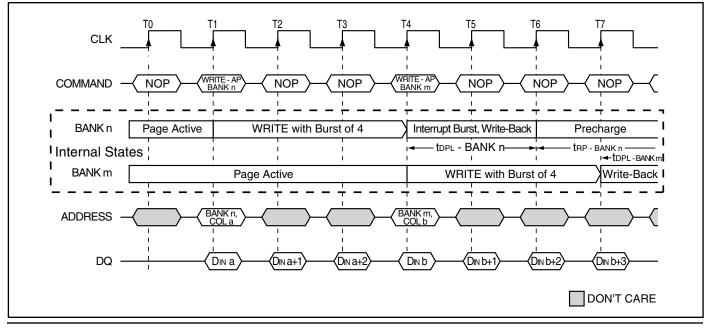

READ with Auto Precharge

- 1. Interrupted by a READ (with or without auto precharge): A READ to bank m will interrupt a READ on bank n, CAS latency later. The PRECHARGE to bank n will begin when the READ to bank m is registered.
- 2. Interrupted by a WRITE (with or without auto precharge): A WRITE to bank m will interrupt a READ on bank n when registered. DQM should be used three clocks prior to the WRITE command to prevent bus contention. The PRECHARGE to bank n will begin when the WRITE to bank m is registered.

READ With Auto Precharge interrupted by a READ

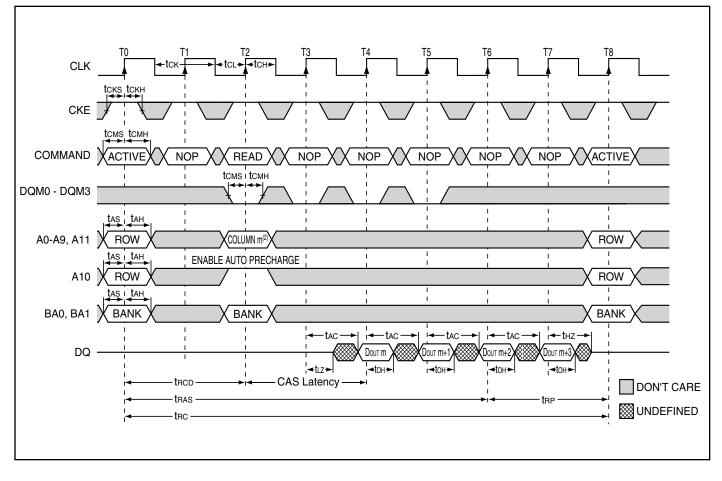
READ With Auto Precharge interrupted by a WRITE


48


WRITE with Auto Precharge

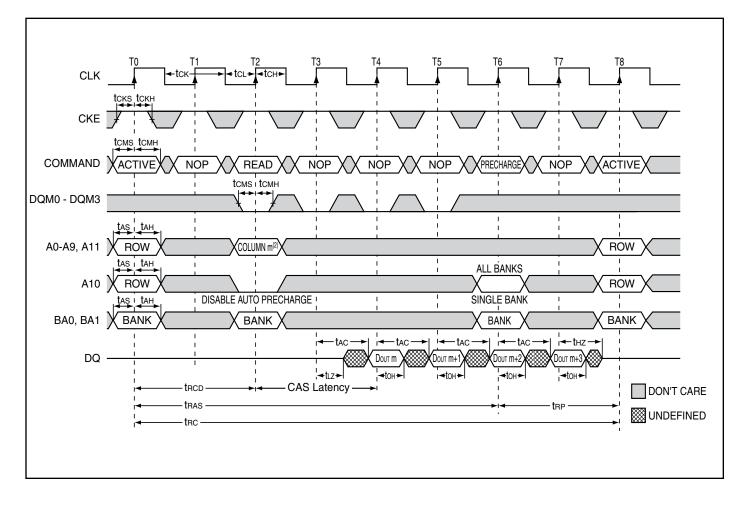
- 3. Interrupted by a READ (with or without auto precharge): A READ to bank m will interrupt a WRITE on bank n when registered, with the data-out appearing (CAS latency) later. The PRECHARGE to bank n will begin after tDPL is met, where tDPL begins when the READ to bank m is registered. The last valid WRITE to bank n will be data-in registered one clock prior to the READ to bank m.
- 4. Interrupted by a WRITE (with or without auto precharge): AWRITE to bank m will interrupt a WRITE on bank n when registered. The PRECHARGE to bank n will begin after tDPL is met, where tDPL begins when the WRITE to bank m is registered. The last valid data WRITE to bank n will be data registered one clock prior to a WRITE to bank m.

WRITE With Auto Precharge interrupted by a READ


WRITE With Auto Precharge interrupted by a WRITE

Integrated Silicon Solution, Inc. - www.issi.com Rev. D 10/28/2015

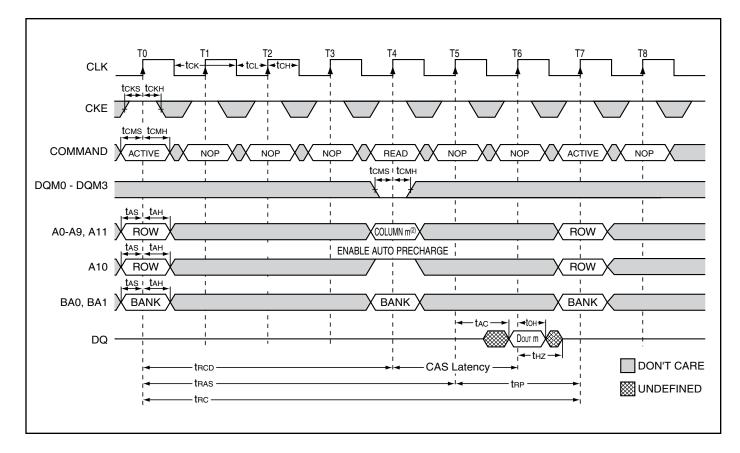
READ WITH AUTO PRECHARGE



Notes:

1) CAS latency = 2, Burst Length = 4 2) x32: A8, A9, A11 = "Don't Care"

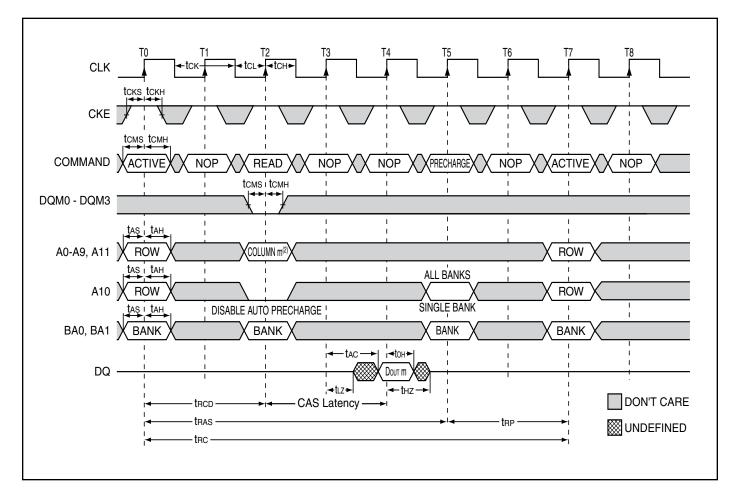
READ WITHOUT AUTO PRECHARGE



Notes:

1) CAS latency = 2, Burst Length = 4 2) x32: A8, A9, A11 = "Don't Care"

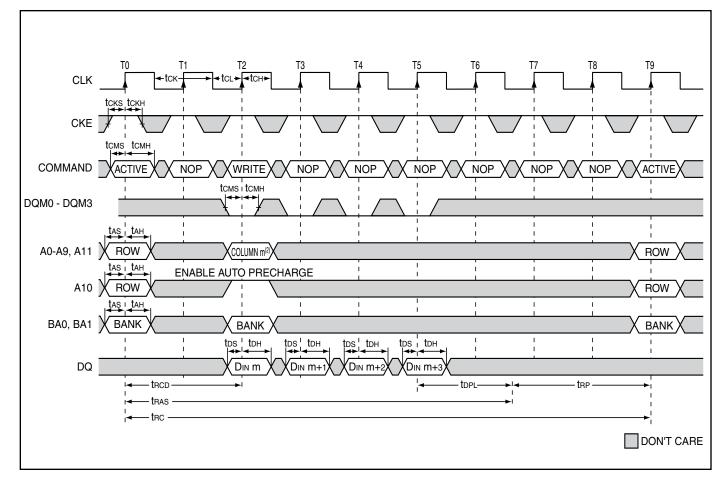
SINGLE READ WITH AUTO PRECHARGE



Notes:

1) CAS latency = 2, Burst Length = 1 2) x32: A8, A9, A11 = "Don't Care"

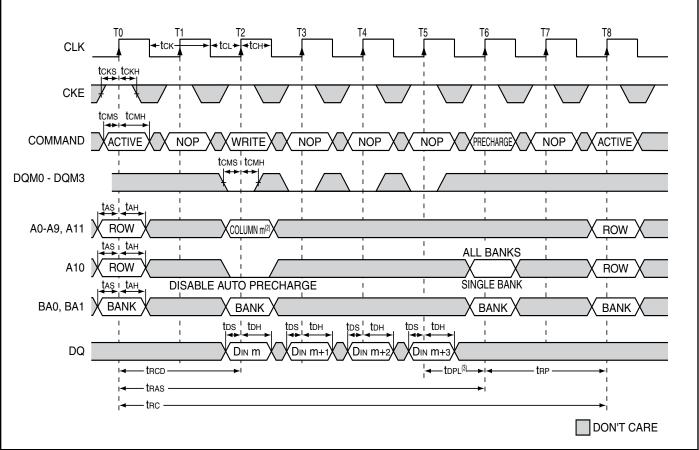
SINGLE READ WITHOUT AUTO PRECHARGE


Notes:

1) \overline{CAS} latency = 2, Burst Length = 1

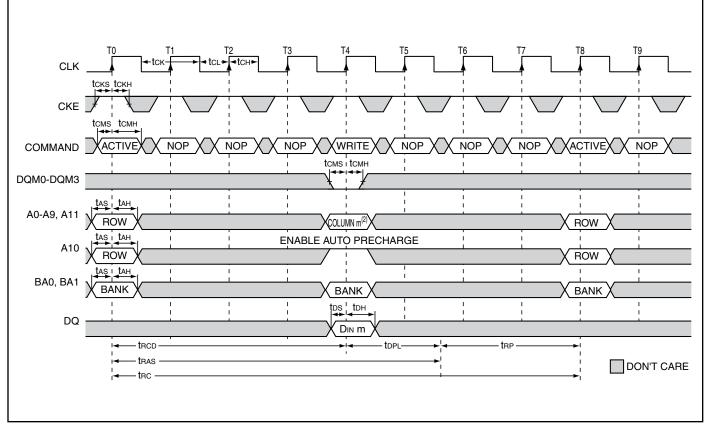
2) x32: A8, A9, A11 = "Don't Care"

WRITE - WITH AUTO PRECHARGE

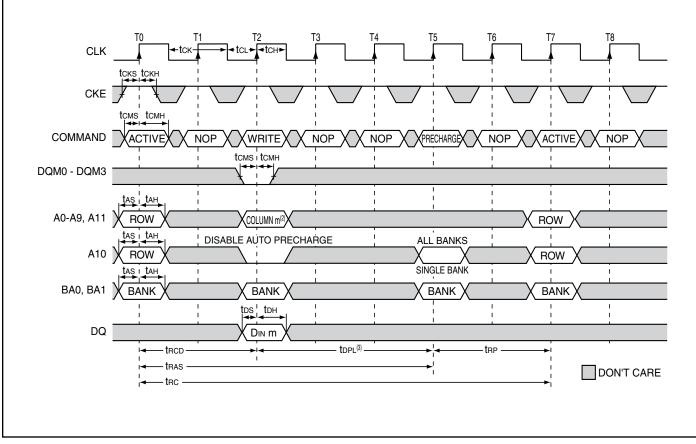


Notes:

1) Burst Length = 4 2) x32: A8, A9, A11 = "Don't Care"


WRITE - WITHOUT AUTO PRECHARGE

- 1) Burst Length = 4
- 2) x32: A8, A9, A11 = "Don't Care"
- 3) tras must not be violated.


SINGLE WRITE WITH AUTO PRECHARGE

- 1) Burst Length = 1
- 2) x32: A8, A9, A11 = "Don't Care"
- 3) tras must not be violated.

SINGLE WRITE - WITHOUT AUTO PRECHARGE

- 1) Burst Length = 1
- 2) x32: A8, A9, A11 = "Don't Care"
- 3) tras must not be violated.

ORDERING INFORMATION - VDD = 3.3V

Commercial Range: 0°C to +70°C

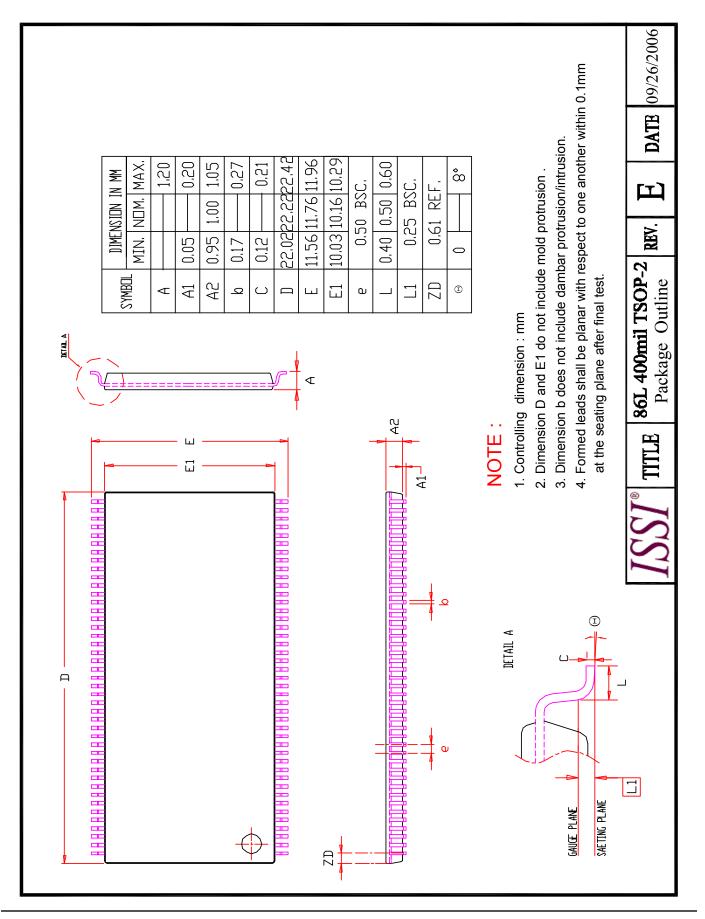
Frequency	Speed (ns)	Order Part No.	Package
166 MHz	6	IS42S32400F-6TL	86-Pin TSOPII, Lead-free
166 MHz	6	IS42S32400F-6BL	90-Ball TF-BGA, Lead-free
143 MHz	7	IS42S32400F-7TL	86-Pin TSOPII, Lead-free
143 MHz	7	IS42S32400F-7BL	90-Ball TF-BGA, Lead-free
133 MHz	7.5	IS42S32400F-75ETL	86-Pin TSOPII, Lead-free

Industrial Range: -40°C to +85°C

···· · · · · · · · · ·				
Frequency	Speed (ns)	Order Part No.	Package	
166 MHz	6	IS42S32400F-6TLI	86-Pin TSOPII, Lead-free	
166 MHz	6	IS42S32400F-6BLI	90-Ball TF-BGA, Lead-free	
166 MHz	6	IS42S32400F-6BI	90-Ball TF-BGA, Leaded	
143 MHz	7	IS42S32400F-7TLI	86-Pin TSOPII, Lead-free	
143 MHz	7	IS42S32400F-7TI	86-Pin TSOPII, Leaded	
143 MHz	7	IS42S32400F-7BI	90-Ball TF-BGA. Leaded	
143 MHz	7	IS42S32400F-7BLI	90-Ball TF-BGA, Lead-free	
133 MHz	7.5	IS42S32400F-75ETLI	86-Pin TSOPII, Lead-free	

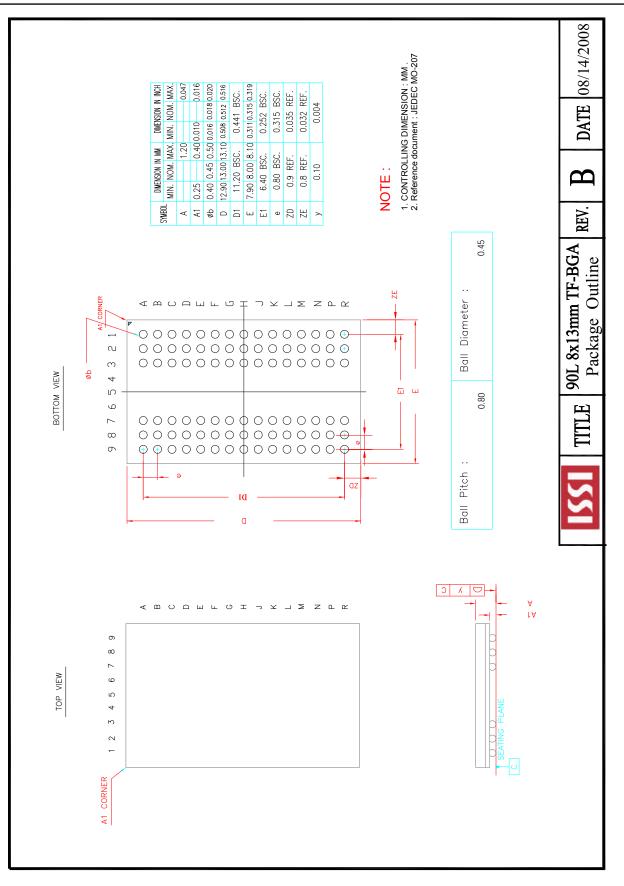
ORDERING INFORMATION - VDD = 3.3V

Automotive Range: -40°C to +85°C


Frequency	Speed (ns)	Order Part No.	Package		
166 MHz	6	IS45S32400F-6TLA1	86-Pin TSOPII, Lead-free		
166 MHz	6	IS45S32400F-6BLA1	90-Ball TF-BGA, Lead-free		
143 MHz	7	IS45S32400F-7TLA1	86-Pin TSOPII, Lead-free		
143 MHz	7	IS45S32400F-7BLA1	90-Ball TF-BGA, Lead-free		
143 MHz	7	IS45S32400F-7BA1	90-Ball TF-BGA, Leaded		

Automotive Range: -40°C to +105°C

	-		
Frequency	Speed (ns)	Order Part No.	Package
166 MHz	6	IS45S32400F-6TLA2	86-Pin TSOPII, Lead-free
166 MHz	6	IS45S32400F-6BLA2	90-Ball TF-BGA, Lead-free
143 MHz	7	IS45S32400F-7TLA2	86-Pin TSOPII, Lead-free
143 MHz	7	IS45S32400F-7BLA2	90-Ball TF-BGA, Lead-free


*Contact Product Manager for leaded part support.

Integrated Silicon Solution, Inc. - www.issi.com Rev. D 10/28/2015

