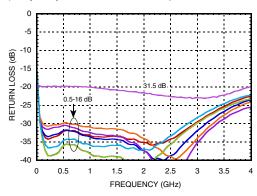

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL SERIAL CONTROL ATTENUATOR, DC - 4 GHz

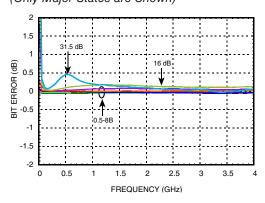
Insertion Loss


Normalized Attenuation

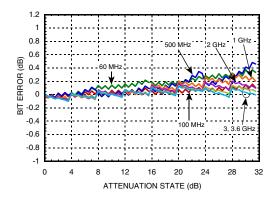
(Only Major States are Shown)

Input Return Loss

(Only Major States are Shown)


Output Return Loss

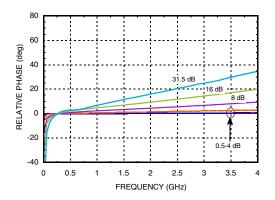
(Only Major States are Shown)

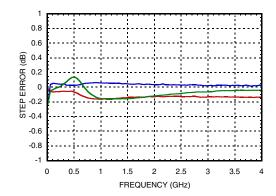


Bit Error vs. Frequency

(Only Major States are Shown)

Bit Error vs. Attenuation State




0.5 dB LSB GaAs MMIC 6-BIT DIGITAL SERIAL CONTROL ATTENUATOR, DC - 4 GHz

Relative Phase vs. Frequency

(Only Major States are Shown)

Worst Case Step Error Between Successive Attenuation States

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL SERIAL CONTROL ATTENUATOR, DC - 4 GHz

Serial Input Truth Table

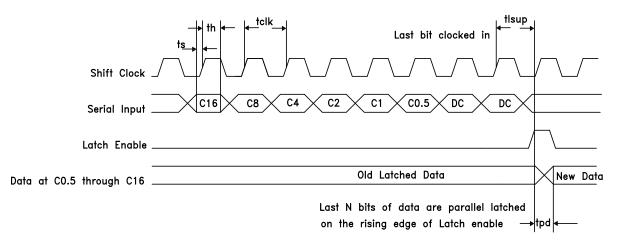
Latch Enable	Shift Clock	Reset	Function
Х	Х	L	Shift register cleared
Х	↑	Н	Shift register clocked
↑	х	Н	Contents of shift register transferred to Digital Attenuator

Digital Control Voltages

State	Vcc = +5V
Low	0 to 1.3V
High	3 to 5V

Timing

Parameter	Symbol	Vcc = +5V		Units
		Min.	Max.	
Serial Input Setup Time	ts	20	-	ns
Hold time from Serial Input to Shift Clock	th	0	-	ns
Setup time from Shift Clock to Latch Enable	tlsup	40	-	ns
Latch Enable Window, Latch Enable to C0.5 through C8	tpd	-	30	ns
Setup time from Reset to Shift Clock	-	20	-	ns
Clock Frequency (1/tclk)	fclk	-	30	MHz

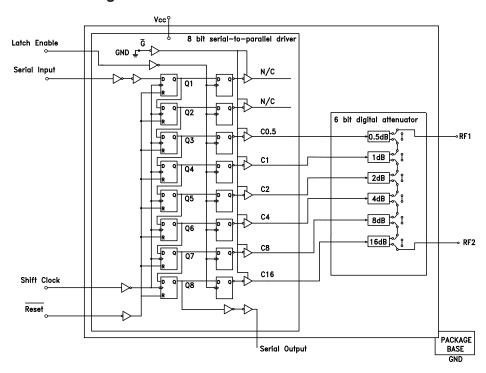

Truth Table

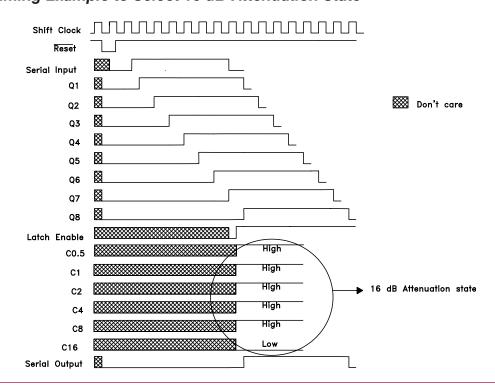
Control Voltage Input						Attenuation
C16	C8	C4	C2	C1	C0.5	State RF1 - RF2
High	High	High	High	High	High	Reference I.L.
High	High	High	High	High	Low	0.5 dB
High	High	High	High	Low	High	1 dB
High	High	High	Low	High	High	2 dB
High	High	Low	High	High	High	4 dB
High	Low	High	High	High	High	8 dB
Low	High	High	High	High	High	16 dB
Low	Low	Low	Low	Low	Low	31.5 dB

Any combination of the above states will provide an attenuation approximately equal to the sum of the bits selected.

Timing Diagram

Serial data is shifted in on the rising edge of the Shift Clock, MSB first, and is latched on the rising edge of Latch Enable.





0.5 dB LSB GaAs MMIC 6-BIT DIGITAL SERIAL CONTROL ATTENUATOR, DC - 4 GHz

Logic / Functional Diagram

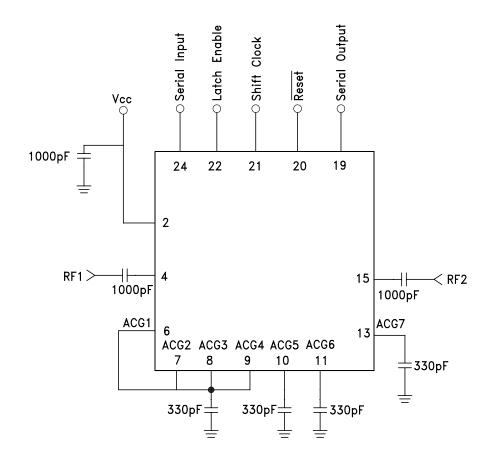
Programming Example to Select 16 dB Attenuation State

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

For price, delivery, and to place orders: Analog Devices, Inc., One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106 Phone: 781-329-4700 • Order online at www.analog.com Application Support: Phone: 1-800-ANALOG-D

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL SERIAL CONTROL ATTENUATOR, DC - 4 GHz

Pin Descriptions

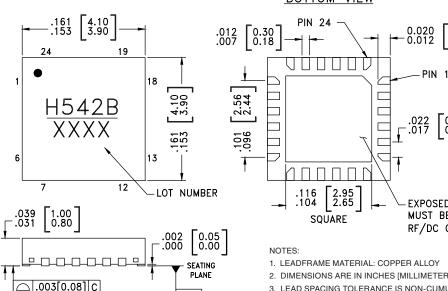

	I		
Pin Number	Function	Description	Interface Schematic
1, 3, 5, 14, 16-18, 23	N/C	These pins are not connected internally. However, all data shown herein was measured with these pins connected to RF/DC Ground.	
2	Vcc	Supply Voltage.	
4, 15	RF1, RF2	This pin is DC coupled and matched to 50 Ohms Blocking capacitors are required. Select value based on lowest frequency of operation.	RF1, RF2
6 - 11, 13	ACG1 - ACG7	External capacitor to ground is required. Select value for lowest frequency of operation. Place capacitor as close to pins as possible.	
12	N/C	This pin is not connected internally and any connection made to it externally will have no effect on product performance.	
19	Serial Output	Serial data output. Serial input data delayed by 8 clock cycles	Vcc Serial Output
20	Reset	See truth table, control voltage table and timing diagram.	20Kn 20Kn 20Kn 20Kn 20Kn 20Kn 20Kn 20Kn
21	Shift Clock		Vcc
22	Latch Enable		
24	Serial Input		Shiff Clock Latch Enable Serial Input 20Kn
	GND	Package bottom has an exposed metal paddle that must be connected to RF/DC Ground.	GND

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL SERIAL CONTROL ATTENUATOR, DC - 4 GHz

Application Circuit

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL SERIAL CONTROL ATTENUATOR, DC - 4 GHz

Absolute Maximum Ratings


RF Input Power (DC - 4.0 GHz)	+28 dBm (T = +85 °C)	
Digital Inputs (Reset, Shift Clock, Latch Enable & Serial Input)	-0.5 to (Vcc +0.5) V	
Bias Voltage (Vcc)	+5.6 V	
Channel Temperature	150 °C	
Continuous Pdiss (T = 85 °C) (derate 8.6 mW/°C above 85 °C)	0.56 W	
Thermal Resistance	116 °C/W	
Storage Temperature	-65 to +150 °C	
Operating Temperature	-40 to +85 °C	
ESD Sensitivity (HBM)	Class 1A	

Bias Voltage

Vcc (V)	Idd (Typ.) (mA)
+4.5	2.7
+5.0	2.8
+5.5	2.9

Outline Drawing

_ _

BOTTOM VIEW

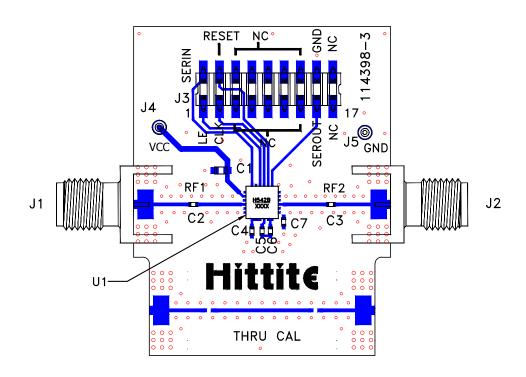
EXPOSED GROUND PADDLE MUST BE CONNECTED TO RF/DC GROUND

- 2. DIMENSIONS ARE IN INCHES [MILLIMETERS]
- 3. LEAD SPACING TOLERANCE IS NON-CUMULATIVE.
- 4. PAD BURR LENGTH SHALL BE 0.15mm MAXIMUM. PAD BURR HEIGHT SHALL BE 0.05mm MAXIMUM.
- 5. PACKAGE WARP SHALL NOT EXCEED 0.05mm.
- 6. ALL GROUND LEADS AND GROUND PADDLE MUST BE SOLDERED TO PCB RF GROUND.
- 7. REFER TO HITTITE APPLICATION NOTE FOR SUGGESTED LAND PATTERN.

Package Information

Part Number	Package Body Material	Lead Finish	MSL Rating	Package Marking [2]
HMC542BLP4E	RoHS-compliant Low Stress Injection Molded Plastic	100% matte Sn	MSL1 [1]	<u>H542B</u> XXXX

^[1] Max peak reflow temperature of 260 °C


^{[2] 4-}Digit lot number XXXX

0.5 dB LSB GaAs MMIC 6-BIT DIGITAL SERIAL CONTROL ATTENUATOR, DC - 4 GHz

Evaluation PCB

List of Materials for Evaluation PCB 114399 - HMC542BLP4 [1]

Item	Description
J1 - J2	PCB Mount SMA Connector
J3	18 Pin DC Connector
J4, J5	DC Pin
C1	1000 pF Capacitor, 0603 Pkg.
C2, C3	1000 pF Capacitor, 0402 Pkg.
C4 - C7	330 pF Capacitor, 0402 Pkg.
U1	HMC542BLP4E Digital Attenuator
PCB [2]	114398 Evaluation PCB

^[1] Reference this number when ordering complete evaluation PCB

The circuit board used in the application should use RF circuit design techniques. Signal lines should have 50 Ohm impedance while the package ground leads and exposed paddle should be connected directly to the ground plane similar to that shown. A sufficient number of via holes should be used to connect the top and bottom ground planes. The evaluation circuit board shown is available from Hittite upon request.

^[2] Circuit Board Material: Rogers 4350 or Arlon 25FR