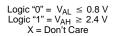

Vishay Siliconix



FUNCTIONAL BLOCK DIAGRAM AND PIN CONFIGURATION

	TRUTH TABLE — DG534A												
ī/o	A ₁	A ₀	EN	WR	RS	4 /2 ^a	On Switch						
Х	Х	х	Х	F	1	1	Maintains previous state						
Х	Х	Х	Х	Х	0	Х	None (latches cleared)						
Х	Х	Х	0	0	1	Х	None						
0	0	0	1	0	1	0	S _{A1}						
0	0	1	1	0	1	0	S _{A2}	D _A and D _B may be					
0	1	0	1	0	1	0	S _{B1}	connected externally	Latches Transparent				
0	1	1	1	0	1	0	S _{B2}						
0	Х	0	1	0	1	1	S _{A1} and	S _{B1}	1				
0	Х	1	1	0	1	1	S _{A2} and S _{B2}						
1		Note b	•	1	1	Note c			•				

DG534A/538A Vishay Siliconix

	TRUTH TABLE — DG538A													
Ī/O	A ₂	A ₁	A ₀	EN	WR	RS	8 /4 ^a	On Switch						
Х	Х	Х	х	Х		1	1	Maintains previous state						
Х	Х	Х	Х	Х	Х	0	Х	None (latches cleared)						
Х	Х	Х	Х	0	0	1	Х	None						
0	0	0	0	1	0	1	0	S _{A1}						
0	0	0	1	1	0	1	0	S _{A2}	_					
0	0	1	0	1	0	1	0	S _{A3}	_					
0	0	1	1	1	0	1	0	S _{A4}	D _A and D _B should be					
0	1	0	0	1	0	1	0	S _{B1}	connected externally					
0	1	0	1	1	0	1	0	S _{B2}	_	Latches Transparent				
0	1	1	0	1	0	1	0	S _{B3}	_					
0	1	1	1	1	0	1	0	S _{B4}	_					
0	Х	0	0	1	0	1	1	S _{A1} and	S _{B1}					
0	Х	0	1	1	0	1	1	S _{A2} and	S _{B2}					
0	Х	1	0	1	0	1	1	S _{A3} and	S _{B3}	1				
0	Х	1	1	1	0	1	1	S _{A4} and	S _{B4}	1				
1		No	te b	•	1	1	Note c			•				

 $\begin{array}{l} \text{Logic "0"} = \ \text{V}_{AL} \ \leq \ 0.8 \ \text{V} \\ \text{Logic "1"} = \ \text{V}_{AH} \ \geq \ 2 \ \text{V} \\ \text{X} = \text{Don't Care} \end{array}$

Notes:

a. Connect D_A and D_B together externally for single-ended operation.
b. With Ī/O high, A_n and EN pins become outputs and reflect latch contents. See timing diagrams for more detail.
c. 8/4 can be either "1" or "0" but should not change during these operations.

ORDERING INFORMATION										
Temperature Range	Package	Part Number								
DG534A										
-40 to 85°C	20-Pin Plastic DIP	DG534ADJ								
-40 to 85 C	20-Pin PLCC	DG534ADN								
–55 to 125°C	20-Pin Sidebraze	DG534AAP/883, 5962-906021MRC								
DG538A		-								
-40 to 85°C	28-Pin Plastic DIP	DG538ADJ								
-40 10 85 C	28-Pin PLCC	DG538ADN								
–55 to 125°C	28-Pin Sidebraze	DG538AAP/883, 5962-8976001MXA								

Downloaded from Arrow.com.

ABSOLUTE MAXIMUM RATINGS

V+ to GND	–0.3 V to +21 V
V+ to V–	–0.3 V to +21 V
V– to GND	–10 V to +0.3 V
V _L	0 V to (V+) + 0.3 V
Digital Inputs	(V–) –0.3 V to (V _L) + 0.3 V
	or 20 mA, whichever occurs first
V _S , V _D	(V–) –0.3 V to (V–) + 14 V
	or 20 mA, whichever occurs first
Current (any terminal) Continuous	20 mA
Current(S or D) Pulsed I ms 10% Duty	40 mA

Storage Temperature	(A Suffix)
	(D Suffix)
Power Dissipation (Packa	ge) ^a
Plastic DIP ^b	
PLCC ^c	
Sidebrazed	1200 mW
Notes:	

a. All leads soldered or welded to PC board.
b. Derate 8.3 mW/°C above 75°C.
c. Derate 6 mW/°C above 75°C.
d. Derate 16 mW/°C above 75°C.

SPECIFICATION	Sa									
		Test Conditions Unless Otherwise Specified				A Suffix -55 to 125°C		D Suffix -40 to 85°C		
Parameter	Parameter Symbol V+ = 15 V, V- = -3 V, V_L = 5 V WR = 0.8 V, RS, EN= 2 V		Temp ^b	Тур ^с	Min ^d	Max ^d	Min ^d	Max ^d	Unit	
Analog Switch	1									•
Analog Signal Range ^g	V _{ANALOG}	V-=-5 V		Full		-5	8	-5	8	V
Drain-Source On-Resistance	r _{DS(on)}	$I_{S} = -10 \text{ mA}, V_{S} = 0 \text{ V}$	I _S = -10 mA, V _S = 0 V		45		90 120		90 120	6
Resistance Match Between Channels	$\Delta r_{\text{DS(on)}}$	$I_S = -10 \text{ mA}, V_S = 0 \text{ V}$ $V_{AIL} = 0.8 \text{ V}, V_{AIH} = 2 \text{ V}$ Sequence Each Switch 0	/ Dn	Room			9		9	Ω
Source Off Leakage Current	I _{S(off)}	V _S = 8 V, V _D = 0 V, EN = 0	.8 V	Room Full	0.05	-5 -50	5 50	-5 -50	5 50	
Drain Off Leakage Current	I _{D(off)}	V _S = 0 V, V _D = 8 V, EN = 0	.8 V	Room Full	0.1	-20 -500	20 500	-20 -100	20 100	nA
Drain On Leakage Current	I _{D(on)}	$V_{S} = V_{D} = 8 V$		Room Full	0.1	-20 -1000	20 1000	-20 -200	20 200	
Digital Control										
Input Voltage High	V _{AIH}			Full		2		2		
Input Voltage Low	V _{AIL}			Full			0.8		0.8	V
Address Input Current	I _{AI}	$V_{AI} = 0 V$, or 2 V or 5 V		Room Full	-0.1	-1 -10	1 10	-1 -10	1 10	μΑ
Address Output Current	I _{AO}	V _{AO} = 2.7 V		Room	-21		-2.5		-2.5	mA
Address Odiput Current	IAO	V _{AO} = 0.4 V		Room	3.5	2.5		2.5		ma
Dynamic Characteris	stics									
On State Input	C	See Figure 11	PLCC	Room	28		40		40	
Capacitance ^g	C _{S(on)}	See Figure 11	DIP	Room	31		45		45	
Off State Input	Cara		PLCC	Room	3		5		4	pF
Capacitance ^g	C _{S(off)}	See Figure 12	DIP	Room	4				5	
Off State Output	C _{D(off)}	See Figure 12	PLCC	Room	6		10		8	
Capacitance ^g			DIP	Room	8				10	
Transition Time	t _{TRANS}	See Figure 4		Room Full	160		300 500		300 500	
Break-Before-Make Interval	t _{OPEN}	See Ligule 4		Room Full	80	50 25		50 25		
EN, WR Turn On Time	t _{ON}	See Figure 2 and 3		Room Full	150		300 500		300 500	ns
EN, Turn Off Time	tOFF	See Figure 2		Room Full	105		175 300		175 300	
Charge Injection	Qi	See Figure 5		Room	-70					рС

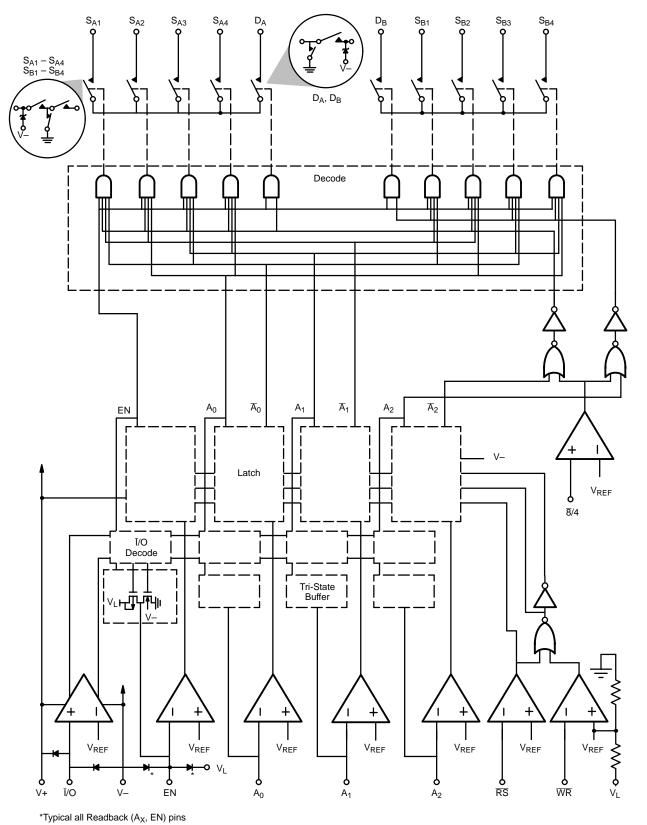
SPECIFICATION	S ^a									
		Test Conditions Unless Otherwise Specified				A Suffix –55 to 125°C		D Suffix -40 to 85°C		
Parameter	Symbol		$V+ = 15 V, V- = -3 V, V_L = 5 V$ $\overline{WR} = 0.8 V, \overline{RS}, EN= 2 V$		Тур ^с	Min ^d	Max ^d	Min ^d	Max ^d	Unit
Dynamic Characteris	tics (Cont'd)									
Chip Dischlad Crosstall/	V	R _L = 75 Ω, f = 5 MHz EN = 0.8 V	PLCC	Room	-75					
Chip Disabled Crosstalk [†]	X _{TALK(CD)}	See Figure 8	DIP	Room	-65					
		$R_{IN} = 10 \Omega$ $R_{L} = 10 k\Omega$	PLCC	Room	-97]
Adjacent Input Crosstalk ^f	X _{TALK(AI)}	f = 5 MHz SeeFigure 9	DIP	Room	-87					
	. ,	R _{IN} = 75 Ω, R _L = 75 Ω f = 5 MHz	PLCC	Room	-80					
		See Figure 7	DIP	Room	-70	Mind Maxd I I I <			1	
		$R_{IN} = 10 \Omega$ $R_{L} = 10 k\Omega$	PLCC	Room	-77					dB
All Hostile Crosstalk	X _{TALK(AH)}	f = 5 MHz See Figure 7	DIP	Room	-72					
	in and a specific sector of the sector of th	R_{IN} = 75 Ω, R_L = 75 Ω f = 5 MHz	PLCC	Room	-77					
		See Figure 7	DIP	Room	-72					
Differential Crossfells	v	$R_{IN} = 10 \Omega$, $R_L = 10 k\Omega$ f = 5 MHz, See Figure 10		Room	-84					
Differential Crosstalk	X _{TALK} (DIFF)	$R_{IN} = R_L = 75 \Omega$ f = 5 MHz, See Figure 10		Room	-84					
Bandwidth	BW	$R_L = 50 \Omega$, See Figure 6		Room	500					MHz
Power Supplies										
Positive Supply Current	l+	Any One Channel Selected	with Ad-	Room Full	0.6				2 5	mA
Negative Supply Current	I–	dress Inputs at GND or	5 V	Room Full	0.6			-1.8 -2		IIIA
Functional Check of	V+ to V-			Full				10	21	
Maximum Operating Supply Voltage Range	V– to GND	Functional Test Only	у	Full				-5.5	0	V
,	V+ to GND			Full		10		10	21	
Logic Supply Current	ΙL			Full	150		500		500	μA
Timing										
Reset to Write	t _{RW}			Room Full	-22	50		50		
WR, RS Minimum Pulse Width	t _{MPW}	See Figure 1		Room Full	60	200		200		ns
A ₀ , A ₁ , EN Data Valid to Strobe	t _{DW}			Room Full	20	100		100		
A ₀ , A ₁ , EN Data Valid after Strobe	t _{WD}				-20	50		50		
Address Bus Tri-State ^e	t _{AZ}	1		Room	25					
Address Bus Output	t _{AO}]	Room	95						
Address Bus Input	t _{AI}]		Room	110					<u> </u>

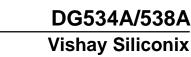
Notes:

a.

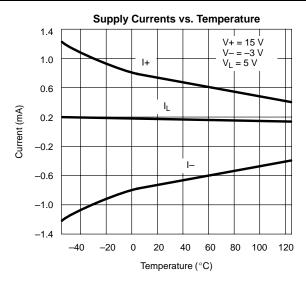
b.

c. d.

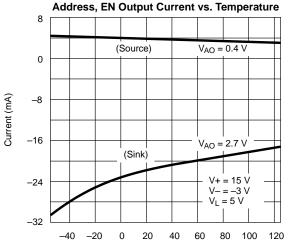

tes: Refer to PROCESS OPTION FLOWCHART. Room = 25°C, Full = as determined by the operating temperature suffix. Typical values are for DESIGN AID ONLY, not guaranteed nor subject to production testing. The algebraic convention whereby the most negative value is a minimum and the most positive a maximum, is used in this data sheet. Defined by system bus requirements. Each individual pin shown as GND must be grounded. Guaranteed by design, not subject to production test.

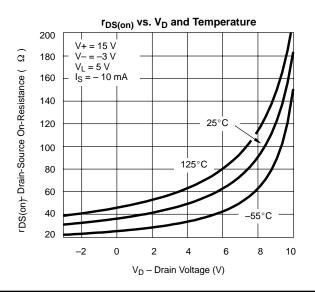

e. f.

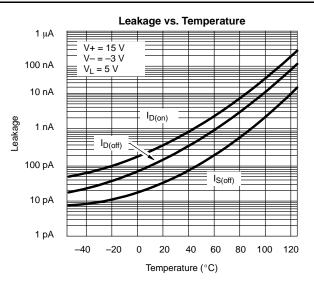
g.

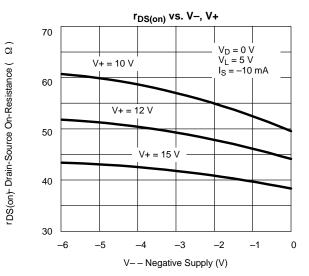


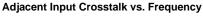
CONTROL CIRCUITRY

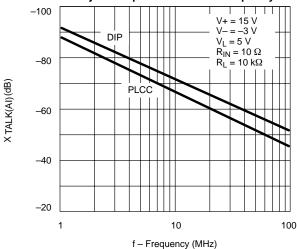


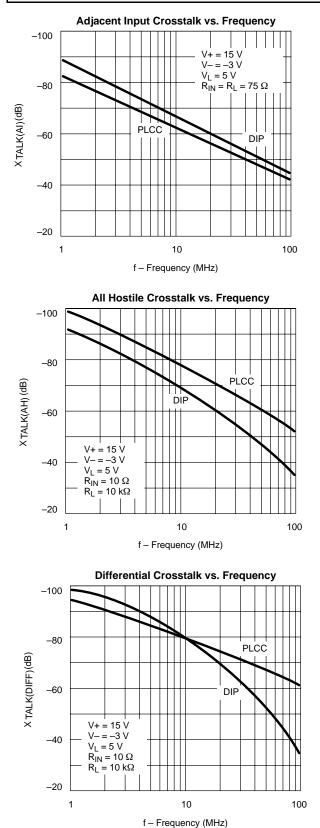

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

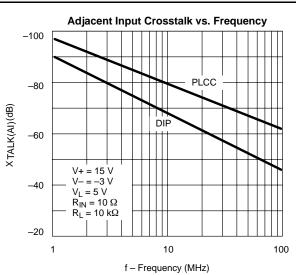


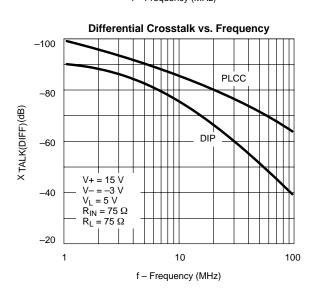

VISHAY



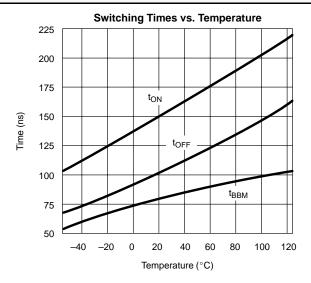

Temperature (°C)

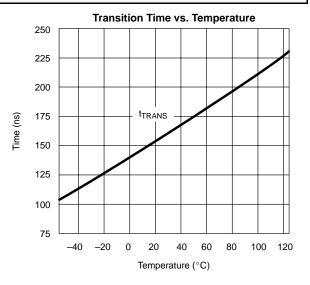


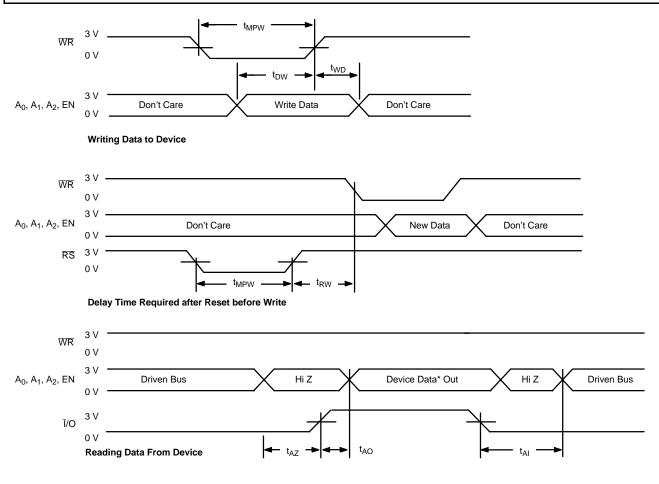




TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)


All Hostile Crosstalk vs. Frequency -100 -80 X TALK(AH) (dB) PLCC DIF -60 V+ = 15 V V - = -3 V-40 $V_{1} = 5 V$ $R_{IN} = R_L = 75 \ \Omega$ -20100 10 1 f - Frequency (MHz)




DG534A/538A Vishay Siliconix

TYPICAL CHARACTERISTICS (25°C UNLESS NOTED)

OUTPUT TIMING REQUIREMENTS

Vishay Siliconix

TEST CIRCUITS

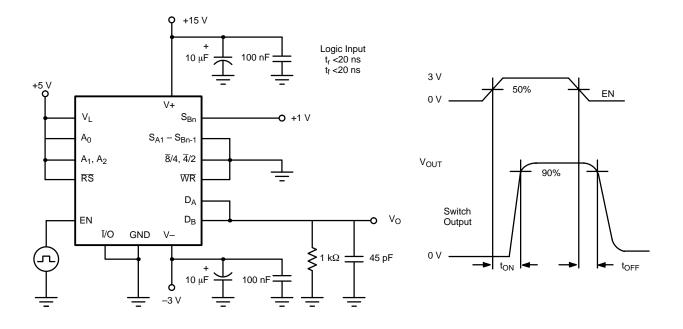


FIGURE 2. EN, CS, CS, Turn On/Off Time

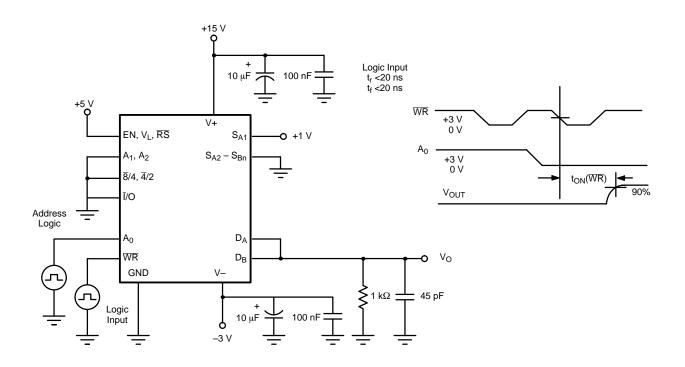


FIGURE 3. WR, Turn On Time

TEST CIRCUITS

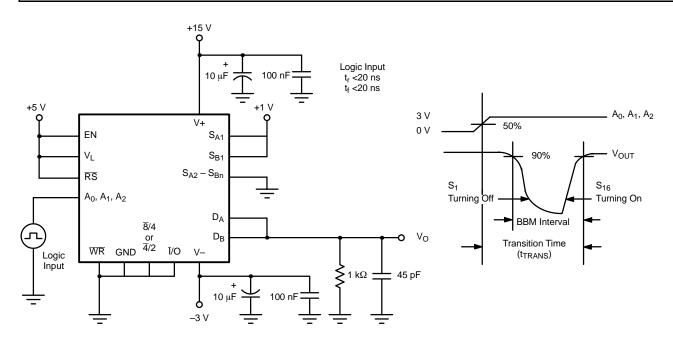
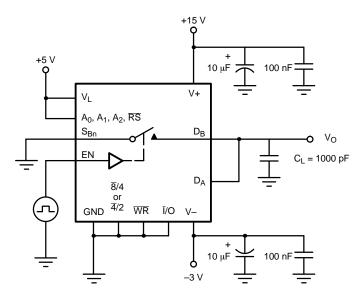
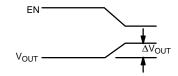
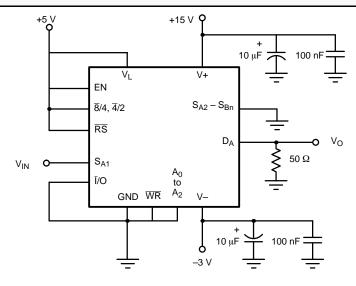
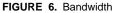
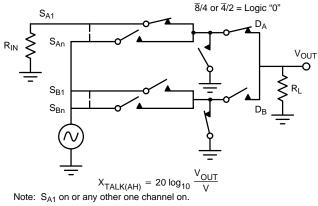




FIGURE 4. Transition Time and Break-Before-Make Interval


 ΔV_{OUT} is the measured voltage error due to charge injection. The charge injection in Coulombs is Q = CL x ΔV_{OUT}


FIGURE 5. Charge Injection


Vishay Siliconix

TEST CIRCUITS

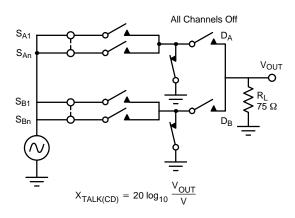
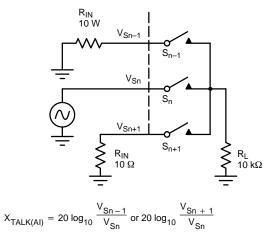
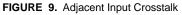




FIGURE 8. Chip Disabled Crosstalk

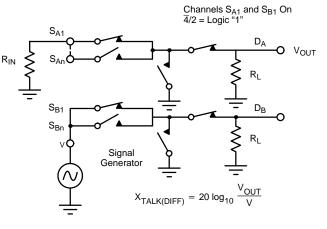


FIGURE 10. Differential Crosstalk

DG534A/538A Vishay Siliconix

TEST CIRCUITS

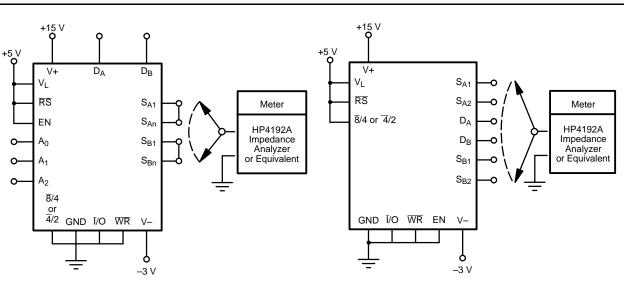
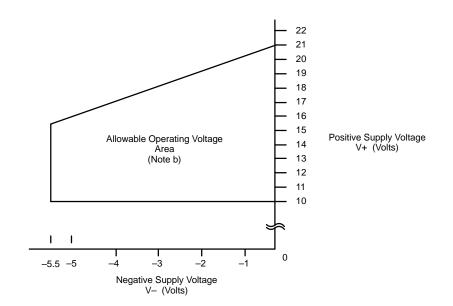



FIGURE 12. Off State Input/Output Capacitance

OPERATING VOLTAGE RANGE

Notes:

- a. Both V+ and V- must have decoupling capacitors mounted as close as possible to the device pins. Typical decoup-
- ling capacitors would be 10μ F tantalum bead in parallel with 100-nF ceramic disc.
- b. Production tested with V+ = 15 V and V- = -3 V.
- a. For V_L = 5 V \pm 10%, 0.8- or 2-V TTL compatibility is maintained over the entire operating voltage range.

PIN DESCRIPTION Pin Number Symbol DG534ADJ DG538A Description 2 2 D_A Analog Output/Input V+ 3 3 Positive Supply Voltage S_{A1} 4 4 Analog Input/Output 6 6 Analog Input/Output S_{A2} 8 Analog Input/Output S_{A3} _ 10 Analog Input/Output S_{A4} _ 4/2 7 4 x 1 or 2 x 2 Select _ 8/4 11 8 x 1 or 4 x 2 Select _ RS 8 12 Reset WR 9 13 Write command that latches A, EN 11, 10, -16, 15, 14 Binary address inputs that determine which channel(s) is/are connected to the out-A₀, A₁, A₂ put(s) Enable. Input/Output, if EN = 0, all channels are open FN 12 17 Ī/O 13 18 Input/Output control. Used to write to or read from the address latches Vı 14 19 Logic Supply Voltage, usually +5 V 20 Analog Input/Output S_{B4} 22 Analog Input/Output S_{B3} _ S_{B2} 15 24 Analog Input/Output 26 17 Analog Input/Output S_{B1} 27 Negative Supply Voltage V-18 19 Analog Output/Input D_B 28 Analog and Digital Grounds. All grounds should be connected externally to optimize GND 1, 5, 16 1, 5, 7, 9, 21, 23, 25 dynamic performance

APPLICATIONS

Device Description

The DG534A/538A D/CMOS wideband multiplexers offer single-ended or differential functions. A $\overline{8}/4$ or $\overline{4}/2$ logic input pin selects the single-ended or differential mode.

To meet the high dynamic performance demands of video, high definition TV, digital data routing (in excess of 100 Mbps), etc., the DG534A/538A are fabricated with DMOS transistors configured in 'T' arrangements with second level 'L' configurations (see Functional Block Diagram).

Use of DMOS technology yields devices with very low capacitance and low $r_{DS(on)}$. This directly relates to improved high frequency signal handling and higher switching speeds, while maintaining low insertion loss figures. The 'T' and 'L' switch configurations further improve dynamic performance by greatly reducing crosstalk and output node capacitances.

The DG534A/DG538A are improved pin-compatible replacements for the non-A versions. Improvements include: higher current readback drivers, readback of the EN bit, latchup protection

Frequency Response

A single multiplexer on-channel exhibits both resistance $[r_{DS(on)}]$ and capacitance $[C_{S(on)}]$. This RC combination causes a frequency dependent attenuation of the analog signal. The –3-dB bandwidth of the DG534A/538A is typically 500 MHz (into 50 Ω). This figure of 500 MHz illustrates that the switch-channel cannot be represented by a simple RC combination. The on capacitance of the channel is distributed along the on-resistance, and hence becomes a more complex multi-stage network of R's and C's making up the total $r_{DS(on)}$.

APPLICATIONS (CONT'D)

Power Supplies and Decoupling

A useful feature of the DG534A/538A is its power supply flexibility. It can be operated from unipolar supplies (V– connected to 0 V) if required. Allowable operating voltage ranges are shown in Figure 13.

Note that the analog signal must not go below V– by more than 0.3 V (see absolute maximum ratings). However, the addition of a V– pin has a number of advantages:

- a. It allows flexibility in analog signal handling, i.e. with V- = -5 V and V+ = 15 V, up to ± 5 V ac signals can be accepted.
- b. The value of on capacitance $(C_{S(on)})$ may be reduced by increasing the reverse bias across the internal FET body to source junction. V+ has no effect on $C_{S(on)}$.

It is useful to note that tests indicate that optimum video differential phase and gain occur when V– is -3 V.

c. V– eliminates the need to bias an ac analog signal using potential dividers and large decoupling capacitors.

It is established rf design practice to incorporate sufficient bypass capacitors in the circuit to decouple the power supplies to all active devices in the circuit. The dynamic performance of the DG534/538 is adversely affected by poor decoupling of power supply pins. Also, since the substrate of the device is connected to the negative supply, proper decoupling of this pin is essential.

Rules:

- a. Decoupling capacitors should be incorporated on all power supply pins (V+, V–, V_L).
- b. They should be mounted as close as possible to the device pins.
- Capacitors should have good frequency characteristics tantalum bead and/or ceramic disc types are suitable. Recommended decoupling capacitors are 1- to 10-μF tantalum bead, in parallel with 100-nF ceramic or polyester.
- d. Additional high frequency protection may be provided by $51-\Omega$ carbon film resistors connected in series with the power supply pins (see Figure 14).

Board Layout

PCB layout rules for good high frequency performance must also be observed to achieve the performance boasted by the DG534A/538A. Some tips for minimizing stray effects are:

- a. Use extensive ground planes on double sided PCB separating adjacent signal paths. Multilayer PCB is even better.
- b. Keep signal paths as short as practically possible with all channel paths of near equal length.
- c. Use strip-line layout techniques.

Improvements in performance can be obtained by using PLCC parts instead of DIPs. The stray effects of the quad PLCC package are lower than those of the dual-in-line packages. Sockets for the PLCC packages usually increase crosstalk.

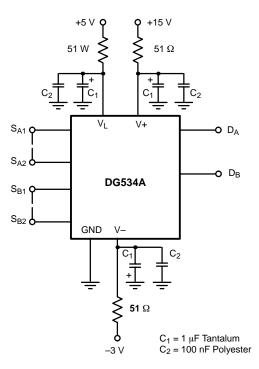


FIGURE 14. DG534A Power Supply Decoupling

Interfacing

Logic interfacing is easily accomplished. Comprehensive addressing and control functions are incorporated in the design.

The V_L pin permits interface to various logic types. The device is primarily designed to be TTL or CMOS logic compatible with +5 V applied to V_L. The actual logic threshold can be raised simply by increasing V_L.

Vishay Siliconix

APPLICATIONS (CONT'D)

A typical switching threshold versus V_L is shown in Figure 15.

These devices feature an address readback (Tally) facility, whereby the last address written to the device may be output to the system. This allows improved status monitoring and hand shaking without additional external components.

This function is controlled by the \overline{I}/O pin, which directly addresses the tri-state buffers connected to the EN and address pins. EN and address pins can be assigned to accept data (when $\overline{I}/O = 0$; $\overline{WR} = 0$; $\overline{RS} = 1$), or output data (when $\overline{I}/O = 1$; $\overline{WR} = 1$; $\overline{RS} = 1$), or to reflect a high impedance and latched state (when $\overline{I}/O = 0$; $\overline{WR} = 1$; $\overline{RS} = 1$).

When \bar{I}/O is high, the address output can sink or source current. Note that V_L is the logic high output condition. This point must be respected if V_L is varied for input logic threshold shifting.

Further control pins facilitate easy microprocessor interface. On chip address, data latches are activated by \overline{WR} , which serves as a strobe type function eliminating the need for peripheral latch or memory I/O port devices. Also, for ease of interface, a direct reset function (\overline{RS}) allows all latches to be cleared and switches opened. Reset should be used during power up, etc., to avoid spurious switch action. See Figure 16.

Channel address data can only be entered during \overline{WR} low, when the address latches are transparent and I/O is low. Similarly, address readback is only operational when \overline{WR} and I/O are high.

The Siliconix CLC410 Video amplifier is recommended as an output buffer to reduce insertion loss and to drive coaxial cables. For low power video routing applications or for unity gain input buffers CLC111/CLC114 are recommended.

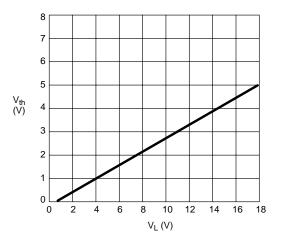


FIGURE 15. Switching Threshold Voltage vs. VL

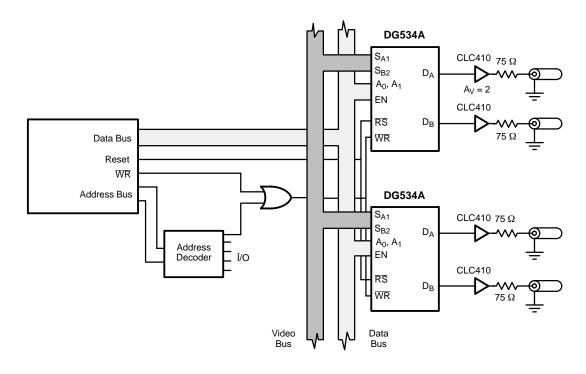


FIGURE 16. DG534A in a Video Matrix

Vishay

Disclaimer

All product specifications and data are subject to change without notice.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained herein or in any other disclosure relating to any product.

Vishay disclaims any and all liability arising out of the use or application of any product described herein or of any information provided herein to the maximum extent permitted by law. The product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein, which apply to these products.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay.

The products shown herein are not designed for use in medical, life-saving, or life-sustaining applications unless otherwise expressly indicated. Customers using or selling Vishay products not expressly indicated for use in such applications do so entirely at their own risk and agree to fully indemnify Vishay for any damages arising or resulting from such use or sale. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

Product names and markings noted herein may be trademarks of their respective owners.